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1. Introduction: 1D surface growth

Paper combustion, bacteria colony, crystal

growth, liquid crystal turbulence
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Non-equilibrium statistical mechanics
Stochastic interacting particle systems

Integrable systems
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Kardar-Parisi-Zhang(KPZ) equation

Oth(x,t) = %A(awh(wat))2 + Vaih(wat) + \/En(mvt)

where 7 is the Gaussian noise with covariance

<77(wa t)ﬂ(w', t,)> — 5(33 o w,)é(t T t,)
e The Brownian motion is stationary.

e Dynamical RG analysis: h(x = 0,t) ~ vt + cttl/3

KPZ universality class

e Now revival: New analytic and experimental developments



A discrete model: ASEP as a surface growth model

ASEP(asymmetric simple exclusion process)

g P g P g
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Mapping to surface growth




Stationary measure

ASEP - .. Bernoulli measure: each site is independent and

occupied with prob. p (0 < p < 1). Current is p(1 — p).

p | P | P | P | P | P | P

-3 -2 -1 0 1 2 3

Surface growth - -+ Random walk height profile



Surface growth and 2 initial conditions besides stationary

Flat

Wedge /\/\/\/\

Step Alternating

Integrated current N (x,t) in ASEP < Height h(x,t) in surface
growth



Current distributions for ASEP with wedge initial conditions
(TASEP) (ASEP)

N(0,t/(qg — p)) ~ 5t — 27 */3¢ 3¢y

Here N(x = 0,t) is the integrated current of ASEP at the origin
and &tw obeys the GUE Tracy-Widom distributions;

Frw(s) = Plérw < s|] =det(1 — PsKAiPs)os

0.4:
0.3}

where K a; is the Airy kernel ol
0.1r
Kai(x,y) = / dAAi(z + A)Ai(y + X) "
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Current Fluctuations of ASEP with flat initial conditions: GOE
TW distribution

More generalizations: stationary case: Fy distribution, multi-point

fluctuations, etc
Can they be measured experimentally?

What about the KPZ equation?



Random matrix theory

GUE (Gaussian Unitary Ensemble) hermitian matrices

U711 U2 + 112 - UIN + UIN
U2 — 1V12 U2 cee UN + V2N
A =
UIN — TUIN UaN — TU2N  **° UNN

ujj ~ N(0,1/2) wjr,vjr ~ N(0,1/4)
The largest eigenvalue ©max +++ GUE TW distribution

GOE (Gaussian Orthogonal Ensemble) real symmetric matrices
-+« GOE TW distribution



Experiments by liquid crystal turbulence

2010-2011 Takeuchi Sano
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Figure 2 | Family-Vicsek scaling. a,b, Interface width w{l, r) against the length scale [ at different times t for the circular (a) and flat (b} interfaces.
The four data correspond, from bottom to top, to t = 2.0 5,4.0 s, 12.0 sand 30.0 s for the panel aand to t = 4.0 5, 10.0 5, 25.0 sand 60.0 s for the panel b.

The insets show the same data with the rescaled axes. ¢, Growth of the overall width W(t) =4/ { [h{x.t) — {h)lz} The dashed lines are guides for the eyes
showing the exponent values of the KPZ class.
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Figure 3 | Universal luctuations. a, Histogram of the rescaled local height 3 = [ — 2.0/ (T The blue and red salid symbaols show the histograms for
the circular interfaces at t = 10 s and 30 s; the light Blue and purple open symbols are for the flat interfaces at ¢ = 20 s and 80 s, respectively. The dashed
and dotted curves show the GUE and GOE TW distributions, respectively. MNote that for the GOE TW distribution y is multiplied by 27" in view of
the theoretical prediction™. b, The skewness (cirele) and the kurtosis (cross) of the distribution of the interface fluctustions for the ciscular {blue) and flat
[red) interfaces. The dashed and dotted lines indicate the values of the skewness and the kostasis of the GUE and COE TW distributions". ¢, d, Differences
in the cumulants between the experimental data {x%). and the corresponding TW distributions {xf,z ), for the ciroclar interfaces (¢} and {pfoe )

for the flat interfaces [d). The insets show the sarme data for 2 = 1 in logarithmic scales, The dashed lines are guides for the eyes with the slope —1/3,

See Takeuchi Sano Sasamoto Spohn, Sci. Rep. 1,34(2011)
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Solution for the KPZ equation

e Narrow wedge initial condition

e Based on (i) the fact that the weakly ASEP is KPZ equation
( ) and (ii) a formula for step ASEP by

e The explicit distribution function for finite ¢

e The KPZ equation is in the KPZ universality class

Before this

The 1/3 exponent for the stationary case

12



Narrow wedge initial condition

We consider the droplet growth with macroscopic shape

y

—x2 /2t for |x| < At/d,

h(mvt) = 9
\()\/262)t — |x|/6 for |x| > At/6

which corresponds to taking the following narrow wedge initial

ditions:
conditions h(z,0) = —||/6, &< 1

13



4 h(x.t)
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Distribution

(\/20)h(w, t/2v) = —a?/2t — L57F + 2log & + e
Here v = 27 1/3a%/3¢1/3 | o = (21/)_3/2)\D1/2.

The cumulative distribution of &

& @)

Fi(s) =Pl& < s] =1 — /_ exp | — e'ﬁ(s_“)]

X(det(l — P, (Bt — Pa;)P,) — det(1 — PuBtPu))du

where Pai(x,y) = Ai(x)Ai(y) .

15



P, is the projection onto [u, c0) and the kernel By is

Bi(z,y) = Kai(m,y) + / dA(e™> — 1)1
0

x (Ai(z 4+ A)Ai(y + A) — Ai(z — M) Ai(y — N)).

16



Developments (not all!)

Replica
Half-BM by step Bernoulli ASEP (

A directed polymer model related to quantum
Toda lattice

Multi-point distributions by replica
Renormalization fixed point
Flat case by replica
Multi-layer picture

Half-BM case by replica

17



Morikazu Toda (1917-2010)

Passed away last year at the age of 93.

The Toda lattice is well known as a solition equation but the
solition solution was not obtained in the first paper.

His orignal motivation was to consider a fundamental aspect of
statistical mechanics from a dynamical point of view. A numerical
simulation suggested that aproximation scheme was not very useful.

He discovered his lattice by matching the equation of motion with a
formula of elliptic functions. The solution was periodic in space.

The discovery was during a summer vacation in 1966. He brought
only a few books including a consise book of mathematical formulas.
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2. Results: Half Brownian motion initial condition

y

x/d6, 6 -0, x <O,

A
—h(x,t =0) = <
2v \aB(w), x > 0.

with a = (2v)~3/2AD1/2.

h(x,0)

|
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Macroshape at ¢

(

—x2/2Xt, x <0,
0, 0 < .

h(x,t) ~

\

Here we focus on the crossover region around the origin.
e One of the few solvable initial conditions so far.

e A step toward the stationary case.
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Cole-Hopf transformation

2V
hya,D(T,t) = ~ log (Zya,p(z, 1))

Zyxp(x,1) is the solution of the stochastic heat equation,

8Z,/,)\,D(a3,t) BZZV,)\,D(CIZ,t)_I_)\\/D
— v -
ot Ox?

The partition function Z,, x,p(x,t) can be considered as a

n(x,t)Zy,p(x,t).

directed polymer in random potential 1.
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Feynmann-Kac and Scaling
Feynmann-Kac expression for the partition function,
AVD [t
Z(x,t) = E, <exp {2/ n (b(2vs),t — s) ds} Z(b(t), O))
v Jo

Using this we can establish

A t
2 4
—zyhu,A,D (337 21/> — h%,1,1(a T, at).

N | =

In the following, we set v = S, A =1,D = 1, = 1 and
consider h(x,t) = h1 ; ,(x, ).
291y
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Generating function

We are interested in the distibution of h = log Z, which is
difficult to handle. Instead we consider the moments (Z%V), or
the generating function of them.

We introduce the scaled height h(X) by

3
"Y -~
h (277 X,t) = —é — X% + ythi(X)
1
where v¢ = (%)%, x = 292X and consider

= (—6_7tS)N 2 2

G, (s; X) = Z ~7 <ZN (27t2X9 t)> eN 13 TN X
N=0 |

(e_ew(fqu)—s)).
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Result

G+, (s; X)) is expressed as the Fredholm determinant
Gnﬁ(S; X) = det (]. — P()KXp())

Here P; represents the projection onto (s, 00) and the kernel of

K x is given by

KX(gja fk)

/d AT <£ + oy X) Ai (& +y X) e
p— I * _ _—— | - —_ .
. Yy J Y, "Yt’ < r k Y, "Yt, v ) ery + eves

24



Here Ail'(a, b, ¢), Air(a,b,c) are deformed Airy functions

1 . s
Air(a’v b, C) — g dzee T3 T (zbz + C),
T;ec
‘%
1 o : 23 1
Air(a,b,c) = — dze'* s , :
27 J_ oo I' (—2bz + ¢)
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Height distribution

oo
F,(s5X)=1-— / due_e%(s_u)g% (u; X).

— OO

Here g, (u; X)) is expressed as a difference of two Fredholm

determinants,

g (us X) = det (1 — P,(BY, — P)P,) — det (1~ P,BLP,)

26



where PL (&1, &) = Al ({ 1 % —%) Air (52,

& @)

BL(616) = [

0

~ d 1 Ail
+L ye’)’t'y — 1 !

1 X
dyAi" (51 + vy, —, —> Air

Yt Yt

1 X _
&1+ y,—,—— | Aip
Yt Yt

r 1 X _ 1 X
(51 — Y, —> _) Air (52 — Y, —» _)

Yt Yt

Yt Yt
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Long time limit

In general Prob(X < s) = E(®(s — X)), where ©(y) is the
step function, O(y) := 1 (y > 0), 0 (y < 0). Noticing

lim exp[—e™ **] = ©(x), we take the t — oo limit and see
a—r oo

lim Prob(h; < s) = lim G.,(s; X) = det (1 — P,KxP;)

Yt —> OO Yt —> 00

the kernel is given by

oo

Kx(€: ) = [ dyAi(E; + m)Ai(6x + )
+ Ai(&r) (e_)gg"‘xgj — /OO dye XYAi(&; + y)) :
0

This appeared in GUE and TASEP with external source.
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Multi-point distribution

9

G'yt({s}na {X}n) — <€_ Z?:l e‘Yt(th(Xj)—Sj)>

where we abbreviated s1,+-+ , 8, and Xy,--- , X, as {s},, and
{ X },, respectively and we set X7 < Xo < ++- < X.

Using the “factorization approximation” by , we get
Ggyf;({s}na {X}n) =det(1-Q),
and the kernel Q(x,y) is given by
Q(u].’ un_|_1) p— / du2 e o o dun<u1 e(Xl_Xz)H|u2> e o o

X (up|eXn=XVHL 1y Ve ({u — s}n),
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H is the Airy Hamiltonian H = —88—; + u, and

n — Yt
Zj:l = 7
1 _|_ Z:;L:]_ e_'Vtmj

_ 1 X\ .t 1 X;
Li(z,y) :/ dwAr|(w+z,—,—— A w4y, —, —— |,
0 Tt Tt Tt Tt

®({z}n) =

9

oo
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3. Replica analysis: 0-Bose gas

Taking the Gaussian average over the noise i, one finds that the

replica partition function can be written as

(ZN (z, 1))
N o xj(t)=x _ ¢ 1 (da)?
B 3'1;11/0 W /a:j(0)=yj Plesiriex® |~ /O dT ng 2 <dT)
N ] _ N
_ Z 6 (x;(T) — xk(T)) X <exp (Z B(yk)>>
j#k=1 - =

= (z|e” "N ).
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H ; is the Hamiltonian of the d-Bose gas,

1N 2 1 Y
Hy=—-2) ——— 5 0@ — =),
j=1 9%; ik

|®) represents the state corresponding to the initial condition. We
compute (ZN (x,t)) by expanding in terms of the eigenstates of
Hpy,

(Z(z,)N) = ) (@|T:)(V.|@)e P

where E, and |W,) are the eigenvalue and the eigenfunction of
HNZ HNl\Ifz> = Ezl\Ilz>.
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The state |®) can be computed as

<3317"' ,JBleI)>
1

_ Ly <exp (fj B(wp<k>)>>

PeSn k=1

N
> [[e2@N2407r0 8 (wpy) — wp(-1)) -
PeSN j=1
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Bethe states
By the Bethe ansatz, the eigenfunction is given as

<w19"' 933N|\I'z> = C, Z sgnP
PeSn

X H (ZP(_’]) — Zp(k) T ZSgn(fBg — ka) exp < Z ZP(l)CW)

1<j<k<N

N momenta z; (1 < 3 < NN) are parametrized as

a—1

zj =q ——(na—|—1—2ra), for]—z'ng—l—'ra
B=1
(1<a< Mandl<7ry <ng). They are divided into M
groups where 1 < M < N and the ath group consists of ng

’s which shares the common real part q..

guasimomenta Z;

34



1/2

1<j<k<N '7J
M M
1

N
Yo=Y nadd = oo Y (1~ na).

a=1

o, =  Haz17e I !
© N! |z; — zp — 2|2
1
2

Expanding the moment in terms of the Bethe states, we have

(ZN (, 1))
N a1t N oo o M dge, &
= MZ: M1 1} /_oo W (/_oo 1] on Z;) OS M mp,N

X e_Ezt<$|\Pz><\I’z|y17”’ 9yN><y19°°' 7yN|(I)>

There is a question of completeness of Bethe states.
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After deforming the contour, we can perform the integrations of
y; (1 < 5 < N) before those of g, (1 < a < M). We see

(P.|®) = C, Z sgnPH/ dye —t P(z)_%(zN—zl-H))yz

PeSn Yi—1
% H (Z;;(j) — Zpm) T ’i))
1<j<k<N
PeSN 1<j<k<N
al 1

< 1

=1 _i(Z;;(N) Tt Z;;(N—H—l)) +12/2
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Combinatorial identities

(1)
> senP || (wpy) — wpr) + if (5, k)
PeSN 1<j<k<N
= IN! H (’wj — ’wk)
1<j<k<N

37



(2)For any complex numbers w; (1 < 7 < N) and a,

> senP || (wpy) — wpw) + a)
PeSN 1<j<k<N

N 1

X
H L WP(N) T T ’wP(N—m+1) + m2a/2

= 1l _wk)me+a/2

1§j<k§N

[Similar identity for step Bernoulli ASEP by ]
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After some computations, we see that G, (s; X)) is expressed as
the Fredholm determinant

G+, (53 X) =det (1 — PoKxPy)

Here P; represents the projection onto (s, 00) and the kernel of

K x is given by
— d
Kx (wj,wk) = Z(—l)n_l/ 2 = mlwston) —2ig(w;—w)
n—1 R—ic, T°
(103 3)
X e‘73nq2+§”3—%ns T T 2

9

- X
r (zq — 2 -+ %)
where I'(x) is the gamma function and c¢,, satisfies
cn > X/v +n/2
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Lemma

(a) Weseta € Rand m, n > 0. WhenIm q < —n/2 + a,

we have

T (i RN = 1
(%q ta i) e 3 = / dyAig (y, —,1q + a) ey,
r (zq + a + 5) o 2m

where
I'(¢bz + ¢)
I'(—bz + ¢)

27

1 : .
AIF (a’, b, C) = — A‘ dzeZaZ+’LZ3/3
T
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(b) For u, v, € R and w > 0, we have

1 o0 .
o dpAiF (p2 + v, w, twp + u) e'’P*
2T J_ oo

1
= —Al (2_%(1) + x), 2%w,u) Air ( _%(fv —x), 2%w,u) :

23

Using this we get our results for the generating function.
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Deformed Airy functions

Let H = —8?/0x2 + x. We have the following relations.

(i) The deformed Airy function representation of the propagator

oo
(x|et |y) = / dze ¥ Air (x + z,b,c — bt) Ait (y + 2z,b,¢).
— OO
Biorthogonality relation

/ dwAir(x + w, b, c)Ait (y + w, b, c) = §(z — y).

— OO0

42



(ii) “Time evolution” by the Airy Hamiltonian

eHAll (z + w, b, ¢) = e ™Al (& + w, b, c — bt),
et Air(x + w, b, ¢) = e " ™Air(x + w, b, c + bt).
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Summary

Experiments for both circular and flat initial conditions.
Half-Brownian motion initial condition by replica

Similar structure to the narrow wedge case with Airy function

replaced by the deformed Airy functions

Multi-point distriubtions based on the factorization

approximation

An extension to the stationary case is now under way.
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Stationary Case

Generalized initial condition

‘ -
B_, (—z) =B(—x) +v_z, = <0,

h(x,0) = <
\B_|_,er (x) = B(x) — vyx, x > 0,

Combinatorial identity

Overall initial height is inverse gamma distributed.
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