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The topic of the talk is
I Random walks in Dirichlet random environment (RWDE) : a

special class of random walks in random environment (RWRE)
with at each site independent Dirichlet random variables

or equivalently

I Directed edge reinforced random walks: linearly reinforced
random walks on directed graphs with counters on directed
edges

This model originally appeared in the work of Pemantle on
reinforced RW on trees. These environments have a remarkable
property of "stability under time reversal". I will explain some
consequences on the environment viewed from the particle and
ballisticity criteria.



Random Walks in Random Environment on Zd

Let (e1, . . . , ed ) be the canonical base of Zd , and ej+d = −ej .
(e1, . . . , e2d ) is the set of unit vectors of Zd .
The set of environments is the set of (weakly) elliptic transition
probabilities

Ω = {(ω(x , x+ei )) ∈ (0, 1)Z
d×{1,...,2d}, ∀x ∈ Zd ,

2d∑
i=1

ω(x , x+ei ) = 1}.

For ω ∈ Ω, the law of the Markov chain in environment ω, starting
from x, is denoted by Pωx :

Pωx (Xn+1 = y + ei |Xn = y) = ω(y , y + ei ),



We define the law P on the environment Ω as follows: At each
point x in Zd , we choose independently the transition probabilities

(ω(x , x + ei ))i=1,...,2d

according to the same law µ; µ is a law on the set

{(ω1, . . . , ω2d ) ∈ (0, 1]2d ,

2d∑
i=1

ωi = 1}.

The annealed law is
Px(·) = E(Pωx (·))

Many results in the last 10 years mainly in the ballistic regime
(Sznitman’s (T) condition) or at weak disorder. But even more
open questions.



Dirichlet law

The Dirichlet law is the multivariate generalization of the beta law.
The Dirichlet law with positive parameters α1, . . . , αn,
(Dir(α1, . . . , αn)), is the law on the simplex

{(p1, . . . , pn), pi > 0,
∑

pi = 1}

with density

Γ(
∑n

i=1 αi )∏n
i=1 Γ(αi )

(
n∏

i=1

pαi−1
i

)
dp1 · · · dpn−1.

Dirichlet laws give a natural family of laws on probabilities on finite
sets. They play an important role in Bayesian statistics.



Random Walks in Dirichlet environments (RWDE)

We choose some positive weights α1, . . . , α2d , one for each
direction ei : the Dirichlet environment corresponds to the case

µ = Dir(α1, . . . , α2d ),

i.e. to the case where the (ω(x , x + ei ))i=1,...,2d are choosen
independently with the same Dirichlet law Dir((α1, . . . , α2d )).

The annealed process has the law of a directed edge reinforced RW

P0(Xn+1 = Xn + ei |σ{Xk , k ≤ n})

=
αi + ln(Xn,Xn + ei )∑
αk + ln(Xn,Xn + ek)

,

where ln(x , x + ek) = number of crossings of the directed edge
(x , x + ek) before time n.



Dirichlet environments have a property of stability under time
reversal which is a key tool in proving

I Transience on transient graphs
I Directional transience
I The existence of an invariant measure for the environment

viewed from the particle
I This property is also related to the explicit parameters which

appear for limit theorems in 1D (Enriquez, S., Tournier,
Zindy).



RWDE on directed graphs

Consider a connected directed graph G = (V ,E ) with finite degree.
We denote by e, e the tail and the head of the edge e = (e, e). We
consider a set of positive weights (αe)e∈E , αe > 0.

I The environment set is

Ω = {(ωe)e∈E ∈ (0, 1]E , s. t. ∀x ∈ V ,
∑

e=x ωe = 1}.

This is the set of possible transition probabilities on the graph
G .

I The random Dirichlet environment is defined as follows : at
each vertex x , pick independently the exit probabilities
(ωe)e=x according to a Dirichlet law Dir((αe)e=x).

It defines the law P(α) on Ω.



Stability under time reversal
Let G = (V ,E ) be a finite connected directed graph. Let
div : RE 7→ RV be the divergence operator

div(θ)(x) =
∑
e=x

θ(e)−
∑
e=x

θ(e), ∀θ ∈ RE .

If G = (V ,E ) we denote by Ǧ = (V , Ě ) the reversed graph
obtained by reversing all the edges. If ω is an environment we
denoted by ω̌ the time-reversed environment defined as usual

ω̌ě = π(e)ωe
1

π(e)
.

where π is the invariant probability measure in the environment ω.

Lemma (S., 08)
Let (αe)e∈E be positive weights with null divergence. If (ωe) is a
Dirichlet random environment with distribution P(α) then ω̌ is a
Dirichlet random environment on Ǧ with distribution P(α̌), where α̌
is defined by α̌ě = αe .



Time reversal on the torus

On the torus
T (N)

d = (Z/NZ)d ,

if we have take some weights (α1, . . . , α2d ), i.e.

α(x ,x+ei ) = αi ,

then the weights have null divergence. So if ω is distributed
according to P(α), then ω̌ is distributed according to P(α̌) where α̌
is obtained from α by symmetry:

α̌(x ,x−ei ) = αi



The environment viewed from the particle

Let τ be the spatial shift on the environment

τx(ω)(y , y + ei ) = ω(x + y , x + y + ei ).

The environment viewed from the particle is the Markov chain on
state space Ω defined by

ωn = τXn(ω),

where (Xn) is the Markov chain in environment ω.

(Q) Does there exists a probability measure Q on Ω absolutely
continuous with respect to P and invariant for (ωn)?

Answering (Q) is a key step. When it exists it is equivalent to P
unique and ergodic.



For general RWRE the answer is known only in a few special cases
I d = 1 (Kesten, Molchanov)
I Balanced environments (Lawler)
I For "non-nestling" weakly disordered environments in d ≥ 4

(Bolthausen-Sznitman)
I In a weaker form (equivalence in half-spaces) under (T)

condition (Rassoul-Agha, Rassoul-Agha Seppäläinen).



Equivalence of the static and dynamic point of view

Theorem (S., 10)
Let d ≥ 3 and (α1, . . . , α2d ) be any positive weights. Set

κ = 2(
2k∑

k=1

αk)− min
i=1,...,d

(αi + αi+d )

i) If κ ≤ 1, there does not exist any probability measure on Ω
absolutely continuous with respect to P(α) and invariant for ωn.

ii) If κ > 1, there exists a (unique ergodic) probability measure
Q(α) on Ω, absolutely continuous with respect to P(α) and invariant
for ωn. Moreover dQ(α)

dP(α) is in Lp(P(α)) for all p < κ.



The meaning of κ

For i = 1, . . . , d , set Ki = {0, ei} and

κi = 2(
2k∑

k=1

αk)− (αi + αi+d ).

κi is the sum of the weights exiting Ki and we have that

E(α)
0 (T s

Ki
) <∞ if and only if s < κi

where TKi is the exit time of Ki .

We have κ = maxκi and if κ ≤ 1 then the annealead expected
time spent in one of the small traps Ki is infinite. This explains the
non-existence of the absolutely continuous invariant measure.



Directional transience
Theorem (S., Tournier, 09)
Assume that αe1 > α−e1 . Then for any d

P0(D =∞) ≥ 1− α−e1

αe1

,

where D = inf{n, Xn · e1 < 0} (equality is strongly conjectured).
Thanks to Kalikow’s 0-1 law

lim
n→∞

|Xn · e1| = +∞, P0 p.s.

For d = 2 thanks to Zerner-Merkl 0-1 law

lim
n→∞

Xn · e1 = +∞, P0 p.s.

In dimension 1, the law of Pω0 (D =∞) is explicit (it is Kesten’s
renewal series, explicit for beta environment, cf Chamayou-Letac. It
implies explicit limit laws in 1D, cf Enriquez, S., Tournier, Zindy).



Theorem
Let d ≥ 3. Let dα = E(α)

0 (X1) = 1∑
αk

∑
αkek .

i) If κ ≤ 1, then

lim
n→∞

Xn

n
= 0, P(α)

0 p.s.

ii) If κ > 1 and dα = 0 then

lim
n→∞

Xn

n
= 0, P(α)

0 p.s.

and for all i = 1, . . . , d

lim inf Xn · ei = −∞, lim supXn · ei = +∞, P(α)
0 p.s.

iii) If κ > 1 and dα 6= 0 then there exists v 6= 0 such that

lim
n→∞

Xn

n
= v , P(α)

0 p.s.



Sketch of proof of directional transience

We prove a uniform estimate on cylinders of arbitrary length and
width.

P(α,L−1)(left → right) ?



Sketch of proof of directional transience

We sligthly modify the graph and the weights

P(α,L−1)(left → right) ≥ P(α̃,L)(left → right) = α1−β1
α1



Sketch of proof of the existence of the invariant measure

For N > 0 let TN = (Z/NZ )d be the d -dim torus. For ω ∈ ΩN , let
πωN be the invariant probability measure. We set

fN(ω) = NdπωN(0), Q(α)
N = fN · P

(α)
N .

We prove that for all s < κ

sup
N

E(α) (f s
N) <∞.

We have

(fN)s =

(
π(0)

1
Nd

∑
x∈TN

π(x)

)s

≤
∏

x∈TN

(
π(0)

π(x)
)s/Nd

.



Let ω̌ be the time reversed environment on TN

ω̌(x , x + ei ) =
πω(x + ei )
πω(x)

ω(x + ei , x).

By the time reversal lemma, ω̌ is a Dirichlet environment with the
reversed weights.
Moreover, for all θ : EN 7→ R (where EN is the set of edges of TN),
simple computation gives

ω̌θ̌

ωθ
= πdivθ,

where θ̌ is defined by θ̌(x , y) = θ(y , x) and ωθ =
∏

EN
ω(e)θ(e) and

πdivθ =
∏

TN
π(x)divθ(x).



If θN : EN 7→ R+ satisfies

div(θN) =
s
Nd

∑
x∈TN

(δ0 − δx)

then,

E(α)(f s
N) ≤ E(α)(

∏
(
π(0)

π(x)
)s/Nd

)

= E(α)(πdiv(θN))

= E(α)(
ω̌θ̌N

ωθN
)

≤ E(α)(ω̌qθ̌N )1/qE(α)(ω−pθN )1/p

for all 1/p + 1/q = 1.



E(α)(f s
N) ≤ E(α)(ω̌qθ̌N )1/qE(α)(ω−pθN )1/p

I The right hand side is finite when pθN(e) < αe for all e.
Hence, we need that θN(e) < (1− ε)αe for some ε > 0. Then,
we can find p small enough such that the right hand term is
finite.

I Thanks to the time reversal property the transition
probabilities ω̌ are independent at each sites and everything
can be computed. By Taylor expansion, there exists c > 0 s.t.

E(α)(f s
N) ≤ exp(c

∑
θN(e)2).

Hence, we need that the L2-norm of θN is bounded.



Lemma
For all N > 0, there exists θ̃N : EN 7→ R+ such that

div(θ̃N) =
κ

Nd

∑
x∈TN

(δ0 − δx)

and

θ̃N(e) ≤ αe (1)∑
EN

θ̃N(e)2 ≤ C (2)

where C > 0 is a constant not depending on N.
Then, θN = s

κ θ̃N makes the job.
Sketch of proof:
(1) comes from the Max-Flow Min Cut theorem.
(2) comes from d ≥ 3.
(1) and (2) at the same time needs more work.


