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Introduction

Context. Among directed polymer models there are currently two 1+1
dimensional exactly solvable cases:

@ polymer in a Brownian environment with continuous-time random

walk paths, discovered by O'Connell-Yor (2001), subsequently worked
on by O'Connell, O'C-Moriarty, and Valké-S.
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Introduction

Context. Among directed polymer models there are currently two 1+1
dimensional exactly solvable cases:

@ polymer in a Brownian environment with continuous-time random
walk paths, discovered by O'Connell-Yor (2001), subsequently worked
on by O'Connell, O'C-Moriarty, and Valké-S.

@ lattice polymer whose weights are i.i.d. log-gamma distributed

This talk is about the log-gamma polymer.
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141 dimensional lattice polymer with fixed endpoints
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Introduction

141 dimensional lattice polymer with fixed endpoints

o M, , = set of up-right lattice paths x, = (xx)

n‘ from (1,1) to (m, n)
e environment of i.i.d. weights under P:
{w(x) : x € N?}
1 -
1 m e quenched probability measure on M, ,:

Qnalx) = 57— exp{ B Ty 00}

e inverse temperature 3 > 0

e partition function Z, , = Z exp{ﬁ ka(xk)}

X.erlm,n
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Introduction

Key quantities again:

1
@ Quenched measure Qm n(x.) = Z— {BZw Xk }
mn k

e Partition function Z,, , = Z exp{ﬁZw(xk }
k

x,€Mmn
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Introduction

Key quantities again:

Questions:
@ Behavior of walk x, under @Qn, , on large scales.
@ Behavior of log Zp, , (now also random as a function of w).

In this talk focus is on log Z.
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Specialize to log-gamma distribution

e Fixg=1.

@ Pick a parameter 0 < p < o0.

Log-gamma polymer Warwick September 2011 6/36



Introduction

Specialize to log-gamma distribution

e Fixg=1.
@ Pick a parameter 0 < p < o0.
o Let Y; ;= e“(V) be i.i.d. Gamma~!(u) distributed,

in other words, Y,_J1 ~ Gamma(p).

Log-gamma polymer Warwick September 2011 6/36



Introduction

Specialize to log-gamma distribution

e Fixg=1.
@ Pick a parameter 0 < p < o0.
o Let Y; ;= e“(V) be i.i.d. Gamma~!(u) distributed,

in other words, Y,_J1 ~ Gamma(p).

e Gamma(p) density: f(x) = (u) 1x#"1e™ on R,

Log-gamma polymer Warwick September 2011 6/36



Introduction
Specialize to log-gamma distribution

e Fixg=1.

@ Pick a parameter 0 < p < o0.

o Let V;; = e“(V) be ii.d. Gamma~!(y) distributed,
in other words, Y,_J1 ~ Gamma(p).

e Gamma(p) density: f(x) = (u) 1x#"1e™ on R,
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Introduction
Specialize to log-gamma distribution

e Fixg=1.

@ Pick a parameter 0 < p < o0.

o Let V;; = e“(V) be ii.d. Gamma~!(y) distributed,
in other words, Y,_J1 ~ Gamma(p).

e Gamma(p) density: f(x) = (u) 1x#"1e™ on R,

e E(log Y) = —Wq(u) (digamma function)
Var(log Y) = V1(u) (trigamma function)
where W, (s) = (d"*1/ds" 1) log I'(s)

What is special about this choice?
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Burke property

Stationary version of the model

@ Parameters 0 < 6 < p.
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Stationary version of the model

@ Parameters 0 < 6 < p.
e Bulk weights Y;  fori,je N={1,2,3,...}
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Burke property

Stationary version of the model

@ Parameters 0 < 6 < p.
e Bulk weights Y;  fori,je N={1,2,3,...}

@ Boundary weights U,'7o = Y,'yo and V07J' = YO,j-

A
-1
Y, ~ Gamma(p)
1 Voj|  Yi U;ol ~ Gamma(#)
, -1
01 Uio . Vo.j ~ Gamma(u — 0)
0o 1 2
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Burke property

In 2-parameter model, compute Z,, , ¥V (m, n) € Z2 and define

. . X o Zm,n Zm,n -1
nZ 4 mh\z + Z
m—1,n m,n—1 m+1,n m,n+1
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Burke property

In 2-parameter model, compute Z,, , ¥V (m, n) € Z2 and define

. . X o Zm,n Zm,n -1
"=z "=z mn =\ Zoin T Z
m—1,n m,n—1 m+1,n m,n+1
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For an undirected edge f: T =
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Burke property

In 2-parameter model, compute Z,, , ¥V (m, n) € Z2 and define

Zm,n ( Zm,n Zm,n )71
- m,n = +
Zm+1,n Zm,nJrl

U f={x—e,x}

For an undirected edge f: T =
Ve f={x—e,x}

L__I === down-right path (z) with
: : I edges fx = {zk,l,zk}, keZ
[ N ] I_
ceesel e interior points Z of path (z)
o0 o 090 ——
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Burke property

In 2-parameter model, compute Z,, , ¥V (m, n) € Z2 and define

. . Zm,n o ( Zm,n + Zm,n )71
b b - m7n -
Zmfl,n Zm,nfl Zm+1,n Zm,nJrl

U f={x—e,x}

For an undirected edge f: T =
Ve f={x—e,x}

=== down-right path (z) with
edges fi = {zk,l,zk}, keZ

e interior points Z of path (z)
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Burke property

Burke property

Theorem
Variables {T¢ , X, : k € Z, z € 7 } are independent with marginals

U™t ~ Gamma(f), V!~ Gamma(y —6), and X1 ~ Gamma(p).
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Burke property

Burke property

Theorem
Variables {T¢ , X, : k € Z, z € 7 } are independent with marginals

Ul ~ Gamma(f), V!~ Gamma(u —60), and X1 ~ Gamma(p).

"Burke property” because the analogous property for last-passage
percolation with exponential weights is a generalization of Burke's
Theorem for M/M/1 queues.
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Burke property

Consequences of Burke property: free energy density

Partition functions

® Zpmp foriiid. () model, Z  for stationary (6, 11)-model.

Log-gamma polymer Warwick September 2011 10/36



Burke property

Consequences of Burke property: free energy density

Partition functions

® Zpmp foriiid. () model, Z  for stationary (6, 11)-model.

log Z¢
and pY(s,t) = lim € Snsynt

i . log Z
o Limits: p(s, t) = lim, o —or=nt
n n—oo n

Log-gamma polymer Warwick September 2011 10/36



Burke property

Consequences of Burke property: free energy density

Partition functions

® Zpmp foriiid. () model, Z  for stationary (6, 11)-model.

log Z¢
and pY(s,t) = lim € Snsynt

i . log Z
o Limits: p(s, t) = lim, o —or=nt
n n—oo n

[nt] ——

Lns]

Log-gamma polymer Warwick September 2011 10/36



Burke property

Consequences of Burke property: free energy density

Partition functions

® Zpmp foriiid. () model, Z  for stationary (6, 11)-model.

log Z, log Z¢
e Limits: p(s,t) = lim,_ 8 Lnsint ond p/(s,t) = lim € Snsynt
n n—oo N

[nt] ——

nt ns
|Og Zr?s,nt = Z |Og VO,j + Z |0g Ui,nt
j=1 i=1

. hence p(s,t) = —tWo(u — ) — sWo(H)
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Burke property

Now to compute p(s, t):
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Now to compute p(s, t):

Lnt]
y4 -0-0
[ ]
[ ]
0® .
01 2 Lns]
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Burke property

Now to compute p(s, t):

Lt ns k
ng,nt = Z <H U’70> Z(k71)7(n57nt)
r: k=1 “i=1
l -0-0
p
s nt l
oLe . + (H VO,j) Z(l,l),(ns,nt)
01 2 Lns] .
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Burke property

Now to compute p(s, t):

Lt ns k
t-I_I” ng,nt = Z H U’70> Z(k71)7(n57nt)
k=1 i=1

y4 -0
>
s nt 4

oe - + (H VO,j) Z(l,l),(ns,nt)
01 2 R Lns| /=1 J:]-

p(s.1) = sup {~aVo(8)+p(s—a. )}/ sup {~bVo(u—0)+p(s. t—b))

0<a<s
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Burke property

Now to compute p(s, t):

Lt ns k
ZI?SJTI‘ = Z <H U’=0> Z(k71)7(n57nt)
rI k=1 “i=1

nt 4
( H VO,j) Z(l,l),(ns,nt)

1 2 . Lns| —1 j=1

—+

p(s.1) = sup {~aVo(8)+p(s—a. )}/ sup {~bVo(u—0)+p(s. t—b))

0<a<s

Vary 6. Specializes to a convex duality that can be inverted to give
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Burke property

Now to compute p(s, t):

Lnt]

k
rI_I” ngmt = Z HUi,O> Z(k,l),(ns,nt)
k=1 “i=1

nt 4
( H VO,j) Z(l,l),(ns,nt)

1 2 . Lns| —1 j=1

—+

p(s.1) = sup {~aVo(8)+p(s—a. )}/ sup {~bVo(u—0)+p(s. t—b))

0<a<s
Vary 6. Specializes to a convex duality that can be inverted to give

p(s, t) = Oigiu{—s‘l’o(O) — tWo(u —0)}
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Burke property

Fluctuation bounds

Burke property also serves as basis for deriving fluctuation exponents.
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e If endpoint (m, n) — oo in characteristic direction
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Burke property

Fluctuation bounds

Burke property also serves as basis for deriving fluctuation exponents.

e If endpoint (m, n) — oo in characteristic direction
|m—NW(u—0)| < CN*3 and |n— NW;(0)| < CN?/3

then fluctuations have conjectured order of magnitude:

N/3 for log Z,Gnm and N2/3  for the path.
@ Further away from the characteristic log Z,‘;’n satisfies CLT.

@ Upper bounds hold for i.i.d. model without boundaries.
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Burke property
Explicit large deviations for log Z

L.m.gf oflogy, Y ~ I 1(p):

log M(pw — &) —logM(n) & € (—o0, )

M) = og (et ) = {oo € € [p,00)
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L.m.gf oflogy, Y ~ I 1(p):
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M) = og (et ) = {oo € € [p,00)

For i.i.d. F~1(x) model, let

As,t(f) - ||m nil IOgE(eE IogZI‘Is,nt‘)7 é— G R

n—oo

Log-gamma polymer Warwick September 2011 13/36



Burke property
Explicit large deviations for log Z

L.m.gf oflogy, Y ~ I 1(p):

log M(pw — &) —logM(n) & € (—o0, )

M) = og (et ) = {oo € € [p,00)

For i.i.d. F~1(x) model, let

As,t(f) - ||m nil IOgE(eg IOgZI‘Is,nt‘)7 é— G R

Theorem.
p(s, t)§ £<0
As,t(€) = ot {tMp(€) — sM,_o(=€)} 0<é<np
00 £=>p.
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Burke property

@ As ¢ linear on R_ because for r < p(s, t)

lim n~! log P{log Zps nt < nr} = —oo.

n—oo
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Burke property

@ As ¢ linear on R_ because for r < p(s, t)

lim n! log P{log Zns nt < nr} = —oc.

n—oo

e Right tail LDP: for r > p(s, t)

Jsi(r) = — n||_)rT;O n! log P{log Znsnt > nr} = /\;t(r)
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Burke property

@ As ¢ linear on R_ because for r < p(s, t)
lim n! log P{log Zns nt < nr} = —oc.
n—oo

e Right tail LDP: for r > p(s, t)

Jsi(r) = — n||_)rT;O n! log P{log Znsnt > nr} = /\:yt(r)

@ Proof of formula for Ag ; goes by first finding Js : and then convex
conjugation.

Log-gamma polymer Warwick September 2011 14/36



Burke property

Starting point for proof of large deviations

L

Lnt] nt
Zr?s,nt = Z (H VO,j) Z(l,[),(ns,nt)
I; =1 Nj=1

¢ °® oee ns k
1] + Z (H Ui,0> Z(k,1),(ns,nt)
ol > k=1 Ni=1

01 Lns]
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Burke property

Starting point for proof of large deviations

Lnt] nt ¢
Zr?s,nt = Z (H VO,j) Z(l,[),(ns,nt)
I; =1 Nj=1

¢ °® oee ns k
1] + Z (H Ui,0> Z(k,1),(ns,nt)
ol > k=1 Ni=1

01 Lns]

Divide by [}%; Vo, :

ns nt nt
HU;,nt = Z( H VOTJ'I)Z(LE),(ns,nt)
i=1

=1 N j=0+1

ns nt k
—1
+ ( ' % ,J-> ( H Ui,O) Z(k,1),(ns,nt)

k=1 \ j=1 i=1
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Burke property

Starting point for proof of large deviations

Lnt] nt ¢
Zr?s,nt = Z (H VO,j) Z(l,[),(ns,nt)
I; =1 Nj=1

ns k
S (H u) Zi).tromt
k=1 i=1

o
° ele-@
@ e

Divide by [}%; Vo, :

ns nt nt
HU;,nt = Z( H VOTJ'I)Z(LE),(ns,nt)
i=1

=1\ j=0+1
ns nt k
3 (T1%:) (TT00) 2o
k=1 ® j=1 i=1

Now we know LDP for log(l.h.s) and can extract log Z from the r.h.s.
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Tropical RSK

Combinatorial approach to the log-gamma polymer

N Fix N,let 1 < k < Nand n>1 vary.
X I'Ill,’k = { admissible paths (1,1) — (n, k) }
zi1(n) = Z wt(m) where
men) ,
1 . weight wt(m) =[] jyex Yi.j
1 n
N

nﬁ,k = { (-tuples m = (71, ..., m) of disjoint
. paths 7; : (L.J) — (n.k—j+1) }

k—1
)—O—I-. k—2
p
p
J

n

2 | —0—0—0—4
1
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Tropical RSK

Combinatorial approach to the log-gamma polymer

N Fix N,let 1 < k < Nand n>1 vary.
X I'Ill,’k = { admissible paths (1,1) — (n, k) }
zi1(n) = Z wt(m) where
men) ,
1 . weight wt(m) =[] jyex Yi.j
1 n
N

n¢ . = { f-tuples 7 = (my, ..., ) of disjoint

k paths T - (laj)_)(nak_f+l)}

o8 g{Pie:

! k=2 weight wt(m) =[] jyex Yij
p

J

2 | —0—0—0—4
1
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Tropical RSK

Combinatorial approach to the log-gamma polymer

N
k
1 >
1 n
N
K
k-1
>—o—I-. k—2
p
3 b
2 | —o—o—0—0
1
1 n

Log-gamma polymer Warwick September 2011

Fix N,let 1 < k < Nand n>1 vary.
I'Ill,’k = { admissible paths (1,1) — (n, k) }

zi1(n) = Z wt(m) where

1
7T€|_|nyk

weight wt(m) = H(,-)j)eﬂ Yij

n¢ . = { f-tuples 7 = (my, ..., ) of disjoint

paths 7; : (1,j) — (n,k—j+1) }

weight wt(m) =[] jyex Yij

Tke(n) = Z wt ()

wel'lka

16/36



Tropical RSK

The sum of the weights of the ¢-tuples of non-intersecting paths

Tie(n) = ) wt(m) for I<k<N,1<{<nAk.

L
weﬂnyk
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Tropical RSK

The sum of the weights of the ¢-tuples of non-intersecting paths

Tie(n) = ) wt(m) for I<k<N,1<{<nAk.

L
weﬂmk

Define array z(n) = {zxe(n): 1<k <N, 1 <€ < kAn} by

zi1(n) -+ zke(n) = Te(n) = Z wit(T).

¢
ﬂeﬂmk
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Tropical RSK

The sum of the weights of the ¢-tuples of non-intersecting paths

Tie(n) = ) wt(m) for I<k<N,1<{<nAk.

L
weﬂmk

Define array z(n) = {zxe(n): 1<k <N, 1 <€ < kAn} by

zi1(n) -+ zke(n) = Te(n) = Z wit(T).

ﬂeﬂ?k
N = 4 array z11(n)
z55(n) 21(n) polymer
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Tie(n) = ) wt(m) for I<k<N,1<{<nAk.
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weﬂmk

Define array z(n) = {zxe(n): 1<k <N, 1 <€ < kAn} by

zi1(n) -+ zke(n) = Te(n) = Z wit(T).

ﬂeﬂ?k
N = 4 array z11(n)
z55(n) 21(n) polymer
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Tropical RSK

The mapping
weight matrix (Y; ;) — array z(n)

is Kirillov's tropical RSK correspondence (2001).
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Tropical RSK

The mapping
weight matrix (Y; ;) — array z(n)

is Kirillov's tropical RSK correspondence (2001).

Next develop the Markovian evolution in terms of tropical or geometric
row insertion.

Look at case / = 1:

Add a new column n in weight matrix.

k—1

21’1(11) = Yn,l 21’1(11 — 1)
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Tropical RSK

The mapping
weight matrix (Y; ;) — array z(n)

is Kirillov's tropical RSK correspondence (2001).

Next develop the Markovian evolution in terms of tropical or geometric
row insertion.

Look at case / = 1:

. Add a new column n in weight matrix.
ot z11(n) = Ya1z11(n—1)
For k=2,....N
= e 261(1) = Yo (z1a(n — 1) + ze-1.1(n))
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The mapping
weight matrix (Y; ;) — array z(n)

is Kirillov's tropical RSK correspondence (2001).

Next develop the Markovian evolution in terms of tropical or geometric
row insertion.

Look at case / = 1:

Add a new column n in weight matrix.

k—1

21’1(11) = Yn,l 21’1(11 — 1)

For k=2,....N

1 n—1n zk,l(n) = Yn,k (zk)l(n — 1) =+ zk,l)l(n))

After this, transformed weights are passed on to diagonal
7zp = (222 ..,2n2) and that diagonal is updated. And so on.
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Let 1 < /¢ < N. Geometric row insertion
of the word b = (by, ..., by) into the word & = (&, ...,¢N)
produces two new words
& =(&,....&) and b = (by,q,...,by).

Notation and definition:

& = by

§ % & where e =bk(§ 1 +&) (+1<k<N
, 5 &
bl = gk_klgi (+1<k<N.

Words have strictly positive real entries.
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Tropical RSK

Let z be an array with diagonals z,...,zy, and b € (0, oo)N a word.
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Let z be an array with diagonals z,...,zy, and b € (0, oo)N a word.

Geometric row insertion of b into z produces a new array z/ = z « b
defined by iterating basic row insertion N times.
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Let z be an array with diagonals z,...,zy, and b € (0, oo)N a word.

Geometric row insertion of b into z produces a new array z/ = z « b
defined by iterating basic row insertion N times.

Let a; = b, and then

ai
a 4 7
as
7
as

an
N — z),
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Let z be an array with diagonals z,...,zy, and b € (0, oo)N a word.

Geometric row insertion of b into z produces a new array z/ = z « b
defined by iterating basic row insertion N times.

Let a; = b, and then

ai
a 4 7
as
7
as

an
N — z),

The process exhausts the input, ay11 is empty.
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Tropical RSK

Let z be an array with diagonals z,...,zy, and b € (0, oo)N a word.

Geometric row insertion of b into z produces a new array z/ = z « b
defined by iterating basic row insertion N times.

Let a; = b, and then

ai
a 4 7
an
7
as

an
v — z)y
The process exhausts the input, ay11 is empty.

Diagonals z;, ..., z), make up the new array z’.
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a1(1) a1(2) a1(3)

z1(0) — al) 4+ a2 —+ a@B) -
(1) (2) (3)

2(0) (1) 22 — nB) -
a3(1) a3(2) a3(3)
an(1) an(2) an(3)

Evolution of the array z(n) over time n=10,1,2,...
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a1(1) a1(2) a1(3)
21000 — a(l) 4+ a2 —+ a@)
(1) (2) (3)
2(0) »(1) 4 202 —+ 20)
a3(1) a3(2) a3(3)
an(1) an(2) an(3)

nv0) = (1) <+ w2 <+ z(3)

Evolution of the array z(n) over time n=10,1,2,...

Initial state z(0) is on the left edge in terms of diagonals z1(0),. .., zy(0).
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z1(0)

22(0)

7z1(1)

22(].)

zy(1)

7z1(2)

22(2)

zy(2)

Evolution of the array z(n) over time n=10,1,2,...

Initial state z(0) is on the left edge in terms of diagonals z1(0),. .., zy(0).

Time n input from weight matrix: ai(n) = Yl = (Y, 1,...

7Yn,N)-

At each time, geometric row insertion is iterated N times to update each

diagonal.
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The previous process is for evolving the full array. We also need the
variant for starting with an empty array z(0) = 0.

N
N
=
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The previous process is for evolving the full array. We also need the
variant for starting with an empty array z(0) = 0.

a(1) a1(2) a(3)
"V = a0) 4 a@ 4 aE)
a2(2) a2(3)
MY 4o 502 4 20)
a3(3)

" s 5(3)

Resulting array:  z(n) =0 « Y[ — y@ — ... vyl
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Theorem. The array z(n) defined by Kirillov's path construction is equal
to z(n) =0 «— Y Y@ ...yl

(Noumi and Yamada (2004), proof by a matrix technique.)
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Theorem. The array z(n) defined by Kirillov's path construction is equal
to z(n) =0 «— Y Y@ ...yl

(Noumi and Yamada (2004), proof by a matrix technique.)

Now let us make the input random.
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Theorem. The array z(n) defined by Kirillov's path construction is equal
to z(n) =0 «— Y Y@ ...yl

(Noumi and Yamada (2004), proof by a matrix technique.)

Now let us make the input random.

Assumption. Weights {Y), j} are independent with marginals Y, ;j ~
[=1(0, + 0;) where {0,, 6;} are fixed real parameters such that each

A
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Theorem. The array z(n) defined by Kirillov's path construction is equal
to z(n) =0 «— Y Y@ ...yl

(Noumi and Yamada (2004), proof by a matrix technique.)

Now let us make the input random.

Assumption. Weights {Y), j} are independent with marginals Y, ;j ~
[=1(0, + 0;) where {0,, 6;} are fixed real parameters such that each

A

Can we say anything about partition function zy 1(n) ?
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Theorem. The array z(n) defined by Kirillov's path construction is equal
to z(n) =0 «— Y Y@ ...yl

(Noumi and Yamada (2004), proof by a matrix technique.)

Now let us make the input random.

Assumption. Weights {Y), j} are independent with marginals Y, ;j ~
[=1(0, + 0;) where {0,, 6;} are fixed real parameters such that each

A

Can we say anything about partition function zy 1(n) ?

Markov kernel I, for time n transition z(n — 1) — z(n) is complicated.
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Theorem. The array z(n) defined by Kirillov's path construction is equal
to z(n) =0 «— Y Y@ ...yl

(Noumi and Yamada (2004), proof by a matrix technique.)

Now let us make the input random.

Assumption. Weights {Y), j} are independent with marginals Y, ;j ~
[=1(0, + 0;) where {0,, 6;} are fixed real parameters such that each

A

Can we say anything about partition function zy 1(n) ?
Markov kernel I, for time n transition z(n — 1) — z(n) is complicated.

Bottom row y(n) = (zn,1(n), zn2(n), . .., zn n(n)) of the array turns out
to be a more tractable Markov chain.

Log-gamma polymer Warwick September 2011 23/36



Tropical RSK

Theorem. The array z(n) defined by Kirillov's path construction is equal
to z(n) =0 «— Y Y@ ...yl

(Noumi and Yamada (2004), proof by a matrix technique.)

Now let us make the input random.

Assumption. Weights {Y), j} are independent with marginals Y, ;j ~
[=1(0, + 0;) where {0,, 6;} are fixed real parameters such that each

A

Can we say anything about partition function zy 1(n) ?
Markov kernel I, for time n transition z(n — 1) — z(n) is complicated.

Bottom row y(n) = (zn,1(n), zn2(n), . .., zn n(n)) of the array turns out
to be a more tractable Markov chain.

Theory of Markov functions shows this.
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Markov functions idea
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Markov functions idea

3 Markov kernel I for z(n) on space T. T
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3 Markov kernel I for z(n) on space T. T— % .y

dmapo: T =Y. n
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Markov functions idea

3 Markov kernel I for z(n) on space T. T— % .y
dmapo: T =Y. n P2
When is y(n) = ¢(z(n)) Markov with kernel P ? % .y
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Markov functions idea

3 Markov kernel I for z(n) on space T. T— % .y
dmapo: T =Y. n P2
When is y(n) = ¢(z(n)) Markov with kernel P ? % .y

Sufficient condition. Suppose 3 (positive but not necessary stochastic)
kernels P: Y — Y and K: Y — T such that

K(y7¢_1()’)) =1 and Koll=PoK
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Markov functions idea

3 Markov kernel I for z(n) on space T. T— % .y
dmapo: T =Y. n P2
When is y(n) = ¢(z(n)) Markov with kernel P ? ¢

T—Y

Sufficient condition. Suppose 3 (positive but not necessary stochastic)
kernels P: Y — Y and K: Y — T such that

K(y7¢_1()’)) =1 and Koll=PoK

Set w(y) = K(y, T). Intertwining gives Pw = w. Define stochastic
kernels

R(y,dZ)ZVV(ly)K(y’dZ) and P(y,d?)zwp(y,df/)
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Markov functions idea, continued

¢
T — Y
Then KoM=PoK K
I'IJ P
T ¢ Y
K
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Markov functions idea, continued

¢
T — Y
Then KoM=PoK K
I'IJ P
T ¢ Y
K

If z(n) starts with distribution K(y,dz), then y(n) is Markov in its own
filtration with transition P and initial state y(0) = y.
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Markov functions idea, continued

¢
T — Y
Then KoM=PoK K
I'IJ P
T ¢ Y
K

If z(n) starts with distribution K(y,dz), then y(n) is Markov in its own
filtration with transition P and initial state y(0) = y.

Furthermore
E[f(z(n)|¥(0),...,y(n=1), y(n) =y ] = Kf(y)

(Rogers and Pitman, 1981)
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Application of Markov functions

Spaces: Ty = space of arrays of size N,

Y = (0,00)N = space of positive N-vectors.
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Application of Markov functions

Spaces: Ty = space of arrays of size N,
Y = (0,00)N = space of positive N-vectors.
Define a (substochastic) kernel P, on Yy by

Paly, dy) = H exP{ Ve } ﬁ(r(%’j)%(;’j)%’j exp{yj} ] >
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Application of Markov functions

Spaces: Ty = space of arrays of size N,
Y = (0,00)N = space of positive N-vectors.
Define a (substochastic) kernel P, on Yy by

Paly, dy) = H exP{ Ve } ﬁ(r(%’j)%(;’j)%’j exp{yj} ] >

e %l

and intertwining kernel K : Yy — Ty by

Ok+1—0¢
Zk v
k= T[T ()

Z
1<t<k<N \kFLE

Zke  Zkg1e+1 | 92k
X exp <— d LA ) Hcsﬂ, dzp ¢)
Zkt10 Zk it Zke oy
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Application of Markov functions

Then Koll, = P,o K.
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Application of Markov functions

Then Koll, = P,o K. Bottom row y(n) is a MC with kernel

Puly, dy) = Wg)Pn(y, 45)

w(y)

where w(y) = K(y, Tn).
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Application of Markov functions

Then Koll, = P,o K. Bottom row y(n) is a MC with kernel

Puly, dy) = Wg)Pn(y, 45)

w(y)
where w(y) = K(y, Tn).

Conditional distribution of array, given evolution of bottom row:

E[f(z(n)|(0),...,y(n=1), y(n) =y ] = Kf(y)
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Application of Markov functions

Then Koll, = P,o K. Bottom row y(n) is a MC with kernel

Puly, dy) = Zg;m(y, 45)

where w(y) = K(y, Tn).

Conditional distribution of array, given evolution of bottom row:

E[f(z(n)|(0),...,y(n=1), y(n) =y ] = Kf(y)

Now a closer look at the eigenfunctions we have found. All the previous
makes sense also for complex parameters. This is beneficial because then
we can use known special functions to diagonalize the transition kernel.
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Whittaker functions

GL(N,R)-Whittaker function for y € Yy, with A € CV

Valy) = Hy,-_x"/ Ki(y, dz)

i=1 Tn

where K), is the previous intertwining kernel with 6 replaced by .
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Whittaker functions

GL(N,R)-Whittaker function for y € Yy, with A € CV

Hy, ’/ Ka(y, dz)
Ty

where K), is the previous intertwining kernel with 6 replaced by .

Intertwining works also with complex parameters and gives

Voa(¥) = (Yn,i + Ai)\ Voa(y)
Sy wit7) P 49) (Ul ic >W0()’)

n, I
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Tropical RSK

Our goal is an expression for the distribution of zy 1(n), the polymer
partition function. Getting there involves two steps.
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Our goal is an expression for the distribution of zy 1(n), the polymer
partition function. Getting there involves two steps.

Step 1. Row insertion reveals that if we start with bottom row
yM _ (eM(i_(k+1)/2))1§i§Na
let initial array have distribution K(y"V, dz), and let M — oo, the

distribution of the array z(n) converges to the array started from the
empty array z(0) = 0.

So this limit recovers the distribution of the partition function from the
path construction.
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Step 2. Invert the eigenfunction relation to write an expression for the
distribution of bottom row y(n) when started from y € (0,00)"N. Involves
analytical properties of Whittaker functions (analogous to Fourier
analysis). Take y = y™ and let M — oo.

The result is a formula for the Laplace transform of the partition function:

—SZN71(n) — Z,N: (ei_Ai) PRp 4
E(e ) /LRNS 1 I rov-6)

1<i j<N

“ F(Ai + 0m)
yl,Hl o, +9m) sn(A) dA

where the Sklyanin measure is given by

sn(A) = (27”1),\,,\,, g{r@j — )7t
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A future goal: asymptotics for distribution of log zy 1(n).
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Proof of Burke property

Induction on 7 by flipping a growth corner:

Y v U=Y1+U/V) V' =Y({1+V/U)
v| e N K%
U

1

X=(U"1+Vv)”
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Proof of Burke property

Induction on 7 by flipping a growth corner:

Y v U=Y1+U/V) V' =Y({1+V/U)
v| e N K%
U

1

X=(U"1t+ Vv

Lemma. Given that (U, V,Y) are independent positive r.v.’s,
(U, V', X) 4 (U, V,Y)iff (U, V,Y) have the gamma distr's.

Proof. “if" part by computation, “only if” part from a characterization
of gamma due to Lukacs (1955). O
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Proof of Burke property

Induction on 7 by flipping a growth corner:

Y v U=Y1+U/V) V' =Y({1+V/U)
v| e N K%
U

1

X=(U"1t+ Vv

Lemma. Given that (U, V,Y) are independent positive r.v.’s,
(U, V', X) 4 (U, V,Y)iff (U, V,Y) have the gamma distr's.
Proof. “if" part by computation, “only if” part from a characterization

of gamma due to Lukacs (1955). O

This gives all (zx) with finite Z. General case follows.
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Combinatorial RSK (Robinson-Schensted-Knuth correspondence)

Classic RSK maps an n x N weight matrix Y = (Y ;) with nonnegative
integer entries bijectively to a pair (P, Q) of Young tableaux with common
shape.
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Classic RSK maps an n x N weight matrix Y = (Y ;) with nonnegative
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shape.

5[ o Example of (semistandard) Young tableau T.
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Combinatorial RSK (Robinson-Schensted-Knuth correspondence)

Classic RSK maps an n x N weight matrix Y = (Y ;) with nonnegative
integer entries bijectively to a pair (P, Q) of Young tableaux with common
shape.

5[ o Example of (semistandard) Young tableau T.

Rows weakly, columns strictly increasing.

’U‘I-hl\)l—l
N
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Combinatorial RSK (Robinson-Schensted-Knuth correspondence)

Classic RSK maps an n x N weight matrix Y = (Y ;) with nonnegative
integer entries bijectively to a pair (P, Q) of Young tableaux with common
shape.

11272 Example of (semistandard) Young tableau T.
2 Rows weakly, columns strictly increasing.
414 A; = length of ith row

5
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Combinatorial RSK (Robinson-Schensted-Knuth correspondence)

Classic RSK maps an n x N weight matrix Y = (Y ;) with nonnegative
integer entries bijectively to a pair (P, Q) of Young tableaux with common
shape.

11272 Example of (semistandard) Young tableau T.
2 Rows weakly, columns strictly increasing.
414 A; = length of ith row

5

Shape sh(T) =X = (A1,..., A1) =(3,3,2,1).
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Combinatorial RSK (Robinson-Schensted-Knuth correspondence)

Classic RSK maps an n x N weight matrix Y = (Y ;) with nonnegative
integer entries bijectively to a pair (P, Q) of Young tableaux with common
shape.

11272 Example of (semistandard) Young tableau T.
2 Rows weakly, columns strictly increasing.
414 A; = length of ith row

5

Shape sh(T) =X = (A1,..., A1) =(3,3,2,1).

xj j = number of entries </ in row j of the P-tableau.
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Combinatorial RSK (Robinson-Schensted-Knuth correspondence)

Classic RSK maps an n x N weight matrix Y = (Y ;) with nonnegative
integer entries bijectively to a pair (P, Q) of Young tableaux with common
shape.

11272 Example of (semistandard) Young tableau T.
2 Rows weakly, columns strictly increasing.
414 A; = length of ith row

5

Shape sh(T) =X = (A1,..., A1) =(3,3,2,1).

xj j = number of entries </ in row j of the P-tableau.

Xij < Xi—1,j-1 < OXij1
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{xij,j} can be arranged

in a Gelfand-Tsetlin pattern:
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{xi j} can be arranged X1,1

in a Gelfand-Tsetlin pattern:

XN,N c. XN2  XN,1
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{xi j} can be arranged X1,1
in a Gelfand-Tsetlin pattern:

Bottom row = shape. NN N2 AN
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{xi j} can be arranged X1,1

in a Gelfand-Tsetlin pattern:

Bottom row = shape. NN N2 AN

Xeot oot X e = omax > Yij
T1,...,m¢ disjoint
(i,j)em U--Umy

where 7, are up-right lattice paths in the weight matrix.
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{xi j} can be arranged X1,1
in a Gelfand-Tsetlin pattern:

Bottom row = shape. N,N N2 AN

X1+t X = max > Yij
m1,...,mp disjoint
(i,j) emU-Umg

where 7, are up-right lattice paths in the weight matrix.

Compare this with tropical formula

zea(n) -+ zie(n) = Y wt(m).

¢
7r€|'|n’k
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{xi j} can be arranged X1,1
in a Gelfand-Tsetlin pattern:

Bottom row = shape. N,N N2 AN

X1+t X = max > Yij
T1,...,m¢ disjoint
(i,j) emU-Umg

where 7, are up-right lattice paths in the weight matrix.

Compare this with tropical formula

zea(n) -+ zie(n) = Y wt(m).

Difference is (4, ) vs. (max,+).
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Tropical RSK

Consequences of Burke property: variance identity

Exit point of path from x-axis

& =max{k >0:x = (i,0) for 0 < i< k}

Ex
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Consequences of Burke property: variance identity

Exit point of path from x-axis

& =max{k >0:x = (i,0) for 0 < i< k}

Ex

For 6, x > 0 define positive function

L(G,x):/OX(WO(H)—Iogy) 001Xy gy
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Consequences of Burke property: variance identity

Exit point of path from x-axis

& =max{k >0:x = (i,0) for 0 < i< k}

Ex

For 6, x > 0 define positive function

X
L6.X) = [ (Wo(6) ~ logy)x 7y e Y dy
0
Theorem. For the stationary case,

Ex
Var [Iog Zm’,,] =nVi(p—0)— mV1(0)+2Em, [ Z L(o, yl—ol)}
i=1
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Variance identity leads to fluctuation bounds for log Z

With 0 < € < p fixed and N " oo assume

|m—NWi(u—0)] < CN*3 and |n— NW;(0)| < CN?3 (1)
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Variance identity leads to fluctuation bounds for log Z

With 0 < € < p fixed and N " oo assume

|m—NWi(u—0)] < CN*3 and |n— NW;(0)| < CN?3 (1)

Theorem: Variance bounds along characteristic

For (m,n) asin (1), CiN?/3 < Var(log Z,,) < GN?/3 .
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Variance identity leads to fluctuation bounds for log Z

With 0 < € < p fixed and N " oo assume

|m—NWi(u—0)] < CN*3 and |n— NW;(0)| < CN?3 (1)

Theorem: Variance bounds along characteristic

For (m,n) asin (1), CiN?/3 < Var(log Z,,) < GN?/3 .

Theorem: Off-characteristic CLT

Suppose n = W1(0)N and m = Vy(p — )N + vN with v > 0, a > 2/3.
Then
N=2/2{ log Zp o — E(log Zms) } = N (0,7¥1(9))
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