Rate of convergence estimates for the zero dissipation limit in Abelian sandpiles

Antal A. Járai
University of Bath

Warwick, 9 September 2011

Partly joint work with: F. Redig and E. Saada

Critical sandpile model

[Bak, Tang, Wiesenfeld; 1987], [Dhar; 1990]
Configurations: $\Lambda \subset \mathbb{Z}^{d}$ finite, $\left(\eta_{x}\right)_{x \in \Lambda} \in\{0,1, \ldots\}^{\Lambda}$
Stabilization: $\mathcal{S}_{\Lambda}:\{0,1, \ldots\}^{\Lambda} \rightarrow\{0,1, \ldots, 2 d-1\}^{\Lambda}$
Toppling: if $\eta_{x} \geq 2 d, x$ can topple: send one particle to each neighbour $\eta_{y} \rightarrow \eta_{y}-\Delta_{x y}, y \in \Lambda$ where Δ is the graph Laplacian.

Repeat as long as there is x with $\eta_{x} \geq 2 d$.
Open boundary condition: when toppling on the boundary, some particles leave the system.

Lemma. [Dhar; 1990] \mathcal{S}_{Λ} is well-defined (Abelian property).

Critical sandpile model

Addition operators: Let $\Omega_{\Lambda}=\{0,1, \ldots, 2 d-1\}^{\Lambda}$.
We define $a_{x}: \Omega_{\Lambda} \rightarrow \Omega_{\Lambda}$ by $a_{x} \eta=\mathcal{S}_{\Lambda}\left(\eta+e_{x}\right)$, where e_{x} has a single particle at x, and no particles elsewhere.

Abelian property: $a_{x} a_{y}=a_{y} a_{x}$ for $x, y \in \Lambda$.
Avalanche: the sequence of topplings occurring in stabilizing $\eta+e_{x}$.
Markov chain: State space Ω_{Λ}. Pick $x \in \Lambda$ uniformly at random.
Then jump: $\eta \rightarrow a_{x} \eta=\mathcal{S}_{\Lambda}\left(\eta+e_{x}\right)$.
Evolution: $\eta(n)=\mathcal{S}_{\Lambda}\left(\eta(0)+\sum_{i=1}^{n} e_{X_{i}}\right)$, where X_{1}, X_{2}, \ldots are i.i.d. with $\mathbf{P}\left(X_{i}=x\right)=|\Lambda|^{-1}, x \in \Lambda$.

Example: addition resulting in no toppling

$d=2$. Possible number of particles: $0,1,2,3$.
\(\left.\begin{array}{|llll}\hline 2 \& 2 \& 1 \& 0

2 \& 3 \& 3 \& 2

3 \& 3 \& 1 \& 1

2 \& 2 \& 2 \& 1\end{array}\right] \xrightarrow{addition} |\)| 2 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 3 | 2 |
| 3 | 3 | 2 | 1 |
| 2 | 2 | 2 | 1 |

Example: addition resulting in a sequence of topplings

Critical sandpile model

Recurrent states: only one recurrent class: $\mathcal{R}_{\Lambda} \subset \Omega_{\Lambda}$ Stationary distribution ν_{Λ} is uniform on \mathcal{R}_{Λ}.

Sandpile group: \mathcal{R}_{Λ} forms an Abelian group under $\eta \oplus \zeta=\mathcal{S}_{\Lambda}(\eta+\zeta)$, isomorphic to $\mathbb{Z}^{\Lambda} / \mathbb{Z}^{\Lambda} \Delta$. The Markov chain is a random walk on \mathcal{R}_{Λ} with generators $\left\{a_{x}: x \in \Lambda\right\}$.

Self-organized criticality: ν_{Λ} has power law correlations: if $d \geq 2$ then

$$
\lim _{\Lambda \rightarrow \mathbb{Z}^{d}} \operatorname{Cov}_{\nu_{\Lambda}}\left(I\left[\eta_{0}=0\right], I\left[\eta_{x}=0\right]\right) \sim \text { const } \cdot|x|^{-2 d} \quad \text { as }|x| \rightarrow \infty
$$

The number of topplings in an avalanche, as well as other characteristics, are conjectured to follow a power law.

Combinatorial characterization of recurrent states

A recurrent configuration cannot contain

$$
\begin{array}{|l|l|}
\hline 0 & 0 \\
\hline
\end{array}
$$

Definition. A finite set F is called ample for a configuration ξ, if

$$
\xi_{i} \geq \#\{j \in F: j \sim i\} \quad \text { for at least one } i \in F
$$

where $j \sim i$ denotes that j and i are neighbours.
For example,

	1	0	
1	1	3	2
0		1	1

is not ample.

Combinatorial characterization of recurrent states

Theorem. [Majumdar, Dhar; 1992] For $\eta \in \Omega_{\Lambda}$ we have:

$$
\eta \in \mathcal{R}_{\Lambda} \quad \Longleftrightarrow \quad \text { every } \emptyset \neq F \subset \Lambda \text { is ample for } \eta \text {. }
$$

Definition. Recurrent configurations on \mathbb{Z}^{d} :

$$
\begin{aligned}
\Omega= & \{0, \ldots, 2 d-1\}^{\mathbb{Z}^{d}}=\text { set of stable configurations in } \mathbb{Z}^{d} . \\
\mathcal{R} & :=\left\{\eta \in \Omega: \eta_{\Lambda} \in \mathcal{R}_{\Lambda} \text { for all finite } \Lambda \subset \mathbb{Z}^{d}\right\} \\
& =\left\{\eta \in \Omega: \text { every finite } \emptyset \neq F \subset \mathbb{Z}^{d} \text { is ample for } \eta\right\} .
\end{aligned}
$$

The burning test

An algorithm that checks if $\eta \in \Omega_{\Lambda}$ is recurrent [Dhar; 1990].

3	2	1	1
3	1	0	2
0	3	1	2
2	2	1	2

$\left.\begin{array}{l|l|ll|}\hline- & 2 & 1 & 1 \\ \hline \text { - } & 1 & 0 & 2 \\ \hline 0 & 3 & 1 & 2 \\ \hline & & 2 & 1\end{array}\right)$

Majumdar-Dhar bijection

One-to-one correspondence:
$\mathcal{R}_{\Lambda} \Longleftrightarrow$ spanning trees on Λ with wired boundary conditions.

Sandpile with bulk dissipation

Exact calculations: [Mahieu, Ruelle; 2001] probabilities of some local configurations, and correlation functions in $d=2$, in connection with CFT. For integer $\gamma \geq 1$, allow $0,1, \ldots, 2 d+\gamma-1$ particles on each vertex. On each toppling, γ particles are dissipated:

$$
\Delta_{x y}^{(\gamma)}= \begin{cases}2 d+\gamma & \text { if } x=y \\ -1 & \text { if } x \sim y \\ 0 & \text { otherwise }\end{cases}
$$

They then let $\gamma \downarrow 0$ in formulas obtained.
Continuous model: [Gabrielov; 1993]
$\Omega_{\Lambda}^{(\gamma)}=[0,2 d+\gamma)^{\Lambda}, \gamma \geq 0$ real. Add unit height and stabilize.
$\mathcal{R}_{\Lambda}^{(\gamma)} \subset \Omega_{\Lambda}^{(\gamma)}$ - Stationary distribution $m_{\Lambda}^{(\gamma)}$: Lebesgue measure on $\mathcal{R}_{\Lambda}^{(\gamma)}$.

Sandpile with bulk dissipation

Discrete description: $m_{\Lambda}^{(\gamma)}$ easily understood in terms of a discrete measure.

$$
\xi_{x}:= \begin{cases}{\left[\eta_{x}\right]} & \text { if } 0 \leq \eta_{x}<2 d \\ 2 d & \text { if } 2 d \leq \eta_{x}<2 d+\gamma\end{cases}
$$

$m_{\Lambda}^{(\gamma)} \longrightarrow \nu_{\Lambda}^{(\gamma)}$ on $\Omega_{\Lambda}^{\text {discr }}=\{0,1, \ldots, 2 d\}^{\Lambda}$.
Weights: The discrete measure $\nu_{\Lambda}^{(\gamma)}$ obeys the following weighting:

$$
\nu_{\Lambda}^{(\gamma)}(\xi)=\frac{1}{Z} \gamma^{N(\xi)}
$$

where $N(\xi)=\#\left\{x \in \Lambda: \xi_{x}=2 d\right\}$.

Extension of the Majumdar-Dhar bijection

Adding dissipative edges: Define the graph $G_{\Lambda}=\left(V_{\Lambda}, E_{\Lambda}\right)$, where $V_{\Lambda}=$ $\Lambda \cup\{s\}, E_{\Lambda}$ contains the usual edges on $\Lambda \cup\{s\}$ and one "dissipative" edge between each $x \in \Lambda$ and s.

Bijection with spanning trees: The Majumdar-Dhar bijection extends to a one-to-one correspondence between $\mathcal{R}_{\Lambda}^{(\gamma)}$ and spanning trees of G_{Λ}.

Weighted spanning trees: Give dissipative edges weight γ and other edges weight 1 . The weight of a spanning tree t of G_{Λ} is $\prod_{e \in t} w(e)$.
Proposition. [J., Redig, Saada; 2010] The Majumdar-Dhar bijection gives a coding of $\nu_{\Lambda}^{(\gamma)}$ by weighted spanning trees. That is:

$$
\nu_{\Lambda}^{(\gamma)}(\xi)=\frac{1}{Z} w(t(\xi))
$$

Infinite volume limit

Theorem. [J., Redig, Saada; 2010]
(i) (Stationary measure) For any $\gamma \geq 0$ we have $m_{\Lambda}^{(\gamma)} \Rightarrow m^{(\gamma)}$ as $\Lambda \uparrow \mathbb{Z}^{d}$.
(ii) (Dynamics) For any $\gamma>0$ the process $\eta(t)=\mathcal{S}^{(\gamma)}\left(\eta(0)+\sum_{x \in \mathbb{Z}^{d}} N_{x}(t)\right)$ is well-defined a.s. (rate 1 Poisson additions).
(iii) (Invariance) $m^{(\gamma)}$ is invariant for the dynamics.
(iv) (Zero dissipation limit) As $\gamma \downarrow 0, m^{(\gamma)} \Rightarrow m^{(0)}$.

Remark. The Transfer-Current Theorem [Burton, Pemantle; 1993] applied to the collection of dissipative edges gives:
Under $m^{(\gamma)}, h_{x}=I\left[\eta_{x} \in[2 d, 2 d+\gamma)\right]$ is a determinantal process.

Rate of convergence as $\gamma \downarrow 0$

The question: How fast does $m^{(\gamma)} \Rightarrow m^{(0)}$, as $\gamma \downarrow 0$?
Minimal configurations: a finite configuration $\xi \in \Omega_{F}^{\text {discr }}=\{0,1, \ldots, 2 d\}^{F}$ is called minimal, if decreasing any of the values ξ_{x} makes it not ample.

Exact computations: For a minimal configuration ξ, we can express $\nu^{(\gamma)}(\xi)$ as a determinant involving the Green function of random walk in \mathbb{Z}^{d} killed at geometric rate $\gamma /(2 d+\gamma)$ [Majumdar, Dhar; 1991].

Rate of convergence: [J., Redig, Saada; 2010] We have

$$
\left|\nu^{(\gamma)}\left[\xi_{0}=0\right]-\nu^{(0)}\left[\xi_{0}=0\right]\right| \leq \begin{cases}C \gamma \log (1 / \gamma) & \text { if } d=2 ; \\ C \gamma & \text { if } d \geq 3\end{cases}
$$

Open question: Are these the precise rates for all finite configurations?

Power law upper bounds

Theorem. [J.; 2010] Suppose E depends on the heights in $[-k, k]^{d}$. (1) If $d=3$, there exist positive constants C, η such that for all $0 \leq \gamma<1$

$$
\left|m^{(\gamma)}(E)-m^{(0)}(E)\right| \leq C k^{2} \gamma^{\eta}+C k^{5}(\log k) \gamma .
$$

(2) If $d=2$, there exist positive constants c_{0}, C, C_{0} such that for all $0 \leq \gamma<c_{0} k^{-C_{0}}$ we have

$$
\left|m^{(\gamma)}(E)-m^{(0)}(E)\right| \leq C k^{21 / 23} \gamma^{1 / 46-o(1)} .
$$

Ingredients of the proof: Majumdar-Dhar bijection + Wilson's algorithm. We construct a coupling that is successful with high probability when γ is small.

Wilson's algorithm

Weighted spanning forest: the weak limit of the weighted spanning tree measures as $\Lambda \uparrow \mathbb{Z}^{d}$. We want to sample from this measure.

Geometrically killed LERW: Consider the random walk on $\mathbb{Z}^{d} \cup\{s\}$ that on each step jumps to a neighbour with probability $1 /(2 d+\gamma)$, and jumps to s with probability $\gamma /(2 d+\gamma)$. The Loop-Erased Random Walk (LERW) is obtained by chronologically removing all loops from the path.

Wilson's method. Enumerate \mathbb{Z}^{d} as x_{1}, x_{2}, \ldots Put $\mathcal{F}_{0}=\{s\}$. Assume $\mathcal{F}_{0}, \ldots, \mathcal{F}_{i-1}$ have been defined $(i \geq 1)$. Run a random walk $S^{(i)}$ starting at x_{i} until the time $T^{(i)}$ when it hits \mathcal{F}_{i-1}. Put $\mathcal{F}_{i}=\mathcal{F}_{i-1} \cup \operatorname{LE}\left(S^{(i)}\left[0, T^{(i)}\right]\right)$. Finally, put $\mathcal{F}=\cup_{i \geq 0} \mathcal{F}_{i}$.

Theorem. [Wilson; 1996] Regardless of the enumeration chosen, \mathcal{F} has the distribution of the weighted spanning forest.

Setup for the event E

Under the Majumdar-Dhar bijection, the occurrence or not of the event E can be determined from the spanning forest paths starting in $[-k-1, k+1]^{d}$. This can be generated by Wilson's method, if we start the enumeration with the vertices $\left\{x_{1}, \ldots, x_{N}\right\}=[-k-1, k+1]^{d} \cap \mathbb{Z}^{d}$.

Coupling for LERW. The coupling required for the Theorem can be constructed, if we can couple a sufficiently long initial segment of a geometrically killed LERW to the corresponding initial segment of the unkilled LERW, and give estimates on the coupling.

An easy argument for $d=3$

Let S be simple random walk on \mathbb{Z}^{d} starting at 0 . Let $\mathbf{B}(r):=\left\{x \in \mathbb{Z}^{d}\right.$: $|x|<r\}$. Let τ_{r} denote the first exit time from $\mathbf{B}(r)$.

Stabilization of LERW. Consider the last time σ when $\mathbf{B}(m)$ is visited. Then $\mathrm{LE}(S) \cap \mathbf{B}(m)$ can still change after time σ, due to closing of loops that started before time σ. However, after the last visit to the set $S[0, \sigma]$, $\mathrm{LE}(S) \cap \mathbf{B}(m)$ cannot change.

An easy bound is obtained by considering $m<N<n$ and the events $\left\{\sigma \leq \tau_{N}\right\}$ and $\left\{\right.$ no return to $\mathbf{B}(N)$ after $\left.\tau_{n}\right\}$. This gives

$$
\mathbf{P}\left[\text { LERW } \cap \mathbf{B}(m) \text { is unchanged after } \tau_{n}\right] \geq 1-C(m / n)^{1 / 2}
$$

From this one can derive the $d=3$ statement of the Theorem with an explicit exponent.

Main ideas for $d=2$

Infinite LERW. [Lawler; 1988] showed that $\mathrm{LE}\left(S\left[0, \tau_{n}\right]\right)$ converges in distribution to a random infinite self-avoiding path. Due to recurrence, there is no a.s. convergence.

Laplacian walk. Letting $\Gamma=\operatorname{LE}\left(S\left[0, \tau_{n}\right]\right)$, we have

$$
\mathbf{P}\left[\Gamma(k+1)=x \mid \Gamma[0, k]=\left[z_{0}, \ldots, z_{k}\right]\right]=\frac{\operatorname{Es}_{\Gamma[0, k]}^{n}(x)}{\sum_{y: y \sim z_{k}} \operatorname{Es}_{\Gamma[0, k]}^{n}(y)}, \quad x \sim z_{k}
$$

Error estimates. [Lawler; 1988] showed that the right hand side differs from its limit as $n \rightarrow \infty$ by a factor $\left(1+O\left(\frac{k^{2}}{n} \log \frac{n}{k}\right)\right)$, uniformly over paths.

Killed LERW. Let $T \sim \operatorname{Geom}(\gamma /(2 d+\gamma))$. We want to give error estimates on the weak convergence of $\operatorname{LE}(S[0, T])$ to the infinite LERW as $\gamma \downarrow 0$.

Main ideas for $d=2$

Evolution of the killed LERW. Let $\Gamma=\operatorname{LE}(S[0, T])$. Analogously to the Laplacian walk, we have
$\mathbf{P}\left[\Gamma(k+1)=x \mid \Gamma[0, k]=\left[z_{0}, \ldots, z_{k}\right]\right]=\frac{\frac{1}{4+\gamma} \mathbf{P}^{x}\left[\xi_{A}>T\right]}{\frac{\gamma}{4+\gamma}+\frac{1}{4+\gamma} \sum_{y \notin A, y \sim z_{k}} \mathbf{P}^{y}\left[\xi_{A}>T\right]}$,
where $A=\left\{z_{0}, \ldots, z_{k}\right\}$, and ξ_{A} is the hitting time of A.
Technical difficulty. We cannot easily compare $\operatorname{LE}(S[0, T])$ to $\operatorname{LE}\left(S\left[0, \tau_{n}\right]\right)$ for some n. When we consider the path $S\left[0, \tau_{n}\right]$, the loop-erased path cannot trap itself. It will, by definition, reach $\partial \mathbf{B}(n)$. When we consider $S[0, T]$, trapping can occur.

Trapping. Even for small γ, the term $\frac{\gamma}{4+\gamma}$ in the denominator may be significant. Hence the error estimate cannot be uniform from path to path.

Main ideas for $d=2$

Regular paths. We need to restrict to paths that are sufficiently regular, so that the trapping effect is small. This is achieved by restricting to paths that satisfy:

$$
\mathbf{P}^{y}\left[\tau_{2 R}<\xi_{\Gamma[0, k]} \mid \Gamma[0, k]\right]>R^{-\beta}, \quad y \notin A, y \sim z_{k}
$$

for a suitable radius R and exponent $\beta>0$.
Strategy. On regular paths, one can approximate the killed LERW by the Laplacian Walk, that is, replace T by an exit time τ_{n} for a suitable n. The estimates can be made uniform on such paths. We can also estimate the probability of bad paths (on which the coupling will not be realized).

Open problems

$d=4$: Our approach gives only logarithmic rate of convergence. It appears challenging to improve this to a power law.
$d \geq 5$: A different approach is needed. This is related to the fact that the Uniform Spanning Forest is not connected in dimensions $d \geq 5$.

Exact value of the exponent: is the rate for all cylinder events E equal $c(E) \gamma$ for $d \geq 3$, and $c(E) \gamma \log (1 / \gamma)$ for $d=2$?

Thank you very much for your attention.

