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Preferential attachment networks

Networks consists of a large, but finite, number of nodes connected by links.
In the modern world, networks are ubiquitous:

social and communication networks,

world wide web and internet,

scientific and other collaboration graphs, . . .

Preferential attachment is a principle that aims to explain the emergent features of
these networks. It was made popular by Barabási and Albert (1999).

Networks are built dynamically by adding vertices one-by-one. When a new vertex is
introduced, it is linked by edges to a fixed or random number of existing vertices with
a probability proportional to an increasing function f of their degree. The higher the
degree of a vertex, the more likely it is to establish further links.
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Our variant of the model

Take a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

Model evolution: At time n = 1, we have a single vertex (labeled 1). In each time
step n→ n + 1 we

add a new vertex labeled n + 1, and

for each m ≤ n independently introduce an oriented edge from the new
vertex n + 1 to the old vertex m with probability

f (indegree of m at time n)

n
.
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f (0)/2

f (1)/2
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Our variant of the model
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n
.

Example:

2 31

Peter Mörters Preferential attachment networks



Our variant of the model

Take a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.

Model evolution: At time n = 1, we have a single vertex (labeled 1). In each time
step n→ n + 1 we

add a new vertex labeled n + 1, and

for each m ≤ n independently introduce an oriented edge from the new
vertex n + 1 to the old vertex m with probability

f (indegree of m at time n)

n
.

Example:

42 31

f (2)/3

f (0)/3
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Our variant of the model

Take a concave function f : N ∪ {0} → (0,∞) with f (0) ≤ 1 and

∆f (k) := f (k + 1)− f (k) < 1 for all k ∈ N.
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n
.

Example:

1 42 3

All edges are ordered from the younger to the older vertex. For the questions of
interest, edges may be considered as unordered. We denote the resulting increasing
sequence of graphs by (GN).
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Power law exponents

The empirical degree distribution of GN is given by

XN(k) =
1

N

N∑
i=1

1{degree of vertex i = k}.

Theorem 1: (M, Dereich 2008)

There exists a probability distribution µ such that

lim
N↑∞

XN = µ in probability.

Moreover, the limit γ := limk↑∞
f (k)
k

exists and, if γ > 0, the network is scale-free in
the sense that

lim
k↑∞

− logµ(k)

log k
=

1 + γ

γ
=: τ <∞.
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Physicists believe that many of the emerging properties of the network depend
only on τ and not on other features of the model.
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Percolation: Definitions

Let CN ⊂ GN be the largest connected component of the graph. We say that
(GN) has a giant component if

lim
N→∞

#CN
N

= p > 0 in probability.

Given GN and a retention parameter p we obtain the percolated graph GN(p) by
removing every edge of GN independently with probability q := 1− p.

We say the network survives pecolation with parameter p if and only if the
network (GN(p)) has a giant component.

The network (GN) is robust if the network survives percolation for every retention
parameter 0 < p ≤ 1, i.e. if the critical retention parameter is zero.
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Percolation

Questions:

For which attachment rules f does a giant component exist?

For which attachment rules f is the network robust?

Given a non-robust network, for which p does it survive percolation?

Theorem 2: (M, Dereich 2010)

For any attachment function f , the network is robust if and only if

γ := lim
n→∞

f (n)

n
≥ 1

2
.
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The condition is also equivalent to

τ :=
γ + 1

γ
≤ 3

where τ is the power-law exponent of the network.
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Percolation

Precise criteria for existence of a giant component and survival of the network under
percolation can be given in terms of the principal eigenvalue of a compact operator.
They become explicit if f is linear.

Theorem 3: (M, Dereich 2010)

Suppose the attachment function is linear, i.e.

f (k) = γk + β, with 0 ≤ γ < 1.

Then a giant component exists if and only if

γ ≥ 1

2
or β >

( 1
2
− γ)2

1− γ

and if γ < 1
2

the network survives percolation with retention parameter p if and only if

p > ( 1
2γ
− 1) (

√
1 + γ

β
− 1).
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Framework of the proof

We couple the neighbourhood of a uniformly chosen vertex with the genealogy of
a killed branching random walk. This coupling is successful with high probability
if up to log N vertices are explored.

A sprinkling argument is used to establish the existence of a giant component
from the local information. This means that we consider the approximating trees
for a network with a slightly reduced edge density . If they survive percolation
with positive probability, the remaining edges will connect the surviving trees
with high probability, and hence a giant component exists.
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Coupling the network to a branching process

We get a first criterion for the existence and size of a giant component.

Proposition

The proportion of vertices in the largest component of the network converges to the
survival probability p(f ) of the killed branching random walk, while the proportion of
vertices in the second largest component converges to zero, in probability.

In particular, there exists a giant component if and only if the killed branching random
walk is supercritical, i.e. p(f ) > 0.
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Size of the giant component
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Simulation for the linear case f (k) = γk + β.
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Framework of the proof

We couple the neighbourhood of a uniformly chosen vertex with the genealogy of
a killed branching random walk. This coupling is successful with high probability
if up to log N vertices are explored.

A sprinkling argument is used to establish the existence of a giant component
from the local information. This means that we consider the approximating trees
for a network with a slightly reduced edge density . If they survive percolation
with positive probability, the remaining edges will connect the surviving trees
with high probability, and hence a giant component exists.

The underlying branching random walk has infinite offspring and a uncountable
but compact typespace. Martingale arguments are used to show that the killed
branching random walk survives percolation if 1/p is strictly smaller than the
largest eigenvalue of an associated score operator. This operator is unbounded
if the network is robust and compact otherwise.

In the linear case the typespace degenerates to have just two elements. In this
case eigenvalue calculations can be carried out explicitly.
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