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Definition of the most common DPRE (discrete)




Definition of the most common DPRE

® Let (Wnz)nen zezd, be an iid. Gaussian field (law of w,, = N(0,1))
(law P).

@ Let I',, of N step NN paths in Z¢.
We define the energy of a path S € 'y to be

N
= an,sn' (1)
n=1
For N € N and 8 > 0 fixed, the polymer measure ,usv’w) is defined by
1 ()
(S) = oy @ (H(5)) ©)
where
Z exp (Z Bwn 5n> (3)
Sely
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We want to understand the typical behavior of (5,,),,6[1,,\,] under ppy when
N is large.

@ Comparison to SRW (5 = 0): Do we have invariance principle, is the
trajectory Brownian-like?

@ Does the trajectory localizes around some corridors with a very
favorable environment (high values for w)?

@ Do the trajectories go further that /N to reach favorable
environment (superdiffusivity)?

Universality class

We investigate those question not exactly for the above mentioned model
but also for models that are believed to have the same properties when
looked at large scales.

We are interested in giving the effect of long range correlation in the
environment on the trajectories properties.
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© Introduction

© GRW Directed Polymer
@ Model with compactly supported correlation (Petermann, Méjane)
@ Model with long-range correlation

© Brownian Motion in Poissonian environment
@ Model with no correlation (Wiihtrich)
@ Model with correlation in the environment
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Gaussian Random Walk Directed Polymer Model
(Petermann '00, Méjane '04)




Gaussian Random Walk Polymer Model (Petermann 00,
Méjane '04)

@ S be a random walk on R? with i.i.d. centered standard Gaussian
increments (associated proba P).
® Let (Wnx)nen xerd be a Gaussian field (law P) with covariance
function E [wp xwn,y] := 0pw Q(x — y). (a sequence of independent
translation invariant Gaussian fields with covariance function Q)
where Q(0) =1, Q(x) >0, Q(x) — 0 as ||x|| — oo.
For N € N and 8 > 0 fixed, we define the polymer measure ppy on paths S
with its Radon-Nikodyn derivative

B
%(5) = exp ( an sn> (4)

N
=E [exp (ﬁan,5n>]. (5)
n=1
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Theorem (Imbrie, Spencer '88, Bolthausen; '88, Albeverio, Zhou 96';

Song, Zhou 96'; Comets, Yoshida '04)

When d > 3, Q has compact support and 3 < . (for which one can find
explicit bounds), the law of (5%1) o under iy, converge to the law

of a Brownian motion (B:)¢c(o,1]-

Strong Disorder

When either § is large or d = 1,2 this does not holds and one has
localization of the trajectories, we say that Strong Disorder holds
[Carmona, Hu '02, Comets, Shiga, Yoshida '03, Comets Vargas '06, L'10].
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Superdiffusivity

It is predicted by physicists that under upy when strong disorder holds
there exists & > 1/2 such that:

max S, ~ N, (6)
nel0,N]

(superdiffusivity phenomenon).

Moreover it is believed that this exponent is related to the variation of
log Zy i.e.
log Zy — Elog Zy ~ NX (7)

with the scaling relation y = 2¢ — 1.
@ For d =1 it is predicted that £ =2/3, x = 1/3.

@ For d > 2, there is no predicted value for x and . It is believed to be
independant of (3 in the strong disorder phase.
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(Lack of) Results for polymer in N x Z4

To prove the existence of & and x for this model seems out of reach with
actual tools and very few results are proved rigorously for the discrete
polymer model. Some more convincing results have been obtained for
models that should belong to the same universality class

@ Licea and Newman ('95) Licea, Newman and Piza ('96) proved that
for last-passage percolation in dimension 2, 3/5 < ¢ < 3/4.

@ Johansson ('00) proved that for directed last-passage percolation with
exponential variable £ = 2/3 for transversal dimension d = 1.

@ Seppalainen ('09) obtained £ = 2/3 for a special model of directed
polymer.

@ Balasz, Quastel and Seppalainen ('09) computed the scaling exponent
for the solution of KPZ equation finding £ =2/3, x = 1/3 using
correspondence with WASEP.

For the GRW model, one can use an entropy/energy competition
reasoning to get some results.
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Superdiffusivity results for rapidly decaying @ and d =1

Theorem (Petermann '00)

When d = 1 and Q compactly supported, for any 5 > 0 and o < 3/5,

lim P Sp> NS =1. 8
Nl—r>noo e {nreTE(?);V] - } ( )

Informally this says that £ > 3/5 for d = 1 is compatible with the
conjecture.
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Upper bound on the volume exponent

Theorem (Méjane 2004)

For any a > 3/4, in any dimension, one has

lim P S, > N*: =0. 9
im ,LN{"Q?,XN] > } 9)

Informally this says, £ < 3/4 in all dimension which is compatible with the
conjecture for d = 1.
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Universality and Non-Universality

When correlations in the environment decay sufficiently fast it is natural to
conjecture that the general behavior of the model is unchanged.

We place ourselves in the case when Q(x) =< ||x|~*
(ci]|x]|7% < Q(x) < c2||x|| 7Y for some 6 > 0). Note that there is no
correlation along the dimension along which the polymer is directed.
We wonder
@ If the conditions for diffusivity/localization found in the discrete
model are changed?
@ We also investigate the effect of these power-law decaying correlation
on superdiffusivity properties.
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Condition for diffusivity and localization

Theorem (L10)

For d > 3 and 0 > 2 then diffusivity holds for § < B (with scaling to
BM).

On the other hand if d > 3 3 > f3., strong disorder holds.

If either d < 2 or 6 < 2 then strong disorder holds for all 5.

When 6 < 2, d > 3, there is no-phase transition and this absence is due to
the presence of correlation.
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Superdiffusivity results Q(x) = ||x||~%and d arbitrary

Theorem (L10)
Whend =1,0 <1, orwhend > 2, 0 <2,

lim lim IP’,ut{ max S, > EN“‘%"} — i (10)

e—0t—00 nG[O,N]

When d =1, 0 > 1 the same result holds with an exponent 3/5.

This informally translates into £ > 3/(4 + 0).
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Some conclusion

@ The property of the systems seem to be crucially changed when 6 < 1
for d =1 or when 6 < 2 for d > 2.

@ In the other cases, the model seems to be in the same universality
class that the discrete model.

@ In order to get £ < 3/4 one has to use explicitely decorelation in the
environment.

The previous results only give the impact of transversal correlation in the
environment but it seems some how more natural to study environment
that are isotropically correlated. We do it for another model which is Not
Directed, and for which the environment is Not Gaussian.
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The model

o Let w:= {w; € R i € N} be an homogeneous Poisson Point Process
on RY.
@ The potential V one RY is defined by

VE(x) =) Lyx<as (11)
ieN

@ Given A > 0, we study trajectory of the Brownian Motion starting
from the origin, killed with inhomogeneous rate , A + V* conditioned
to survive up to the hitting time of H; = {L} x R9~! an hyperplane
at distance L.
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The model

The probability of survival is given by (P and E are the law and
expectation of Standard BM starting from the origin)

The paths measure conditioned to survival is given by u} whose

Radon-Nikodym derivative with respect to P,

duf ie— e V(B dt
Pz

we study the asymptotic properties of uj for large L.
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Link with directed polymer

@ The killing rate penalizes trajectories that spend to much time before
hitting H; and in fact, trajectory that survive hit H; in a time of
order L. Killing induces an effective drift in the trajectories and our
model behave as "semi-directed” (polymer can backtrack but is
drifted toward one direction).

@ The model in dimension d is therefore very similar to directed polymer
in dimension 1 + (d — 1). And prediction for the directed polymer
should be valid also for this model. (¢ = 2/3 in dimension 2, etc...)
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Related discrete model

Replace BM by SRW in Z9 and let V be a realization of IID random
variable. In that case results concerning diffusivity and localization have
been proved:
@ Equality of quenched and annealed free energy at high-temperature
for d > 4 [Flury '08, Zygouras '09],
@ Diffusivity and invariance principle at high-temperature for d > 4
[loffe, Velenik '10],
@ Localization of the trajectories for all temperature for d = 2 and
d = 3. [Zygouras '10].
We believe that these results also hold for Brownian Motion and that they

can be proved by using similar methods, but this needs some work to
adapt them.
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Superdiffusivity

To investigate superdiffusivity property we have to look at the probability
that trajectories have to stay in a tube of diameter L¢
Set

CE ={x e RY, d(x,Re1) < Lé} (14)

we look at the probability of the event

Vt <1y, Br € C (15)

under the polymer measure
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Superdiffusivity

Recall
Cs = {x e R?,d(x,Re;) < L¢} (16)

Theorem (Wiitrich '98)
When d = 2, for all £ < 3/5,

Jim Epg (Vt <73,,B: € cf) — 0. (17)
For all d, for all £ > 3/4,

Jim By (¥t < 73y, By € =1 (18)
— 00
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Model with correlations
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We modify the model by introducing traps of random radius and intensity
(two parameters « and +y are introduced)

w = {(wi,r) € RY x [1,00),i € N} (19)

Is a Poisson point process on R? x R of intensity £ ® v, where v is a
probability measure defined by

v([r,00)) =r—*. (20)
Define the potential V¥ by
Vw(X) = Z ri_’yl{lx_wi‘gri}. (21)
ieN

It is almost surely everywhere finite if & 4+ — d > 0. There are long
ranges correlation in V' and

cov(V¥(0), V¥(x)) = [|x — y[[ 9777 (22)
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Lower bound on the volume exponent

Recall
¢t = {x e R?, d(x,Re;) < L&} (23)

Theorem (L '11)
Set £1 := min ( L d ) then for all d and all £ < &;.

1+a—d’ 3+a+2y—d

lim Euf(Vt < 72,, Br € C) = 0. (24)
L—oo

If « — d and ~ are small, then £ > 1/2, and therefore we have example of

superdiffusive behavior in any dimension.
In some cases &; > 3/4, which means that the upper bound (§ < 3/4) for
the model with no correlation is not valid here in general.
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Upper on the volume exponent

Recall
¢t = {x e R?, d(x,Re;) < L&} (25)

Theorem (L '11)

Set & := max (Ha%d, min(ﬁ, %)) then for all d, if o > d then for
all € > &,
lim Euf(Vt < 73,, B € C) = 1. (26)
L—o0

Corollary: A tight result in some special cases

When 7 = d — a < 1/3 the upper bound matches the lower bound. (both
equal to 1/(1 + 7)).
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|deas of the proof (lower bound)

First one use a geometrical argument to get that with probability at least
one half the probability of going in the tube number 2 instead of tube

number 1 is larger than e 7

tyb\e\2 (G%L)

RI-1 / |

e N
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\ 7 |
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|deas of the proof (lower bound)

Then we modify a little bit the law of the environment w — w by adding
some large trap (that cover the full tube 1 but do not touch tube 2). This
lowers the weight of trajectories in tube 1 and leaves the weight of
trajectories in tube 2 unchanged.

' 307 23057577

1 170/} 7774227777%7

1277 //l////j////v’///

72072773777/ 7977
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, WAy T VY /Y O
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There is two condition on the parameters for this approach to be
successful
@ One must be able to add large traps (of diameter L¢) without
changing to much the law of w (distribution of w and &w must be very
close in total variation (this gives the condition 1 + (d — 1 — )¢ > 0)
@ The fact of adding new traps must lower the weight of trajectories
from the tube 1 at least by a factor e~ 1" (this gives the condition
26 -1< 31+ (d+1—a—27)¢)
These two condition give the lower bound.
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|deas of proof (upper bound)

@ The approach is similar to Wiitrich is the sence that one uses
concentration results on log Z.

o Finding the “optimal” concentration result requires a multiscale
analysis in order to treat traps on different scales seperatly.
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