Infinitely many non-intersecting random walks

Vadim Gorin¹ MSRI, Berkeley and IITP, Moscow

March, 2012

¹This talk is based on the joint work with Alexei Borodin

Lozenge tilings and finitely many non-intersecting random walks.

Lozenge tilings and finitely many non-intersecting random walks.

We are interested in tilings by rhombi with angles $\pi/3$ and $2\pi/3$ and side lengths 1 (lozenges).

The simplest tileable domain is an equi-angular hexagon of side lengths $a,\ b,\ c,\ a,\ b,\ c.$

We are interested in *uniformly random* tilings of a *fixed* $a \times b \times c$ hexagon

This model has a very interesting limit behavior as $a, b, c \to \infty$.

Non-intersecting walks

Tilings are in bijection with families of non-intersecting paths with fixed starting and ending points.

N non-intersecting random walks.

For the uniform measure vertical sections of paths produce a *Markov chain*.

This chain is identified with N=a independent simple random walks conditioned to finish after time T=b+c at prescribed points $c, \ldots, c+N-1$ without collisions.

Local limits and paths

We enlarge the hexagon and observe the picture near a fixed point

Locally we still see paths.

Local limit theorem

Theorem. (G.-2007) Fix a point inside a hexagon and let $a,b,c\to\infty$ so that their ratios tend to finite limits. In the neighborhood of the point we get a well-defined limit, which is a measure on lozenge tilings of the plane (or, equivalently, on infinite families of non-intersecting paths).

The limit measures posses lots of interesting properties and, in a sense, are completely explicit.

Q1. Is the limit object still a Markov chain?

Q1. Is the limit object still a Markov chain?

Q2. How to define and deal with such *infinite-dimensional* Markov chains?

Q1. Is the limit object still a Markov chain?

Q2. How to define and deal with such *infinite-dimensional* Markov chains?

Problem. The convergence theorem deals with *finite-dimensional* distributions, which are only tangentially related to the global Markov property.

Q1. Is the limit object still a Markov chain?

Q2. How to define and deal with such *infinite-dimensional* Markov chains?

Problem. The convergence theorem deals with *finite-dimensional* distributions, which are only tangentially related to the global Markov property.

This is still open!

Plan.

Having identified the problem we will now generalize and simplify the model as much as possible.

Aim 1: Remove the technical obstacles leaving the main questions unaffected.

Aim 2: Try to find a related model that have some additional structures which might help.

The construction starts with a 1D random process X(t) taking values in \mathbb{Z} .

The construction starts with a 1D random process X(t) taking values in \mathbb{Z} .

1. Simple discrete-time random walk

At each time step the particle either (with probability 1/2) jumps by 1 step or stays put.

The construction starts with a 1D random process X(t) taking values in \mathbb{Z} .

1. Simple discrete-time random walk

At each time step the particle either (with probability 1/2) jumps by 1 step or stays put.

2. Poisson process

Continuous time process with independent increments. $P(\text{jump in } dt) \approx dt$

The construction starts with a 1D random process X(t) taking values in \mathbb{Z} .

1. Simple discrete-time random walk

At each time step the particle either (with probability 1/2) jumps by 1 step or stays put.

2. Poisson process

Continuous time process with independent increments. $P(\text{jump in } dt) \approx dt$

3. More complicated versions
RW with more complicated jump rules, birth-death processes,
etc.

The construction starts with a 1D random process X(t) taking values in \mathbb{Z} .

1. Simple discrete-time random walk

At each time step the particle either (with probability 1/2) jumps by 1 step or stays put.

2. Poisson process \leftarrow we stick to this case

Continuous time process with independent increments. $P(\text{jump in } dt) \approx dt$

3. More complicated versions
RW with more complicated jump rules, birth-death processes,
etc.

Step 2: simplification

Let us remove the condition that at time \mathcal{T} the particles are at the prescribed positions.

We want to define *N*-dimensional Markov process $(X_1(t), \ldots, X_N(t))$ with non-intersecting paths.

These are N independent processes distributed as X(t) conditioned never to collide.

Step 2: simplification

Let us remove the condition that at time \mathcal{T} the particles are at the prescribed positions.

We want to define *N*-dimensional Markov process $(X_1(t), \ldots, X_N(t))$ with non-intersecting paths.

These are N independent processes distributed as X(t) conditioned never to collide.

How to make this definition rigorous?

Theorem/Definition.[Konig-O'Connell-Roch] Fix T and numbers $y_1(T) < \cdots < y_N(T)$. Let $Z^T(t)$ be N independent processes distributed as X(t), started from points $(1, \ldots, N)$, and conditioned to finish at time T in points $(y_1(T), \ldots, y_N(T))$ without collisions.

As $T \to \infty$ and $y_i(T)/T \to \beta_i$, the processes $Z^T(t)$ converge to a Markov process $\mathcal{Z}_N^{\beta_1,\dots,\beta_N}(t)$.

Background

Distinguished case
$$\beta_i = 1$$
, $Z_N^{1,\dots,1}(0) = (1,\dots,N)$

1. Limit of uniformly random lozenge tilings of hexagons

- 2. For fixed t_0 , the probability distribution $\mathcal{Z}_N^{1,\dots,1}(t_0)$ also arises in representation theory of infinite-dimensional unitary group $U(\infty)$.
- 3. For fixed t_0 , the probability distribution of $\mathbb{Z}_N^{1,\dots,1}(t_0)$ is described by the so-called Charlier orthogonal ensemble discrete random matrix-type distribution.

Question: How to define a $N \to \infty$ limit of such processes?

Informally we want to have countably many independent processes distributed as X(t) and conditioned never to collide.

(Note a nontrivial behavior at zero time)

What's new?

From the first sight, nothing changed in the problem.

However, now there IS an additional structure!

Namely, the processes for different N are related.

Interlacing particles on $\mathbb{Z} \times \mathbb{Z}_+$:

•	x_{1}^{5}	. :		. (• <i>x</i>	$^{5}_{2}$	x	5 · 3 ·		x_{4}^{5}	:	•	x_{5}^{5}	
:		•	\dot{x}	$\frac{4}{1}$. (\mathbf{x}	1. ·		x_{3}^{4}	$\bullet x$	$\overset{4}{\overset{\cdot}{}}$		one on the first harizontal line
į				٠.	<i>x</i>	.3 .1			 •	x_{2}^{3}	• x	3		one on the first horizontal line, two on the second line, etc,
į					:	. (\mathbf{x}	2 ·	 . ;		• x	2		subject to the conditions
:							· · ·		 •	x_{1}^{1}		-		$x_i^{j+1} < x_i^j \le x_{i+1}^{j+1}.$

Interlacing particles on $\mathbb{Z} \times \mathbb{Z}_+$:

Suppose that each particle has an exponential clock. All clocks are independent and the rate for particles at line j (i.e. x_1^j,\ldots,x_j^j) is α_j . When the clock rings particle attempts to jump to the right.

Interlacing particles on $\mathbb{Z} \times \mathbb{Z}_+$:

Suppose that each particle has an exponential clock. All clocks are independent and the rate for particles at line j (i.e. x_1^j,\ldots,x_j^j) is α_j . When the clock rings particle attempts to jump to the right.

The interlacing conditions are preserved by the rule "if higher, then lighter".

Push:

Push:

Markovian projection

Proposition. For every N the projection of the dynamics to N particles on the Nth horizontal line (x_1^N, \ldots, x_N^N) is a Markov chain.

Proposition. For every N the projection of the dynamics to N particles on the Nth horizontal line (x_1^N, \ldots, x_N^N) is a Markov chain. This is precisely the process of N independent Poisson random walks conditioned not to collide.

The set of speeds β_1, \ldots, β_N is the set $\{\alpha_i\}$ rearranged in the increasing order.

More hidden structures

Definition. The probability measure P on the set of families of interlacing particles is α -Gibbs if

for any N and any fixed x_1^N, \ldots, x_N^N the conditional distribution of interlacing particles on horizontal lines $1 \ldots N-1$ is

$$\frac{1}{M} \prod_{i=1}^{N} \alpha_j^{|x^j| - |x^{j-1}|}, \quad |x^j| = x_1^j + \dots + x_j^j, \quad |x_0^j| = 0.$$

Why are α -Gibbs measures important?

Proposition 1. The above Markov dynamics on interlacing particles *preserves* the convex set of α -Gibbs measures. In other words, if the distribution of family of interlacing particles is α -Gibbs at zero time, then it is α -Gibbs at all times.

Why are α -Gibbs measures important?

Proposition 1. The above Markov dynamics on interlacing particles *preserves* the convex set of α -Gibbs measures. In other words, if the distribution of family of interlacing particles is α -Gibbs at zero time, then it is α -Gibbs at all times.

Proposition 2. For any sequence $\alpha = \{\alpha_i\}$ there exists a space \mathcal{X}_{α} such that the set Ω of all α -Gibbs probability measures is homeomorphic to the set $\mathcal{M}_p(\mathcal{X}_{\alpha})$ of all probability measures on \mathcal{X}_{α} .

Why are α -Gibbs measures important?

Proposition 1. The above Markov dynamics on interlacing particles *preserves* the convex set of α -Gibbs measures. In other words, if the distribution of family of interlacing particles is α -Gibbs at zero time, then it is α -Gibbs at all times.

Proposition 2. For any sequence $\alpha = \{\alpha_i\}$ there exists a space \mathcal{X}_{α} such that the set Ω of all α -Gibbs probability measures is homeomorphic to the set $\mathcal{M}_p(\mathcal{X}_{\alpha})$ of all probability measures on \mathcal{X}_{α} .

This is a general statement of convex analysis. It tells *nothing* about the actual structure of the space \mathcal{X} . And, indeed, this structure can be *very* different.

One example

Consider the set of α -Gibss measures on 4(4+1)/2=10 interlacing particles on first 4 horizontal lines:

One example

Consider the set of α -Gibss measures on 4(4+1)/2=10 interlacing particles on first 4 horizontal lines:

The space of α –Gibbs probability measures on the *first* 4 *lines* is homeomorphic to the set of all probability measures on 4-particle configurations (i.e. 4th horizontal line)

We are ready to define transitional probability (measure) $P_t^{\alpha}(x \to dy)$, $x \in \mathcal{X}_{\alpha}$, of the desired $N \to \infty$ limit of the processes on Nth horizontal line.

We are ready to define transitional probability (measure) $P_t^{\alpha}(x \to dy)$, $x \in \mathcal{X}_{\alpha}$, of the desired $N \to \infty$ limit of the processes on Nth horizontal line.

Take $x \in \mathcal{X}_{\alpha}$.

We are ready to define transitional probability (measure) $P_t^{\alpha}(x \to dy)$, $x \in \mathcal{X}_{\alpha}$, of the desired $N \to \infty$ limit of the processes on Nth horizontal line.

Take $x \in \mathcal{X}_{\alpha}$.

 δ -measure in x defines an α -Gibbs measure on interlacing particles.

We are ready to define transitional probability (measure) $P_t^{\alpha}(x \to dy)$, $x \in \mathcal{X}_{\alpha}$, of the desired $N \to \infty$ limit of the processes on Nth horizontal line.

Take $x \in \mathcal{X}_{\alpha}$.

 δ -measure in x defines an α -Gibbs measure on interlacing particles. Start the dynamics from this measure and wait time t.

We are ready to define transitional probability (measure) $P_t^{\alpha}(x \to dy)$, $x \in \mathcal{X}_{\alpha}$, of the desired $N \to \infty$ limit of the processes on Nth horizontal line.

Take $x \in \mathcal{X}_{\alpha}$.

 δ -measure in x defines an α -Gibbs measure on interlacing particles. Start the dynamics from this measure and wait time t. We get an α -Gibbs measure again.

We are ready to define transitional probability (measure) $P_t^{\alpha}(x \to dy)$, $x \in \mathcal{X}_{\alpha}$, of the desired $N \to \infty$ limit of the processes on Nth horizontal line.

Take $x \in \mathcal{X}_{\alpha}$.

 δ -measure in x defines an α -Gibbs measure on interlacing particles.

Start the dynamics from this measure and wait time t.

We get an α -Gibbs measure again.

It corresponds to some probability measure on \mathcal{X}_{α} .

We are ready to define transitional probability (measure) $P_t^{\alpha}(x \to dy)$, $x \in \mathcal{X}_{\alpha}$, of the desired $N \to \infty$ limit of the processes on Nth horizontal line.

Take $x \in \mathcal{X}_{\alpha}$.

 δ -measure in x defines an α -Gibbs measure on interlacing particles.

Start the dynamics from this measure and wait time t.

We get an α -Gibbs measure again.

It corresponds to some probability measure on \mathcal{X}_{α} .

We define $P_t^{\alpha}(x \to dy)$ to be equal to this measure.

We are ready to define transitional probability (measure) $P_t^{\alpha}(x \to dy)$, $x \in \mathcal{X}_{\alpha}$, of the desired $N \to \infty$ limit of the processes on Nth horizontal line.

Take $x \in \mathcal{X}_{\alpha}$.

 δ -measure in x defines an α -Gibbs measure on interlacing particles. Start the dynamics from this measure and wait time t.

We get an α -Gibbs measure again.

It corresponds to some probability measure on \mathcal{X}_{α} .

We define $P_t^{\alpha}(x \to dy)$ to be equal to this measure.

Of course, the actual Markov chain strongly depends on the choice of α_i . The set \mathcal{X}_{α} is currently known only in two special cases.

Case
$$\alpha_1 = \alpha_2 = \cdots = 1$$
.

$$\mathcal{X}_{\alpha} \subset \mathbb{R}^{4\infty+2} = \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \times \mathbb{R} \times \mathbb{R},$$

is the set of sextuples

$$(a^+, b^-, a^+, b^-; c^+, c^-)$$

such that

$$egin{aligned} a^{\pm} &= (a_1^{\pm} \geq a_2^{\pm} \geq \cdots \geq 0) \in \mathbb{R}^{\infty}, \quad b^{\pm} &= (b_1^{\pm} \geq b_2^{\pm} \geq \cdots \geq 0) \in \mathbb{R}^{\infty}, \ &\sum_{i=1}^{\infty} (a_i^{\pm} + b_i^{\pm}) \leq c^{\pm}, \quad b_1^{+} + b_1^{-} \leq 1. \end{aligned}$$

This is related to the representation theory of $U(\infty)$.

Case
$$\alpha_1 = \alpha_2 = \cdots = 1$$
.

$$\mathcal{X}_{\alpha} \subset \mathbb{R}^{4\infty+2} = \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \times \mathbb{R} \times \mathbb{R},$$

is the set of sextuples

$$(a^+, b^-, a^+, b^-; c^+, c^-)$$

such that

$$a^{\pm}=(a_1^{\pm}\geq a_2^{\pm}\geq \cdots \geq 0)\in \mathbb{R}^{\infty},\quad b^{\pm}=(b_1^{\pm}\geq b_2^{\pm}\geq \cdots \geq 0)\in \mathbb{R}^{\infty},$$

$$\sum_{i=1}^{\infty} (a_i^{\pm} + b_i^{\pm}) \le c^{\pm}, \quad b_1^{+} + b_1^{-} \le 1.$$

This is related to the representation theory of $U(\infty)$.

However, our dynamics boils down to the *deterministic* shift of δ^+ . [Note, that this is the closest case to the problem we started from!]

Case
$$\alpha_i = q^{1-i}$$
, $0 < q < 1$.

 $\mathcal{N} = \mathcal{X}_{\alpha}$ is the set of monotonous sequences of integers:

$$\mathcal{N} = \{ \nu = (\nu_1 < \nu_2 < \nu_3 < \dots) \in \mathbb{Z}^{\infty} \}.$$

For a family of interacting particles tiling distributed according to α -Gibbs measure \mathcal{E}^{ν} almost surely for every j.

$$\lim_{N\to\infty}(x_j^N+N-1)=\nu_j.$$

Case
$$\alpha_i = q^{1-i}$$
, $0 < q < 1$.

 $\mathcal{N} = \mathcal{X}_{\alpha}$ is the set of monotonous sequences of integers:

$$\mathcal{N} = \{ \nu = (\nu_1 < \nu_2 < \nu_3 < \dots) \in \mathbb{Z}^{\infty} \}.$$

For a family of interacting particles tiling distributed according to α -Gibbs measure \mathcal{E}^{ν} almost surely for every j.

$$\lim_{N\to\infty}(x_j^N+N-1)=\nu_j.$$

In other words, this is a semi-infinite point configuration read from left to right.

Denote the limit process started from $0 < 1 < 2 < 3 < \dots$ through $\mathcal{Z}_{\infty}^{1,q^{-1},\dots}(t)$.

Properties of $\mathcal{Z}^{1,q^{-1},...}_{\infty}(t)$.

1. Finite-dimensional distributions of $\mathcal{Z}_{\infty}^{1,q^{-1},\dots}(t)$ are $N\to\infty$ limits of distributions of the process $\mathcal{Z}_{N}^{1,q^{-1},\dots}(t)$ on Nth horizontal line.

[Thus, this is exactly the "local limit process" that we wanted]

Properties of $\mathcal{Z}^{1,q^{-1},...}_{\infty}(t)$.

- 1. Finite-dimensional distributions of $\mathcal{Z}_{\infty}^{1,q^{-1},\dots}(t)$ are $N\to\infty$ limits of distributions of the process $\mathcal{Z}_{N}^{1,q^{-1},\dots}(t)$ on Nth horizontal line.
 - [Thus, this is exactly the "local limit process" that we wanted]
- 2. $\mathcal{Z}_{\infty}^{1,q^{-1},\dots}(t)$ is naturally extended to a Feller Markov process on $\overline{\mathcal{N}}$ local compactification of \mathcal{N} .

Properties of $\mathcal{Z}^{1,q^{-1},...}_{\infty}(t)$.

- 1. Finite-dimensional distributions of $\mathcal{Z}_{\infty}^{1,q^{-1},\dots}(t)$ are $N\to\infty$ limits of distributions of the process $\mathcal{Z}_{N}^{1,q^{-1},\dots}(t)$ on Nth horizontal line.
 - [Thus, this is exactly the "local limit process" that we wanted]
- 2. $\mathcal{Z}_{\infty}^{1,q^{-1},...}(t)$ is naturally extended to a Feller Markov process on $\overline{\mathcal{N}}$ local compactification of \mathcal{N} .
- 3. $\mathcal{Z}_{\infty}^{1,q^{-1},...}(t)$ is a dynamical determintal point process.

Determinantal point process: correlation functions

$$\rho_n(t_1, x_1; \dots t_n, x_n)$$
= Prob(paths go through points $(t_1, x_1), \dots, (t_n, x_n)$)

Determinantal point process: kernel

For any $n \geq 1$, the *n*th correlation function ρ_n of process $\mathcal{Z}_{\infty}^{1,q^{-1},...}(t)$ has the form

$$\rho_n(x_1, t_1; x_2, t_2; \dots; x_n, t_n) = \det_{i,j=1,\dots,n} [K(x_i, t_i; x_j, t_j)],$$

where

$$K(x_1, t_1; x_2 t_2) = -\frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{dw}{w^{x_1 - x_2 + 1}} e^{w(t_1 - t_2)} \mathbf{1}_{t_1 > t_2}$$

$$+ \frac{1}{(2\pi i)^2} \oint_{\mathcal{C}} dw \oint_{\mathcal{C}'} dz e^{wt_1 - zt_2} \frac{(w; q)_{\infty}}{(z; q)_{\infty}} \frac{z^{x_2}}{w^{x_1 + 1}} \frac{1}{w - z},$$

 $\mathcal C$ is positively oriented and includes only the pole 0 of the integrand; $\mathcal C'$ goes from $+i\infty$ to $-i\infty$ between $\mathcal C$ and point 1.

We will give an independent description of the stochastic evolution of the smallest particle.

$$I_4$$
 I_3 I_2 I_1

TASEP with rate(I_k) = q^{1-k} .

Proposition Stochastic evolution of "densely packed group" $\lim_{k\to\infty}[x(I_k)+k-1]=\lim_{k\to\infty}[x_1^k+k-1]$ is the same as the evolution of the bottommost particle of $\mathcal{Z}_{\infty}^{1,q^{-1}\cdots}(t)$.

Related questions:

Our dynamics ends up being deterministic for $\alpha_i=1$. However, there is a way to introduce *different* natural stochastic dynamics which will also preserve the Gibbs measures.

[Borodin-Olshanski,2010] This leads to a non-trivial Markov process on the limit (infinite-dimensional with continuous coordinates) space with invariant distribution given by the so-called (z,w)-measures related to the problem of harmonic analysis on the infinite-dimensional unitary group $U(\infty)$.

Related questions:

Our dynamics ends up being deterministic for $\alpha_i=1$. However, there is a way to introduce *different* natural stochastic dynamics which will also preserve the Gibbs measures.

[Borodin-Olshanski,2010] This leads to a non-trivial Markov process on the limit (infinite-dimensional with continuous coordinates) space with invariant distribution given by the so-called (z,w)-measures related to the problem of harmonic analysis on the infinite-dimensional unitary group $U(\infty)$.

Further open questions:

- 1. Infinite-dimensional dynamics for general sequence α_i ?
- 2. Macdonald-like deformations?
- 3. What is the answer in the original lozenge tilings settings?

Literature:

- A. Borodin, V. Gorin, Markov processes of infinitely many nonintersecting random walks, to appear in Probability Theory and Related Fields. arXiv: 1106.1299.
- 2. V. Gorin, *The q-Gelfand-Tsetlin graph, Gibbs measures and q-Toeplitz matrices*, Advances in Mathematics, 229 (2012), no. 1, 201–266, arXiv:1011.1769.
- 3. A. Borodin, P. Ferrari, *Anisotropic growth of random surfaces* in 2 + 1 dimensions. arXiv:0804.3035.
- 4. V.Gorin, Non-intersecting paths and Hahn orthogonal polynomial ensemble, Functional Analysis and its Applications, 42 (2008), no. 3, 180–197. arXiv: 0708.2349
- 5. A. Borodin, G. Olshanki, *Markov processes on the path space of the Gelfand-Tsetlin graph and on its boundary,* arXiv:1009.2029.