Warwick University, 4-8th September 2011

Finite time corrections in KPZ growth models

Patrik L. Ferrari

arXiv:1104.2129
universitätbonn iam
http://www-wt.iam.uni-bonn.de/~ferrari

- Two examples
- Some universality results in KPZ
- First order corrections

Nematic liquid crystals: stable (black) vs instable (gray) cluster Takeuchi,Sano'10: PRL 104, 230601 (2010)

Videos: Takeuchi, Sano, Sasamoto,Spohn: Sci. Rep. 1, 34 (2011)
Q: Can we say something about the interface roughness?

Growth in $1+1$ dimension

Nematic liquid crystals: stable (black) vs instable (gray) cluster Takeuchi, Sano'10: PRL 104, 230601 (2010)

Videos: Takeuchi, Sano, Sasamoto,Spohn: Sci. Rep. 1, 34 (2011)
Q: Can we say something about the interface roughness?

Growth in $1+1$ dimension

Nematic liquid crystals: stable (black) vs instable (gray) cluster Takeuchi,Sano'10: PRL 104, 230601 (2010)

Videos: Takeuchi, Sano,Sasamoto,Spohn: Sci. Rep. 1, 34 (2011)
Q: Can we say something about the interface roughness?

Growth in $1+1$ dimension

Nematic liquid crystals: stable (black) vs instable (gray) cluster Takeuchi,Sano'10: PRL 104, 230601 (2010)

Videos: Takeuchi, Sano,Sasamoto,Spohn: Sci. Rep. 1, 34 (2011)
Q: Can we say something about the interface roughness?

- PASEP: Partially Asymmetric Simple Exclusion Process
- Configurations

$$
\eta=\left\{\eta_{j}\right\}_{j \in \mathbb{Z}}, \eta_{j}=\left\{\begin{array}{lll}
1, & \text { if } j \text { is occupied, } & \bullet 1 \bullet \mathbb{Z} \\
0, & \text { if } j \text { is empty } & 1001
\end{array}\right.
$$

- Dynamics

Independently, particles jump on the right site with rate p, to the left with rate $p=1-p$, provided the arrival site is empty.

- $p=1$: Totally asymmetric case (TASEP).

\Rightarrow Particles are ordered: position of particle k is $x_{k}(\tau)$
- Initial condition: $x_{k}(0)=-k, k=1,2, \ldots$
\Leftrightarrow for the height function: $h(x, t=0)=|x|, x \in \mathbb{Z}$.

\Rightarrow Particles are ordered: position of particle k is $x_{k}(\tau)$
- Initial condition: $x_{k}(0)=-k, k=1,2, \ldots$
\Leftrightarrow for the height function: $h(x, t=0)=|x|, x \in \mathbb{Z}$.

\Rightarrow Particles are ordered: position of particle k is $x_{k}(\tau)$
- Initial condition: $x_{k}(0)=-k, k=1,2, \ldots$
\Leftrightarrow for the height function: $h(x, t=0)=|x|, x \in \mathbb{Z}$.

\Rightarrow Particles are ordered: position of particle k is $x_{k}(\tau)$
- Initial condition: $x_{k}(0)=-k, k=1,2, \ldots$
\Leftrightarrow for the height function: $h(x, t=0)=|x|, x \in \mathbb{Z}$.

\Rightarrow Particles are ordered: position of particle k is $x_{k}(\tau)$
- Initial condition: $x_{k}(0)=-k, k=1,2, \ldots$
\Leftrightarrow for the height function: $h(x, t=0)=|x|, x \in \mathbb{Z}$.

- Surface described by a height function

$$
h(x, t)
$$

$x \in \mathbb{R}^{d}$ the space, $t \in \mathbb{R}$ the time

- Models with local growth
\Rightarrow macroscopic growth velocity v is a function of the slope only:

$$
\frac{\partial h}{\partial t}=v(\nabla h)
$$

KPZ universality class (in one dimension)

- Random local growth + smoothening mechanics
\Rightarrow deterministic macroscopic growth (for large growth time t)
- Simplest continuous equation for a irreversible, local, random and non-linear growth: the KPZ equation

Kardar, Parisi, Zhang' 86

$$
\frac{\partial h(x, t)}{\partial t}=\nu \frac{\partial^{2} h(x, t)}{\partial x^{2}}+\frac{1}{2} \lambda\left(\frac{\partial h(x, t)}{\partial x}\right)^{2}+\eta(x, t)
$$

- η : space-time uncorrelated white noise
- $\nu>0$: smoothing
- $\lambda>0$: lateral growth, non-linear term

See review of Sasamoto, Spohn for recent developments on the equation: arXiv:1010.2691 and Amin, Corwin, Quastel'10 + ...

- Random local growth + smoothing mechanics
\Rightarrow deterministic macroscopic growth (for large growth time t)
- If the growth velocity $v=v(u)$ has

$$
v^{\prime \prime}(u) \neq 0
$$

then the model is believed to be in the KPZ universality class

KPZ class

KPZ equation

 polynuclear growth model
partially asymmetric exclusion process

- Universality expected for large time t

Large time scaling for KPZ

- Limit shape:

$$
h_{\mathrm{macro}}(\xi):=\lim _{t \rightarrow \infty} \frac{h(\xi t, t)}{t}
$$

- Fluctuation exponent: $1 / 3$
- Spatial correlation exponent: $2 / 3$
\Rightarrow Rescaled height function around $x=\xi t$,

$$
h_{t}^{\mathrm{resc}}(u)=\frac{h\left(\xi t+u t^{2 / 3}, t\right)-t h_{\text {macro }}\left(\left(\xi t+u t^{2 / 3}\right) / t\right)}{t^{1 / 3}}
$$

Limit shape $=$ red line in the next animation.

Simulation with step initial condition: $x_{k}(0)=-k, k \in \mathbb{N}$.

Simulation with step initial condition: $x_{k}(0)=-k, k \in \mathbb{N}$.

Start	
Flat IC	
Angle 45	
Nb Particles	1200
Particles Radius	10

Jump Rate 2,... set to 1

Simulation with flat initial condition: $x_{k}(0)=-2 k, k \in \mathbb{Z}$.

Simulation with flat initial condition: $x_{k}(0)=-2 k, k \in \mathbb{Z}$.

Expected universal results (proven for specific models)

- Curved limit shape: Airy 2 process \mathcal{A}_{2},

$$
\begin{aligned}
\lim _{t \rightarrow \infty} h_{t}^{\mathrm{resc}}(u) & =\lim _{t \rightarrow \infty} \frac{h\left(\xi t+u t^{2 / 3}, t\right)-t h_{\mathrm{macro}}\left(\left(\xi t+u t^{2 / 3}\right) / t\right)}{t^{1 / 3}} \\
& =\kappa_{v} \mathcal{A}_{2}\left(u / \kappa_{h}\right)
\end{aligned}
$$

with κ_{v}, κ_{h} numerical coefficients, depending on ξ only.

- \mathcal{A}_{2} is stationary, $\operatorname{Cov}\left(\mathcal{A}_{2}(0), \mathcal{A}_{2}(u)\right) \sim c / u^{2}$ for $u \gg 1$, $\mathbb{P}\left(\mathcal{A}_{2}(0) \leq s\right)=F_{\mathrm{GUE}}(s)$

1Point: Baik,Rains'00+Prähofer, Spohn'01 Multipoints: Prähofer,Spohn'02; Johansson'03; . . .

Expected universal results (proven for specific models)

- Flat limit shape, non-random IC: Airy ${ }_{1}$ process \mathcal{A}_{1},

$$
\begin{aligned}
\lim _{t \rightarrow \infty} h_{t}^{\mathrm{resc}}(u) & =\lim _{t \rightarrow \infty} \frac{h\left(\xi t+u t^{2 / 3}, t\right)-t h_{\operatorname{macro}}\left(\left(\xi t+u t^{2 / 3}\right) / t\right)}{t^{1 / 3}} \\
& =\kappa_{v} \mathcal{A}_{1}\left(u / \kappa_{h}\right)
\end{aligned}
$$

with κ_{v}, κ_{h} numerical coefficients.

- \mathcal{A}_{1} is stationary, $\operatorname{Cov}\left(\mathcal{A}_{1}(0), \mathcal{A}_{1}(u)\right) \sim \exp \left(-c u^{3}\right)$ for $u \gg 1$ (numerical), $\mathbb{P}\left(\mathcal{A}_{1}(0) \leq s\right)=F_{\mathrm{GOE}}(2 s)$

1Pt: Baik,Rains'00+Prähofer,Spohn'01;Ferrari,Spohn'05
Multi: Sasamoto'05;Borodin,Ferrari, Prähofer, Sasamoto'07; ...

Expected universal results (proven for specific models)

- Flat limit shape, stationary IC; with ξ on the characteristics (otherwise trivially Brownian motion): Process \mathcal{A}_{0},

$$
\begin{aligned}
\lim _{t \rightarrow \infty} h_{t}^{\mathrm{resc}}(u) & =\lim _{t \rightarrow \infty} \frac{h\left(\xi t+u t^{2 / 3}, t\right)-t h_{\mathrm{macro}}\left(\left(\xi t+u t^{2 / 3}\right) / t\right)}{t^{1 / 3}} \\
& =\kappa_{v} \mathcal{A}_{0}\left(u / \kappa_{h}\right)
\end{aligned}
$$

with κ_{v}, κ_{h} numerical coefficients.

- \mathcal{A}_{0} is not stationary, $\mathbb{P}\left(\mathcal{A}_{0}(0) \leq s\right)=F_{0}(s)$

> 1Pt: Baik,Rains'00+Prähofer,Spohn'02;Imamura, Sasamoto'04 Multipt: Baik,Ferrari, Péché'10

- How fast does $h_{t}^{\text {resc }}$ converge to the limit processes?
- What is the nature of the first order correction, i.e., of the microscopic ("atomic scale") correction

$$
t^{1 / 3}\left(h_{t}^{\mathrm{resc}}-\mathcal{A} .\right) ?
$$

- For TASEP with step IC and KPZ solution (coming from WASEP) is the sign of

$$
a(p)=\lim _{t \rightarrow \infty} \mathbb{E}\left[t^{1 / 3}\left(h_{t}^{\mathrm{resc}}(0)-\mathcal{A}_{2}(0)\right)\right]
$$

different. What is the value of $p_{c} \in(1 / 2,1)$ such that $a\left(p_{c}\right)=0$? (A simulation of Sasamoto indicate $p_{c} \simeq 0.78$)

- Setting: PASEP, step IC, parameter p.
- We focus now only at one point distribution, so consider the random variable

$$
\zeta_{t}:=\frac{h(\xi t)-t h_{\mathrm{ma}}(\xi)}{\kappa_{v} t^{1 / 3}}=\left[h(\xi t)-c_{1} t\right] \delta_{t}
$$

with $c_{1}:=h_{\text {ma }}(\xi)$ and

$$
\delta_{t}:=\kappa_{v}^{-1} t^{-1 / 3}
$$

Denote: $\lim _{t \rightarrow \infty} \zeta_{t}=\zeta_{\mathrm{GUE}}$

- We obtain

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left[t^{1 / 3}\left(\zeta_{t}-\zeta_{\mathrm{GUE}}\right)\right]=a(p)=2 \sum_{\ell=1}^{\infty} \frac{(1-p)^{\ell}}{p^{\ell}-(1-p)^{\ell}}-1
$$

i.e.,

$$
a(p)=0 \quad \leftrightarrow \quad p=p_{c}=0.7822787862 \ldots
$$

Zero shift - PASEP

One-point - Generic case

As before, consider the random variable

$$
\zeta_{t}:=\frac{h(\xi t)-t h_{\mathrm{ma}}(\xi)}{\kappa_{v} t^{1 / 3}}=\left[h(\xi t)-c_{1} t\right] \delta_{t}
$$

with $c_{1}:=h_{\text {ma }}(\xi)$ and

$$
\delta_{t}:=\kappa_{v}^{-1} t^{-1 / 3}
$$

- Generically one has

$$
\zeta_{t}=\zeta_{\mathrm{GUE}}+a \delta_{t}+\mathcal{O}\left(\delta_{t}^{2}\right)
$$

where ζ_{GUE} and a are a priori non-independent random variables.

- $\mathbb{E}\left(\zeta_{t}\right)=\mathbb{E}\left(\zeta_{\mathrm{GUE}}\right)+\mathbb{E}(a) \delta_{t}+\mathcal{O}\left(\delta_{t}^{2}\right)$
- $\operatorname{Var}\left(\zeta_{t}\right)=\operatorname{Var}\left(\zeta_{\mathrm{GUE}}\right)+2 \operatorname{Cov}\left(a, \zeta_{\mathrm{GUE}}\right) \delta_{t}+\mathcal{O}\left(\delta_{t}^{2}\right)$

(Totally) asymmetric exclusion process TASEP with flat IC
Dots: data; Dashed line: asymptotic density; $t=1000$

(Totally) asymmetric exclusion process TASEP with step IC Dots: data; Dashed line: asymptotic density; $t=1000$

From the experiment on nematic liquid crystals. Taken from:
Takeuchi,Sano,Sasamoto,Spohn: Sci. Rep. 1, 34 (2011)

- A-priori: $\operatorname{Var}\left(\zeta_{t}\right)=\operatorname{Var}\left(\zeta_{\infty}\right)+2 \operatorname{Cov}\left(a, \zeta_{\infty}\right) \delta_{t}+\mathcal{O}\left(\delta_{t}^{2}\right)$.

From the experiment on nematic liquid crystals. Taken from: Takeuchi,Sano, Sasamoto,Spohn: Sci. Rep. 1, 34 (2011)

- A-priori: $\operatorname{Var}\left(\zeta_{t}\right)=\operatorname{Var}\left(\zeta_{\infty}\right)+2 \operatorname{Cov}\left(a, \zeta_{\infty}\right) \delta_{t}+\mathcal{O}\left(\delta_{t}^{2}\right)$.
- Experiment, simulations: $\operatorname{Var}\left(\zeta_{t}\right)=\operatorname{Var}\left(\zeta_{\infty}\right)+\mathcal{O}\left(\delta_{t}^{2}\right)$ only.
\Rightarrow Indicates that $\operatorname{Cov}\left(a, \zeta_{\infty}\right)=0$

From the experiment on nematic liquid crystals. Taken from: Takeuchi,Sano,Sasamoto,Spohn: Sci. Rep. 1, 34 (2011)

- A-priori: $\operatorname{Var}\left(\zeta_{t}\right)=\operatorname{Var}\left(\zeta_{\infty}\right)+2 \operatorname{Cov}\left(a, \zeta_{\infty}\right) \delta_{t}+\mathcal{O}\left(\delta_{t}^{2}\right)$.
- Experiment, simulations: $\operatorname{Var}\left(\zeta_{t}\right)=\operatorname{Var}\left(\zeta_{\infty}\right)+\mathcal{O}\left(\delta_{t}^{2}\right)$ only.
\Rightarrow Indicates that $\operatorname{Cov}\left(a, \zeta_{\infty}\right)=0$
- which holds in particular if a is a constant.

From the experiment on nematic liquid crystals. Taken from: Takeuchi,Sano,Sasamoto,Spohn: Sci. Rep. 1, 34 (2011)

Density - PASEP step IC (and PNG ...)

- Consider PASEP with step-initial condition (similar results holds for TASEP, PNG with flat / step IC).
- Let $I_{t}:=\left(\mathbb{Z}-c_{1} t\right) \delta_{t}$: the lattice where ζ_{t} takes values.
- Then, with the constant $a=a(p) \in \mathbb{R}$, it holds

$$
\mathbb{P}\left(\zeta_{t}=s\right) / \delta_{t}=F_{\mathrm{GUE}}^{\prime}\left(s-a \delta_{t}\right)+\mathcal{O}\left(\delta_{t}^{2}\right), \quad s \in I_{t}
$$

- Consider PASEP with step-initial condition (similar results holds for TASEP, PNG with flat / step IC).
- Let $I_{t}:=\left(\mathbb{Z}-c_{1} t\right) \delta_{t}$: the lattice where ζ_{t} takes values.
- Then, with the constant $a=a(p) \in \mathbb{R}$, it holds

$$
\mathbb{P}\left(\zeta_{t}=s\right) / \delta_{t}=F_{\mathrm{GUE}}^{\prime}\left(s-a \delta_{t}\right)+\mathcal{O}\left(\delta_{t}^{2}\right), \quad s \in I_{t}
$$

$\Rightarrow \mathrm{By} \mathrm{a}$ (non-universal) constant shift, the convergence of the density is $\mathcal{O}\left(\delta_{t}^{2}\right)=\mathcal{O}\left(t^{-2 / 3}\right)$ instead of $\mathcal{O}\left(\delta_{t}\right)=\mathcal{O}\left(t^{-1 / 3}\right)$.

- Consider PASEP with step-initial condition (similar results holds for TASEP, PNG with flat / step IC).
- Let $I_{t}:=\left(\mathbb{Z}-c_{1} t\right) \delta_{t}$: the lattice where ζ_{t} takes values.
- Then, with the constant $a=a(p) \in \mathbb{R}$, it holds

$$
\mathbb{P}\left(\zeta_{t}=s\right) / \delta_{t}=F_{\mathrm{GUE}}^{\prime}\left(s-a \delta_{t}\right)+\mathcal{O}\left(\delta_{t}^{2}\right), \quad s \in I_{t}
$$

$\Rightarrow \mathrm{By} \mathrm{a}$ (non-universal) constant shift, the convergence of the density is $\mathcal{O}\left(\delta_{t}^{2}\right)=\mathcal{O}\left(t^{-2 / 3}\right)$ instead of $\mathcal{O}\left(\delta_{t}\right)=\mathcal{O}\left(t^{-1 / 3}\right)$.

- New scaling: instead of

$$
\zeta_{t}=\left(h_{t}(0)-c_{1} t\right) \delta_{t} \quad \Rightarrow \quad \widetilde{\zeta}_{t}=\left(h_{t}(0)-c_{1} t-a\right) \delta_{t}
$$

so that

$$
\mathbb{P}\left(\widetilde{\zeta}_{t}=s\right) / \delta_{t}=F_{\mathrm{GUE}}^{\prime}(s)+\mathcal{O}\left(\delta_{t}^{2}\right), \quad s \in \widetilde{I}_{t}=\left(\mathbb{Z}-c_{1} t-a\right) \delta_{t}
$$

(Totally) asymmetric exclusion process TASEP with flat IC Dots: $\widetilde{\zeta}_{t}=\left(h_{t}(0)-c_{1} t-a\right) \delta_{t}, t=1000$.
Solid line: $2 F_{\mathrm{GOE}}^{\prime}(2 s)$; Dashed line: $2 F_{\mathrm{GOE}}^{\prime}\left(2\left(s-a \delta_{t}\right)\right)$.
For curved limit shape the convergence, still $\mathcal{O}\left(t^{-2 / 3}\right)$, is slower.

(Totally) asymmetric exclusion process TASEP with step IC Dots: $\widetilde{\zeta}_{t}=\left(h_{t}(0)-c_{1} t-a\right) \delta_{t}, t=1000$.
Solid line: $F_{\mathrm{GUE}}^{\prime}(s)$; Dashed line: $F_{\mathrm{GUE}}^{\prime}\left(s-a \delta_{t}\right)$.
For curved limit shape the convergence, still $\mathcal{O}\left(t^{-2 / 3}\right)$, is slower.

Moments - PASEP step IC (and PNG ...)

- With $\widetilde{\zeta}_{t}=\left(h_{t}(0)-c_{1} t-a\right) \delta_{t}$. For any fixed $m=1,2, \ldots$, it holds

$$
\mathbb{E}\left(\widetilde{\zeta}_{t}^{m}\right)=\int_{\mathbb{R}} s^{m} d F_{\mathrm{GUE}}(s)+\mathcal{O}\left(\delta_{t}^{2}\right)
$$

\Rightarrow By an appropriate (non-universal) constant shift, the convergence of the density and moments is $\mathcal{O}\left(\delta_{t}^{2}\right)=\mathcal{O}\left(t^{-2 / 3}\right)$.

Distribution function - PASEP (and PNG)

(Totally) asymmetric exclusion process TASEP with step IC.

$$
\text { Plot of } \mathbb{P}\left(\widetilde{\zeta}_{t} \leq s\right) \text { vs } F_{\mathrm{GUE}}(s) ; t=1000
$$

- Q: Why is the fit not good?

Distribution function - PASEP (and PNG)

- Q: Why is the fit not good?
- A: Because of the discreteness of the model / measurement (\widetilde{I}_{t} has a lattice width δ_{t}).

Ferrari,Frings'11

Distribution function - PASEP (and PNG)

- Q: Why is the fit not good?
- A: Because of the discreteness of the model / measurement (\widetilde{I}_{t} has a lattice width δ_{t}).
- To have a good fit with the distribution function, one has to fit with the solid line, i.e.,

$$
\mathbb{P}\left(\widetilde{\zeta}_{t} \leq s\right) \quad \text { with } \quad F_{\mathrm{GUE}}\left(s+\frac{1}{2} \delta_{t}\right)
$$

(1) Show that for an appropriate constant a,

$$
\mathbb{P}\left(\left(h_{t}(0)-c_{1} t-a\right) \delta_{t} \leq s\right)=F_{\mathrm{GUE}}\left(s+\frac{1}{2} \delta_{t}\right)\left(1+\mathcal{O}\left(\delta_{t}^{2}\right)\right)
$$

for $s \in \widetilde{I}_{t}$.
(1) Show that for an appropriate constant a,

$$
\mathbb{P}\left(\left(h_{t}(0)-c_{1} t-a\right) \delta_{t} \leq s\right)=F_{\mathrm{GUE}}\left(s+\frac{1}{2} \delta_{t}\right)\left(1+\mathcal{O}\left(\delta_{t}^{2}\right)\right)
$$

for $s \in \widetilde{I}_{t}$.
(2) Point (1) follows as a corollary of a similar statement for the distribution of tagged particles:

$$
\mathbb{P}\left(x_{[\sigma t]}(t /(p-q)) \geq c_{1}(\sigma) t-s \kappa_{v}(\sigma) t^{1 / 3}-\widetilde{a}\right)=F_{\mathrm{GUE}}\left(s+\frac{1}{2} \delta_{t}\right)\left(1+\mathcal{O}\left(\delta_{t}^{2}\right)\right)
$$

(1) Show that for an appropriate constant a,

$$
\mathbb{P}\left(\left(h_{t}(0)-c_{1} t-a\right) \delta_{t} \leq s\right)=F_{\mathrm{GUE}}\left(s+\frac{1}{2} \delta_{t}\right)\left(1+\mathcal{O}\left(\delta_{t}^{2}\right)\right)
$$

for $s \in \widetilde{I}_{t}$.
(2) Point (1) follows as a corollary of a similar statement for the distribution of tagged particles:
$\mathbb{P}\left(x_{[\sigma t]}(t /(p-q)) \geq c_{1}(\sigma) t-s \kappa_{v}(\sigma) t^{1 / 3}-\widetilde{a}\right)=F_{\mathrm{GUE}}\left(s+\frac{1}{2} \delta_{t}\right)\left(1+\mathcal{O}\left(\delta_{t}^{2}\right)\right)$.
(3) To show (2) one starts with the formula of Tracy and Widom (2009).
(3) To show (2) one starts with the formula of Tracy and Widom (2009): $u=c_{1}(\sigma) t-s \kappa_{v}(\sigma) t^{1 / 3}-\widetilde{a}, n=\sigma t, \tau=q / p<1$,

$$
\mathbb{P}\left(x_{n}(t /(p-q)) \geq u\right)=\frac{1}{2 \pi \mathrm{i}} \oint \frac{\mathrm{~d} \mu}{\mu}(\mu ; \tau)_{\infty} \operatorname{det}\left(\mathbb{1}+\mu J_{\mu}\right)
$$

where $(\mu ; \tau)_{\infty}=\prod_{k=0}^{\infty}\left(1-\mu \tau^{k}\right)$ is the q-Pochhammer symbol and the integral is taken over a circle around the origin with radius in the interval $(0, \tau)$. The operator J_{μ} has kernel

$$
J_{\mu}\left(\eta, \eta^{\prime}\right)=\frac{1}{2 \pi \mathrm{i}} \oint \mathrm{~d} \zeta \frac{\exp \left(\frac{t \zeta}{1-\zeta}\right)(1-\zeta)^{u} \zeta^{n}}{\exp \left(\frac{t \eta^{\prime}}{1-\eta^{\prime}}\right)\left(1-\eta^{\prime}\right)^{u}\left(\eta^{\prime}\right)^{n+1}} \frac{f\left(\mu, \frac{\zeta}{\eta^{\prime}}\right)}{\zeta-\eta}
$$

where η, η^{\prime} are on a circle around 0 with radius $r \in(\tau, 1)$ and ζ runs on a circle around 0 with radius in $(1, r / \tau)$. For $1<|z|<\tau^{-1}$, the function f is given by

$$
f(\mu, z)=\sum_{k=-\infty}^{\infty} \frac{\tau^{k}}{1-\tau^{k} \mu} z^{k}
$$

(4) Finally one has to do the asymptotic analysis for $t \rightarrow \infty$. At the end of the day one gets

$$
\begin{aligned}
& \mathbb{P}\left(x_{n}(t /(p-q)) \geq u\right)=F_{\mathrm{GUE}}\left(s+\delta_{t} / 2\right) \\
& \times \\
& \times\left[1-\left(\frac{G}{\sqrt{\sigma}}-\frac{1}{2}+\widetilde{a}\right) \operatorname{Tr}\left(\left(\mathbb{1}-\chi_{s} K_{\mathcal{A}_{2}} \chi_{s}\right)^{-1} \chi_{s}(\mathrm{Ai} \otimes \mathrm{Ai}) \chi_{s}\right) t^{-1 / 3}\right. \\
&\left.+\mathcal{O}\left(t^{-2 / 3}\right)\right]
\end{aligned}
$$

with

$$
G=\frac{1}{2 \pi \mathrm{i}} \oint_{\tau<|\mu|<1} \frac{\mathrm{~d} \mu}{\mu}(\mu ; \tau)_{\infty}\left(\sum_{k=0}^{\infty} \frac{\mu \tau^{k}}{1-\mu \tau^{k}}+\sum_{k=1}^{\infty} \frac{\tau^{k}}{\tau^{k}-\mu}\right) .
$$

So, one sets $\widetilde{a}=\frac{1}{2}-\frac{G}{\sqrt{\sigma}}$ and finds out that

$$
G=\sum_{\ell=1}^{\infty} \frac{\tau^{\ell}}{1-\tau^{\ell}}
$$

