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Critical sandpile model

[Bak, Tang, Wiesenfeld; 1987], [Dhar; 1990]

Configurations: Λ ⊂ Zd finite, (ηx)x∈Λ ∈ {0, 1, . . . }Λ

Stabilization: SΛ : {0, 1, . . . }Λ → {0, 1, . . . , 2d− 1}Λ

Toppling: if ηx ≥ 2d, x can topple: send one particle to each neighbour
ηy → ηy −∆xy, y ∈ Λ where ∆ is the graph Laplacian.

Repeat as long as there is x with ηx ≥ 2d.

Open boundary condition: when toppling on the boundary, some particles
leave the system.

Lemma. [Dhar; 1990] SΛ is well-defined (Abelian property).
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Critical sandpile model

Addition operators: Let ΩΛ = {0, 1, . . . , 2d− 1}Λ.
We define ax : ΩΛ → ΩΛ by axη = SΛ(η + ex), where ex has a single
particle at x, and no particles elsewhere.

Abelian property: axay = ayax for x, y ∈ Λ.

Avalanche: the sequence of topplings occurring in stabilizing η + ex.

Markov chain: State space ΩΛ. Pick x ∈ Λ uniformly at random.
Then jump: η → axη = SΛ(η + ex).

Evolution: η(n) = SΛ(η(0) +
∑n
i=1 eXi), where X1, X2, . . . are i.i.d. with

P(Xi = x) = |Λ|−1, x ∈ Λ.
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Example: addition resulting in no toppling

d = 2. Possible number of particles: 0, 1, 2, 3.

2 2 1 0

2 3 3 2

3 3 1 1

2 2 2 1

addition−→

2 2 1 0

2 3 3 2

3 3 2 1

2 2 2 1
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Example: addition resulting in a sequence of topplings

2 2 1 0

2 3 3 2

3 3 2 1

2 2 2 1

addition−→

2 2 1 0

2 4 3 2

3 3 2 1

2 2 2 1

toppling
 

2 3 1 0

3 0 4 2

3 4 2 1

2 2 2 1

two topplings
 

2 3 2 0

3 2 0 3

4 0 4 1

2 3 2 1

two topplings
 

2 3 2 0

4 2 1 3

0 2 0 2

3 3 3 1

toppling
 

3 3 2 0

0 3 1 3

1 2 0 2

3 3 3 1
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Critical sandpile model

Recurrent states: only one recurrent class: RΛ ⊂ ΩΛ

Stationary distribution νΛ is uniform on RΛ.

Sandpile group: RΛ forms an Abelian group under η ⊕ ζ = SΛ(η + ζ),
isomorphic to ZΛ/ZΛ∆. The Markov chain is a random walk on RΛ with
generators {ax : x ∈ Λ}.

Self-organized criticality: νΛ has power law correlations: if d ≥ 2 then

lim
Λ→Zd

CovνΛ
(I[η0 = 0], I[ηx = 0]) ∼ const · |x|−2d as |x| → ∞.

The number of topplings in an avalanche, as well as other characteristics,
are conjectured to follow a power law.
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Combinatorial characterization of recurrent states

A recurrent configuration cannot contain

0 0

Definition. A finite set F is called ample for a configuration ξ, if

ξi ≥ #{j ∈ F : j ∼ i} for at least one i ∈ F ,

where j ∼ i denotes that j and i are neighbours.

For example,
1 0

1 1 3 2

0 1 1

is not ample.
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Combinatorial characterization of recurrent states

Theorem. [Majumdar, Dhar; 1992] For η ∈ ΩΛ we have:

η ∈ RΛ ⇐⇒ every ∅ 6= F ⊂ Λ is ample for η.

Definition. Recurrent configurations on Zd:

Ω = {0, . . . , 2d− 1}Z
d

= set of stable configurations in Zd.

R := {η ∈ Ω : ηΛ ∈ RΛ for all finite Λ ⊂ Zd}

= {η ∈ Ω : every finite ∅ 6= F ⊂ Zd is ample for η}.
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The burning test

An algorithm that checks if η ∈ ΩΛ is recurrent [Dhar; 1990].

3 2 1 1

3 1 0 2

0 3 1 2

2 2 1 2

u 2 1 1
u 1 0 2

0 3 1 2
u 2 1 u

u 1 1

1 0 2

0 3 1 u
u 1

1 1

1 0 u
0 u 1

u

1 u
u 0

u u

u
0
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Majumdar-Dhar bijection

3 2 1 1
3 1 0 2
0 3 1 2
2 2 1 2

s s s s
s s s s
s s s s
s s s s

s 2 1 1s 1 0 2
0 3 1 2s 2 1 s

s s s s
s s s s
s s s s
s s s s

s 1 1
1 0 2

0 3 1 s
s 1

s s s s
s s s s
s s s s
s s s s

1 1
1 0 s

0 s 1s

s s s s
s s s s
s s s s
s s s s

1 s
s 0s s

s s s s
s s s s
s s s s
s s s s

s
0

s s s s
s s s s
s s s s
s s s s

One-to-one correspondence:

RΛ ⇐⇒ spanning trees on Λ with wired boundary conditions.
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Sandpile with bulk dissipation

Exact calculations: [Mahieu, Ruelle; 2001] probabilities of some local
configurations, and correlation functions in d = 2, in connection with CFT.
For integer γ ≥ 1, allow 0, 1, . . . , 2d+ γ − 1 particles on each vertex.
On each toppling, γ particles are dissipated:

∆(γ)
xy =


2d+ γ if x = y;

−1 if x ∼ y;

0 otherwise.

They then let γ ↓ 0 in formulas obtained.

Continuous model: [Gabrielov; 1993]

Ω(γ)
Λ = [0, 2d+ γ)Λ, γ ≥ 0 real. Add unit height and stabilize.

R(γ)
Λ ⊂ Ω(γ)

Λ — Stationary distribution m
(γ)
Λ : Lebesgue measure on R(γ)

Λ .
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Sandpile with bulk dissipation

Discrete description: m
(γ)
Λ easily understood in terms of a discrete measure.

ξx :=

{
[ηx] if 0 ≤ ηx < 2d;

2d if 2d ≤ ηx < 2d+ γ.

m
(γ)
Λ −→ ν

(γ)
Λ on Ωdiscr

Λ = {0, 1, . . . , 2d}Λ.

Weights: The discrete measure ν
(γ)
Λ obeys the following weighting:

ν
(γ)
Λ (ξ) =

1
Z
γN(ξ),

where N(ξ) = #{x ∈ Λ : ξx = 2d}.
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Extension of the Majumdar-Dhar bijection

Adding dissipative edges: Define the graph GΛ = (VΛ, EΛ), where VΛ =
Λ∪{s}, EΛ contains the usual edges on Λ∪{s} and one ”dissipative” edge
between each x ∈ Λ and s.

Bijection with spanning trees: The Majumdar-Dhar bijection extends to a

one-to-one correspondence between R(γ)
Λ and spanning trees of GΛ.

Weighted spanning trees: Give dissipative edges weight γ and other edges
weight 1. The weight of a spanning tree t of GΛ is

∏
e∈tw(e).

Proposition. [J., Redig, Saada; 2010] The Majumdar-Dhar bijection

gives a coding of ν
(γ)
Λ by weighted spanning trees. That is:

ν
(γ)
Λ (ξ) =

1
Z
w(t(ξ)).
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Infinite volume limit

Theorem. [J., Redig, Saada; 2010]

(i) (Stationary measure) For any γ ≥ 0 we have m
(γ)
Λ ⇒ m(γ) as Λ ↑ Zd.

(ii) (Dynamics) For any γ > 0 the process η(t) = S(γ)(η(0)+
∑
x∈ZdNx(t))

is well-defined a.s. (rate 1 Poisson additions).
(iii) (Invariance) m(γ) is invariant for the dynamics.
(iv) (Zero dissipation limit) As γ ↓ 0, m(γ) ⇒ m(0).

Remark. The Transfer-Current Theorem [Burton, Pemantle; 1993]
applied to the collection of dissipative edges gives:
Under m(γ), hx = I[ηx ∈ [2d, 2d+ γ)] is a determinantal process.
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Rate of convergence as γ ↓ 0

The question: How fast does m(γ) ⇒ m(0), as γ ↓ 0?

Minimal configurations: a finite configuration ξ ∈ Ωdiscr
F = {0, 1, . . . , 2d}F

is called minimal, if decreasing any of the values ξx makes it not ample.

Exact computations: For a minimal configuration ξ, we can express ν(γ)(ξ)
as a determinant involving the Green function of random walk in Zd killed
at geometric rate γ/(2d+ γ) [Majumdar, Dhar; 1991].

Rate of convergence: [J., Redig, Saada; 2010] We have

∣∣∣ν(γ)[ξ0 = 0]− ν(0)[ξ0 = 0]
∣∣∣ ≤ {Cγ log(1/γ) if d = 2;

Cγ if d ≥ 3.

Open question: Are these the precise rates for all finite configurations?
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Power law upper bounds

Theorem. [J.; 2010] Suppose E depends on the heights in [−k, k]d.
(1) If d = 3, there exist positive constants C, η such that for all 0 ≤ γ < 1∣∣∣m(γ)(E)−m(0)(E)

∣∣∣ ≤ Ck2γη + Ck5(log k)γ.

(2) If d = 2, there exist positive constants c0, C, C0 such that for all
0 ≤ γ < c0k

−C0 we have∣∣∣m(γ)(E)−m(0)(E)
∣∣∣ ≤ Ck21/23γ1/46−o(1).

Ingredients of the proof: Majumdar-Dhar bijection + Wilson’s algorithm.
We construct a coupling that is successful with high probability when γ is
small.

15



Wilson’s algorithm

Weighted spanning forest: the weak limit of the weighted spanning tree
measures as Λ ↑ Zd. We want to sample from this measure.

Geometrically killed LERW: Consider the random walk on Zd ∪ {s} that on
each step jumps to a neighbour with probability 1/(2d+ γ), and jumps to
s with probability γ/(2d+ γ). The Loop-Erased Random Walk (LERW) is
obtained by chronologically removing all loops from the path.

Wilson’s method. Enumerate Zd as x1, x2, . . . . Put F0 = {s}. Assume
F0, . . . ,Fi−1 have been defined (i ≥ 1). Run a random walk S(i) starting at
xi until the time T (i) when it hits Fi−1. Put Fi = Fi−1∪LE(S(i)[0, T (i)]).
Finally, put F = ∪i≥0Fi.

Theorem. [Wilson; 1996] Regardless of the enumeration chosen, F has
the distribution of the weighted spanning forest.
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Setup for the event E

Under the Majumdar-Dhar bijection, the occurrence or not of the event E
can be determined from the spanning forest paths starting in [−k−1, k+1]d.
This can be generated by Wilson’s method, if we start the enumeration
with the vertices {x1, . . . , xN} = [−k − 1, k + 1]d ∩ Zd.

Coupling for LERW. The coupling required for the Theorem can be
constructed, if we can couple a sufficiently long initial segment of a
geometrically killed LERW to the corresponding initial segment of the
unkilled LERW, and give estimates on the coupling.

17



An easy argument for d = 3

Let S be simple random walk on Zd starting at 0. Let B(r) := {x ∈ Zd :
|x| < r}. Let τr denote the first exit time from B(r).

Stabilization of LERW. Consider the last time σ when B(m) is visited.
Then LE(S) ∩B(m) can still change after time σ, due to closing of loops
that started before time σ. However, after the last visit to the set S[0, σ],
LE(S) ∩B(m) cannot change.

An easy bound is obtained by considering m < N < n and the events
{σ ≤ τN} and {no return to B(N) after τn}. This gives

P[LERW ∩B(m) is unchanged after τn] ≥ 1− C(m/n)1/2.

From this one can derive the d = 3 statement of the Theorem with an
explicit exponent.
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Main ideas for d = 2

Infinite LERW. [Lawler; 1988] showed that LE(S[0, τn]) converges in
distribution to a random infinite self-avoiding path. Due to recurrence,
there is no a.s. convergence.

Laplacian walk. Letting Γ = LE(S[0, τn]), we have

P[Γ(k + 1) = x |Γ[0, k] = [z0, . . . , zk]] =
EsnΓ[0,k](x)∑

y:y∼zk EsnΓ[0,k](y)
, x ∼ zk.

Error estimates. [Lawler; 1988] showed that the right hand side differs

from its limit as n→∞ by a factor (1+O(k
2

n log n
k)), uniformly over paths.

Killed LERW. Let T ∼ Geom(γ/(2d+γ)). We want to give error estimates
on the weak convergence of LE(S[0, T ]) to the infinite LERW as γ ↓ 0.
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Main ideas for d = 2

Evolution of the killed LERW. Let Γ = LE(S[0, T ]). Analogously to the
Laplacian walk, we have

P[Γ(k+1) = x |Γ[0, k] = [z0, . . . , zk]] =
1

4+γP
x[ξA > T ]

γ
4+γ + 1

4+γ

∑
y 6∈A, y∼zk P

y[ξA > T ]
,

where A = {z0, . . . , zk}, and ξA is the hitting time of A.

Technical difficulty. We cannot easily compare LE(S[0, T ]) to LE(S[0, τn])
for some n. When we consider the path S[0, τn], the loop-erased path
cannot trap itself. It will, by definition, reach ∂B(n). When we consider
S[0, T ], trapping can occur.

Trapping. Even for small γ, the term γ
4+γ in the denominator may be

significant. Hence the error estimate cannot be uniform from path to path.
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Main ideas for d = 2

Regular paths. We need to restrict to paths that are sufficiently regular, so
that the trapping effect is small. This is achieved by restricting to paths
that satisfy:

Py[τ2R < ξΓ[0,k] |Γ[0, k]] > R−β, y 6∈ A, y ∼ zk,

for a suitable radius R and exponent β > 0.

Strategy. On regular paths, one can approximate the killed LERW by the
Laplacian Walk, that is, replace T by an exit time τn for a suitable n. The
estimates can be made uniform on such paths. We can also estimate the
probability of bad paths (on which the coupling will not be realized).
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Open problems

d = 4: Our approach gives only logarithmic rate of convergence. It appears
challenging to improve this to a power law.

d ≥ 5: A different approach is needed. This is related to the fact that the
Uniform Spanning Forest is not connected in dimensions d ≥ 5.

Exact value of the exponent: is the rate for all cylinder events E equal
c(E)γ for d ≥ 3, and c(E)γ log(1/γ) for d = 2?
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Thank you very much for your attention.
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