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Model



Polygon on the triangular lattice



Lozenge tilings of polygon



Lozenge tilings of polygon



Remark

Lozenge tilings ⇔ Dimer Coverings



Tilings = 3D stepped surfaces

unit cube =



Remark:
“full” and “empty”



Remark:
“full” and “empty”



The model: uniformly random tilings

Fix a polygon P and let the mesh → 0.

[Kenyon-Okounkov ’07] Algorithm of [Borodin-Gorin ’09]



Limit shape and frozen boundary for

general polygonal domains

[Cohn–Larsen–Propp ’98], [Cohn–Kenyon–Propp ’01],
[Kenyon-Okounkov ’07]

• (LLN) As the mesh goes to zero, random 3D stepped
surfaces concentrate around a deterministic limit shape
surface

• The limit shape develops frozen facets

• There is a connected liquid region where all three types of
lozenges are present

• The limit shape surface and the separating frozen
boundary curve are algebraic

• The frozen boundary is tangent to all sides of the polygon



A class of polygons



Affine transform of lozenges





Class P of polygons in (χ, η) plane

1

a1 a2 a3 a4b1 b2 b3 b4 ak bk
Η

Χ

Polygon P has 3k sides, k = 2, 3, 4, . . .

+ condition
k∑

i=1

(bi − ai) = 1 (ai , bi — fixed parameters)

(k = 2 — hexagon with sides A,B ,C ,A,B ,C )



Patricle configurations and
determinantal structure



Particle configurations

x

n

Take a tiling of a polygon P in our class P



Particle configurations

x

n

0

N

Let N := ε−1 (where ε = mesh of the lattice)

Introduce scaled integer coordinates (= blow the polygon)
x = Nχ, n = Nη (so n = 0, . . . ,N)



Particle configurations

x

n

N

Trivially extend the tiling to the strip 0 ≤ n ≤ N
with N small triangles on top



Particle configurations

x

n

N

Place a particle in the center of every lozenge of type



Particle configurations

x

n

N

Erase the polygon. . .



Particle configurations

x

n

0

N

. . . and the lozenges!

(though one can always reconstruct everything back)



x

n

0

N

We get a uniformly random integer (particle) array

{xm
j : m = 1, . . . ,N ; j = 1, . . . ,m} ∈ ZN(N+1)/2

satisfying interlacing constraints

xm
j+1 < xm−1

j ≤ xm
j (for all possible m, j)

and with certain fixed top (N-th) row: xN
N < . . . < xN

1

(determined by N and parameters {ai , bi}ki=1 of the polygon).



Determinantal structure
Correlation functions

Fix some (pairwise distinct) positions (x1, n1), . . . , (xs , ns),

ρs(x1, n1; . . . ; xs , ns) := Prob{there is a particle of random

configuration {xm
j } at position (x`, n`), ` = 1, . . . , s}

Determinantal correlation kernel

There is a function K (x1, n1; x2, n2) (correlation kernel) s.t.

ρs(x1, n1; . . . ; xs , ns) = det[K (xi , ni ; xj , nj)]si ,j=1

(for uniformly random tilings this follows, e.g., from Kasteleyn
theory, cf. [Kenyon ”Lectures on dimers” ’09])



Problem:

there was no good explicit formula for the kernel
K (x1, n1; x2, n2) suitable for asymptotic analysis.



Theorem 1 [P. ’12]. Explicit formula for the determinantal
kernel of random interlacing integer arrays with the fixed top
(N-th) row

K (x1, n1; x2, n2) = −1n2<n11x2≤x1
(x1 − x2 + 1)n1−n2−1

(n1 − n2 − 1)!

+
(N − n1)!

(N − n2 − 1)!

1

(2πi)2
×

×
∮
{w}

∮
{z}

dzdw

w − z
· (z − x2 + 1)N−n2−1

(w − x1)N−n1+1
·

N∏
r=1

w − xN
r

z − xN
r

where 1 ≤ n1 ≤ N , 1 ≤ n2 ≤ N − 1, and x1, x2 ∈ Z, and
(a)m := a(a + 1) . . . (a + m − 1)



Theorem 1 [P. ’12] (cont.). Contours of integration for K

• Both contours are counter-clockwise.

• {z} 3 x2, x2 + 1, . . . , xN
1 , {z} 63 x2 − 1, x2 − 2, . . . , xN

N

• {w} ⊃ {z}, {w} 3 x1, x1 − 1, . . . , x1 − (N − n1)

w
z

x2 x1
NxN

N

reminder: integrand contains
(z − x2 + 1)N−n2−1

(w − x1)N−n1+1

N∏
r=1

w − xN
r

z − xN
r



Idea of proof of Theorem 1
Step 1. Pass to the q-deformation qvol , vol = volume under
the stepped surface

Step 2. Write the measure qvol on interlacing arrays as a
product of determinants

Const · det[ψi(xN
j )]Ni ,j=1

∏N

n=1
det[ϕn(xn−1

i , xn
j )]ni ,j=1

Main trick

Use a very special choice of ψi (related to the inverse
Vandermonde matrix), which is why it all works



Idea of proof of Theorem 1.

Inverse Vandermonde matrix
Let V denote the N × N Vandermonde matrix [(qxNi )N−j ]Ni ,j=1.

Let V−1 be the inverse of that Vandermonde matrix.

Define the following functions in x ∈ Z:

ψi(x) :=
∑N

j=1
V−1ij · 1(x = xN

j ).

For y1 > . . . > yN :

det[ψi(yj)]Ni ,j=1 =
1(y1 = xN

1 ) . . . 1(yN = xN
N)∏

k<r

(qxNk − qxNr )



Idea of proof of Theorem 1.

Inverse Vandermonde matrix
Double contour integrals come from the following fact:

V−1ij =
1

(2πi)2

∮
{z}

dz

∮
{w}

dw

wN+1−i
1

w − z

N∏
r=1

w − qxNr

z − qxNr

The {z} contour is around qxNj , and the {w} contour contains
{z} and is sufficiently big.



Idea of proof of Theorem 1

Step 3. Apply the Eynard-Mehta type formalism with varying
number of particles [Borodin ”Determ. P.P.” ’09]

The “Gram matrix” that one needs to invert is diagonal!

Step 4. Obtain the q-deformed correlation kernel

qK (x1, n1; x2, n2) = −1n2<n11x2≤x1q
n2(x1−x2) (qx1−x2+1; q)n1−n2−1

(q; q)n1−n2−1

+
(qN−1; q−1)N−n1

(2πi)2

∮
dz

∮
dw

w

qn2(x1−x2)zn2

w − z

(zq1−x2+x1 ; q)N−n2−1
(q; q)N−n2−1

×

× 2φ1(q−1, qn1−1; qN−1 | q−1;w−1)
N∏
r=1

w − qxNr −x1

z − qxNr −x1
.

Step 5. Pass to the limit q → 1 (this kills 2φ1)



Connection to known kernels

The above kernel K (x1, n1; x2, n2) generalizes some known
kernels arising in the following models:

1 Certain cases of the general Schur process
[Okounkov-Reshetikhin ’03]

2 Extremal characters of the infinite-dimensional unitary
group ⇒ certain ensembles of random tilings of the entire
upper half plane [Borodin-Kuan ’08], [Borodin ’10]

3 Eigenvalue minor process of random Hermitian N × N
matrices with fixed level N eigenvalues ⇒ random
continuous interlacing arrays of depth N [Metcalfe ’11]

All these models can be obtained from tilings of polygons via
suitable degenerations



Asymptotic analysis of the kernel

Write the kernel as

K (x1, n1; x2, n2) ∼ additional summand

+
1

(2πi)2

∮ ∮
f (w , z)

eN[S(w ;
x1
N
,
n1
N
)−S(z; x2

N
,
n2
N
)]

w − z
dwdz

(f (w , z) — some “regular” part having a limit), where

S(w ;χ, η) = (w − χ) ln(w − χ)

− (w − χ + 1− η) ln(w − χ + 1− η) + (1− η) ln(1− η)

+
∑k

i=1

[
(bi − w) ln(bi − w)− (ai − w) ln(ai − w)

]
.

Then investigate critical points of the action S(w ;χ, η) and
transform the contours of integration [Okounkov ”Symmetric
functions and random partitions” ’02]



Asymptotic behavior of random tilings



Local behavior at the edge:

3 directions of nonintersecting paths



Limit shape ⇒ outer paths of every type concentrate around
the corresponding direction of the frozen boundary:

Theorem 2 [P. ’12]. Local behavior at the edge for all poly-
gons in the class P

Fluctuations O(ε1/3) in tangent and O(ε2/3) in normal direction
(ε = 1

N
= mesh of the triangular lattice)

Thus scaled fluctuations are governed by the (space-time) Airy
process at not tangent nor turning point (χ, η) ∈ boundary



Limit shape ⇒ outer paths of every type concentrate around
the corresponding direction of the frozen boundary:

Theorem 2 [P. ’12]. Local behavior at the edge for all poly-
gons in the class P

Fluctuations O(ε1/3) in tangent and O(ε2/3) in normal direction
(ε = 1

N
= mesh of the triangular lattice)

Thus scaled fluctuations are governed by the (space-time) Airy
process at not tangent nor turning point (χ, η) ∈ boundary



Appearance of Airy-type asymptotics

• Edge asymptotics in many spatial models are governed by
the Airy process (universality)

• First appearances:
random matrices (in particular, Tracy-Widom distribution F2),
random partitions (in particular, the longest increasing
subsequence)

— the static case

• Dynamical Airy process:
PNG droplet growth, [Prähofer–Spohn ’02]

• Random tilings of infinite polygons:
[Okounkov-Reshetikhin ’07]



Finite polygons (our setting)

Hexagon case: [Baik-Kriecherbauer-McLaughlin-Miller ’07],
static case (in cross-sections of ensembles of nonintersecting
paths), using orthogonal polynomials



Theorem 3 [P. ’12]. Bulk local asymptotics for all polygons
in the class P

Zooming around a point (χ, η) ∈ P , we asymptotically see a
unique translation invariant ergodic Gibbs measure on tilings of
the whole plane with given proportions of lozenges of all
types [Sheffield ’05], [Kenyon-Okounkov-Sheffield ’06]



Theorem 3 [P. ’12] (cont.). Proportions of lozenges

There exists a function Ω = Ω(χ, η) : P → C, =Ω ≥ 0 (com-
plex slope) such that asymptotic proportions of lozenges

(p , p , p ), p + p + p = 1

(seen in a large box under the ergodic Gibbs measure) are the
normalized angles of the triangle in the complex plane:

0

W

1



Predicting the limit shape from bulk

local asymptotics

(p , p , p ) — normal vector to the limit shape surface in 3D
coordinates like this:

Theorem 3 [P. ’12] (cont.). Limit shape prediction

The limit shape prediction from local asymptotics coincides with
the true limit shape of [Cohn–Kenyon–Propp ’01],
[Kenyon-Okounkov ’07].



Bulk local asymptotics:

previous results related to Theorem 3

• [Baik-Kriecherbauer-McLaughlin-Miller ’07], [Gorin ’08] —
for uniformly random tilings of the hexagon (orth. poly)

• [Borodin-Gorin-Rains ’10] — for more general measures on
tilings of the hexagon (orth. poly)

• [Kenyon ’08] — for uniform measures on tilings of general
polygonal domains without frozen parts of the limit shape

• Many other random tiling models also show this local
behavior (universality)



Theorem 4 [P. ’12]. The complex slope Ω(χ, η)

The function Ω: P → C satisfies the differential complex Burg-
ers equation [Kenyon-Okounkov ’07]

Ω(χ, η)
∂Ω(χ, η)

∂χ
= −(1− Ω(χ, η))

∂Ω(χ, η)

∂η
,

and the algebraic equation (it reduces to a degree k equation)

Ω ·
∏k

i=1

(
(ai − χ + 1− η)Ω− (ai − χ)

)
(1)

=
∏k

i=1

(
(bi − χ + 1− η)Ω− (bi − χ)

)
.

For (χ, η) in the liquid region, Ω(χ, η) is the only solution of
(1) in the upper half plane.



Parametrization of frozen boundary

(χ, η) approach the frozen boundary curve ⇔
Ω(χ, η) approaches the real line and
becomes double root of the algebraic
equation (1) thus yielding
two equations on Ω, χ, and η.

0

W

1

We take slightly different real parameter for the frozen
boundary curve:

t := χ +
(1− η)Ω

1− Ω
.



Theorem 5 [P. ’12]. Explicit rational parametrization of the
frozen boundary curve (χ(t), η(t))

χ(t) = t +
Π(t)− 1

Σ(t)
; η(t) =

Π(t)(Σ(t)− Π(t) + 2)− 1

Π(t)Σ(t)
,

where

Π(t) :=
∏k

i=1

t − bi
t − ai

, Σ(t) :=
∑k

i=1

( 1

t − bi
− 1

t − ai

)
,

with parameter −∞ ≤ t < ∞. As t increases, the frozen
boundary is passed in the clockwise direction (so that the liquid
region stays to the right).

Tangent direction to the frozen boundary is given by

χ̇(t)

η̇(t)
=

Π(t)

1− Π(t)
.



Frozen boundary examples



Frozen boundary examples



Frozen boundary examples



Frozen boundary examples








