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Lozenge tilings and
finitely many non-intersecting random walks.



Lozenge tilings and
finitely many non-intersecting random walks.

We are interested in tilings by rhombi with angles 7/3 and 27/3
and side lengths 1 (lozenges).

The simplest tileable domain is an equi-angular hexagon of side
lengths a, b, c, a, b, c.
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hexagon

We are interested in uniformly random tilings of a fixed a x b x ¢
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This model has a very interesting limit behavior as a, b,c — o©
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Non-intersecting walks
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Tilings are in bijection with families of non-intersecting paths with
fixed starting and ending points.



N non-intersecting random walks.

For the uniform measure vertical
sections of paths produce a

/ I Markov chain.

/ / This chain is identified with

/ N = a independent simple
D random walks conditioned to
finish after time T = b+ ¢ at

v

prescribed points

t C,...,c+ N —1 without
collisions.



Local limits and paths

We enlarge the hexagon and observe the picture near a fixed point

Locally we still see paths.
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Local limit theorem

Theorem. (G.-2007) Fix a point inside a hexagon and let

a, b, c — 0o so that their ratios tend to finite limits. In the
neighborhood of the point we get a well-defined limit, which is a
measure on lozenge tilings of the plane (or, equivalently, on infinite
families of non-intersecting paths).

The limit measures posses lots of interesting properties and, in a
sense, are completely explicit.



Infinitely-many paths?
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// ‘ Q1. Is the limit object still a
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with such infinite-dimensional
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Infinitely-many paths?

/ ! Markov chain?

. Q2. How to define and deal
—— with such infinite-dimensional
Markov chains?

/ Problem. The convergence
theorem deals with
finite-dimensional distributions,

which are only tangentially
related to the global Markov

s e o property.

// I Q1. Is the limit object still a
/
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t This is still open!



Plan.

Having identified the problem we will now generalize and simplify
the model as much as possible.
Aim 1: Remove the technical obstacles leaving the main questions

unaffected.
Aim 2: Try to find a related model that have some additional

structures which might help.



Step 1: generalization.

The construction starts with a 1D random process X(t) taking
values in Z.
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Step 1: generalization.
The construction starts with a 1D random process X(t) taking
values in Z.

1. Simple discrete-time random walk

p=1/2 o At each time step the particle
either (with probability 1/2)
jumps by 1 step or stays put.
o—©0
p=1/2

2. Poisson process <— we stick to this case
Continuous time process with
independent increments.
P(jump in dt) =~ dt

3. More complicated versions
RW with more complicated jump rules, birth-death processes,
etc.



Step 2: simplification
Let us remove the condition that at time T the particles are at the
prescribed positions.

We want to define N-dimensional Markov process
(X1(t),..., Xn(t)) with non-intersecting paths.

M
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These are N independent processes distributed as X(t) conditioned
never to collide.



Step 2: simplification
Let us remove the condition that at time T the particles are at the
prescribed positions.

We want to define N-dimensional Markov process
(X1(t),..., Xn(t)) with non-intersecting paths.
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These are N independent processes distributed as X(t) conditioned
never to collide.
How to make this definition rigorous?

(We want to condition on the event of probability 0 and also to keep Markov property)



Theorem/Definition.[Konig-O'Connell-Roch] Fix T and numbers
y1i(T) < --- < yn(T). Let Z7(t) be N independent processes
distributed as X(t), started from points (1,...,N), and
conditioned to finish at time T in points (y1(7T),...,yn(T))
without collisions.
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As T — oo and y;(T)/T — B;, the processes Z (t) converge to a
Markov process Zﬁl""’ﬁ’v(t).



Background

Distinguished case §; = 1, Zy "' (0) = (1,..., N)

1. Limit of uniformly random
lozenge tilings of hexagons

2. For fixed tg, the probability distribution Z,{,’""l(to) also arises
in representation theory of infinite-dimensional unitary group
U(o0).

3. For fixed to, the probability distribution of Z5"(to) is
described by the so-called Charlier orthogonal ensemble —
discrete random matrix-type distribution.



Question: How to define a N — oo limit of such processes?

I

Informally we want to have countably many independent processes
distributed as X(t) and conditioned never to collide.

—

(Note a nontrivial behavior at zero time)



What's new?

From the first sight, nothing changed in the problem.
However, now there IS an additional structure!

Namely, the processes for different N are related.



Interlacing particles on Z x Z. :
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Suppose that each particle has an exponential clock. All clocks are

independent and the rate for particles at line j (i.e. x{,... ,xJJ) is

aj. When the clock rings particle attempts to jump to the right.

The interlacing conditions are preserved by the rule "“if higher, then
lighter”.












Push:



Markovian projection

Proposition. For every N the projection of the dynamics to N

particles on the Nth horizontal line (xlN, ... ,x,\'\,’) is a Markov chain.



Proposition. For every N the projection of the dynamics to N
particles on the Nth horizontal line (x{,...,xN) is a Markov
chain. This is precisely the process of N independent Poisson

random walks conditioned not to collide.
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The set of speeds f31,..., Oy is the set {«;} rearranged in the
increasing order.



More hidden structures

Definition. The probability measure P on the set of families of
interlacing particles is a-Gibbs if
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interlacing particles on horizontal lines 1... N — 1 is

x| —|xi—1 H
MH"' LW = =0

j=1



Why are a—Gibbs measures important?

Proposition 1. The above Markov dynamics on interlacing
particles preserves the convex set of a—Gibbs measures. In other
words, if the distribution of family of interlacing particles is
«a-Gibbs at zero time, then it is a—Gibbs at all times.
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X



Why are a—Gibbs measures important?

Proposition 1. The above Markov dynamics on interlacing
particles preserves the convex set of a—Gibbs measures. In other
words, if the distribution of family of interlacing particles is
«a-Gibbs at zero time, then it is a—Gibbs at all times.

Proposition 2. For any sequence o = {«;} there exists a space
X, such that the set Q of all a—Gibbs probability measures is
homeomorphic to the set M (X, ) of all probability measures on
X

This is a general statement of convex analysis. It tells nothing
about the actual structure of the space X'. And, indeed, this
structure can be very different.



One example

Consider the set of a—Gibss measures on 4(4 +1)/2 = 10
interlacing particles on first 4 horizontal lines:

4 4 44
........ .x? R .x%.x%
........... .:L‘% L .x%



One example

Consider the set of a—Gibss measures on 4(4 +1)/2 = 10
interlacing particles on first 4 horizontal lines:

4 4 44
........ .x? R .x%.x%
........... OZL‘%O.’L%

s

The space of a—Gibbs probability measures on the first 4 lines is
homeomorphic to the set of all probability measures on 4-particle
configurations (i.e. 4th horizontal line)
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Construction of Z1:%2(t)

We are ready to define transitional probability (measure)
P (x — dy), x € Xy, of the desired N — oo limit of the processes
on Nth horizontal line.

Take x € X,,.

d-measure in x defines an a-Gibbs measure on interlacing particles.
Start the dynamics from this measure and wait time t.

We get an a—Gibbs measure again.

It corresponds to some probability measure on X,,.

We define P¢'(x — dy) to be equal to this measure.

Of course, the actual Markov chain strongly depends on the choice
of ;. The set X, is currently known only in two special cases.



Case v =ap = ---=1.

X, CR*¥*T2 —R® x R® x R® x R® x R x R,
is the set of sextuples
(at,b",a",b ;ct,c)
such that
at =(af >ay >--->0)€R®, b* = (b >bF > - >0)cR™,
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d(aF+bf) <t b +b <L
i=1

This is related to the representation theory of U(o0).



Case v =ap = ---=1.

X, CR*¥*T2 —R® x R® x R® x R® x R x R,
is the set of sextuples
(at,b",a",b ;ct,c)
such that
at =(af >ay >--->0)€R®, b* = (b >bF > - >0)cR™,

oo
d(aF+bf) <t b +b <L
i=1

This is related to the representation theory of U(o0).

However, our dynamics boils down to the deterministic shift of 5+.
[Note, that this is the closest case to the problem we started from!]



Caseaj =g/, 0< q< 1.

N = X, is the set of monotonous sequences of integers:
N={r=(mnm<wm<uv3<...)€EL>®}

For a family of interacting particles tiling distributed according to
a—Gibbs measure £¥ almost surely for every j.

Nlinoo(xj +N—-1)=y;.



Caseaj =g/, 0< q< 1.

N = X, is the set of monotonous sequences of integers:
N={r=(mnm<wm<uv3<...)€EL>®}

For a family of interacting particles tiling distributed according to
a—Gibbs measure £¥ almost surely for every j.

lim (x + N —1) = ;.

N—oo

In other words, this is a semi-infinite point configuration read from
left to right.

Denote the limit process started from 0 <1 <2 <3 < ...
-1
through Z29 " (¢).
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1. Finite-dimensional distributions of Zic’)q_l""(t) are N — oo
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Properties of ZL9 " (t).

1. Finite-dimensional distributions of Zg&q_l""(t) are N — oo
limits of distributions of the process Z,{,’qil""(t) on Nth
horizontal line.

[Thus, this is exactly the “local limit process” that we wanted]

-1
2. Z59 +(t) is naturally extended to a Feller Markov process
on N/ — local compactification of \V.

-1
3. zLe "(t) is a dynamical determintal point process.



Determinantal point process: correlation functions

L
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,On(tlaxl; ce thn)
= Prob(paths go through points (t1,x1), ..., (tn, Xn))



Determinantal point process: kernel

For any n > 1, the nth correlation function p, of process
—1
ZL9 () has the form

pn(X17 tl;XZ) t2; <o Xny tn) - . ,det [K(Xi7 tl';X_j7 tJ)]7

ij=1,...,n
where

1 dw _
K(x1, t1; xot2) = me w(ti—t )1t1>t2

C is positively oriented and includes only the pole 0 of the

integrand; C’ goes from +ioo to —ico between C and point 1.
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Bottommost particle of the process Z19 (t).
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Bottommost particle of the process Z19 (t).
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We will give an independent description of the stochastic evolution
of the smallest particle.
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Bottommost particle of the process ZL9  (t).
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Bottommost particle of the process ZL9  (t).
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Proposition Stochastic evolution of “densely packed group”
lim [x(lk) + k —1] = lim [xf + k — 1] is the same as the
k— o0 k—o0

1
evolution of the bottommost particle of Z%7 (¢).



Related questions:

Our dynamics ends up being deterministic for o; = 1. However,
there is a way to introduce different natural stochastic dynamics
which will also preserve the Gibbs measures.
[Borodin-Olshanski,2010] This leads to a non-trivial Markov
process on the limit (infinite-dimensional with continuous
coordinates) space with invariant distribution given by the so-called
(z, w)-measures related to the problem of harmonic analysis on
the infinite-dimensional unitary group U(oc0).



Related questions:

Our dynamics ends up being deterministic for o; = 1. However,
there is a way to introduce different natural stochastic dynamics
which will also preserve the Gibbs measures.
[Borodin-Olshanski,2010] This leads to a non-trivial Markov
process on the limit (infinite-dimensional with continuous
coordinates) space with invariant distribution given by the so-called
(z, w)-measures related to the problem of harmonic analysis on
the infinite-dimensional unitary group U(oc0).

Further open questions:

1. Infinite-dimensional dynamics for general sequence «;?
2. Macdonald-like deformations?

3. What is the answer in the original lozenge tilings settings?
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