Stationary two-point correlation for the KPZ equation

T. Sasamoto
(Based on collaborations with T. Imamura)

22 Mar 2012 @ Warwick
References: arxiv:1111.4634

1. Introduction: 1D surface growth

An example: ballistic deposition model
3 snapshots for flat substrate

Kinetic roughening

Motivations

- Ubiquitous and interesting physical phenomenon in itself
- Beautiful hidden mathematical structure (e.g. Macdonald)
- Two aspects from non-eq stat. mech: dynamic and stationary Kinetic roughening (dynamical)
Nonequilibrium steady state (NESS)
Nonlinearity + Noise

Scaling

$\boldsymbol{h}(\boldsymbol{x}, \boldsymbol{t})$: surface height at position \boldsymbol{x} and at time \boldsymbol{t}

- In stationary state, height looks like a random walk. $h(x, t)-h(0, t) \sim O\left(x^{1 / 2}\right)$ for large \boldsymbol{x}
- $h(x, t) \sim v t+O\left(t^{1 / 3}\right)$ for large t
- $h\left(a t^{2 / 3}, t\right), h\left(b t^{2 / 3}, t\right)$ has

x nontrivial correlation.

Kardar-Parisi-Zhang(KPZ) equation

1986 Kardar Parisi Zhang

$$
\partial_{t} h(x, t)=\frac{1}{2} \lambda\left(\partial_{x} h(x, t)\right)^{2}+\nu \partial_{x}^{2} h(x, t)+\sqrt{D} \eta(x, t)
$$

where $\boldsymbol{\eta}$ is the Gaussian noise with mean 0 and covariance $\left\langle\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)\right\rangle=\delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)$

- The Brownian motion is stationary.
- By a dynamical RG analysis, one can see the KPZ equation exhibit the correct scaling. \rightarrow KPZ universality class
- By $x \rightarrow \alpha^{2} x, t \rightarrow 2 \nu \alpha^{4} t, h \rightarrow \frac{\lambda}{2 \nu} h, \quad \alpha=\frac{\lambda^{1 / 2}}{(2 \nu)^{3 / 2}}$, we can and will do set $\nu=\frac{1}{2}, \lambda=D=1$.
- Noisy Burgers equation: For $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})=\boldsymbol{\partial}_{\boldsymbol{x}} \boldsymbol{h}(\boldsymbol{x}, \boldsymbol{t})$,

$$
\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u+\frac{1}{2} \partial_{x} u^{2}+\partial_{x} \eta(x, t)
$$

- KPZ equation is not really wel-defined.

We consider the Cole-Hopf solution,

$$
h(x, t)=\log (Z(x, t))
$$

where $Z(x, t)$ is the solution of the stochastic heat equation,

$$
d Z(x, t)=\frac{1}{2} \frac{\partial^{2} Z(x, t)}{\partial x^{2}} d t+Z(x, t) d B(x, t)
$$

where $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{t})$ is the cylindrical Brownian motion.

2. Scaling limit results from discrete models

An example: ASEP(asymmetric simple exclusion process)

Bernoulli measure is stationary.
Mapping to surface growth

Surface growth and 2 initial conditions besides stationary

Step

Integrated current $N(x, t)$ in ASEP \Leftrightarrow Height $\boldsymbol{h}(\boldsymbol{x}, \boldsymbol{t})$ in surface growth

Current distributions for ASEP with wedge initial conditions

 2000 Johansson (TASEP) 2008 Tracy-Widom (ASEP)$$
N(0, t /(q-p)) \simeq \frac{1}{4} t-2^{-4 / 3} t^{1 / 3} \xi_{\mathrm{TW}}
$$

Here $\boldsymbol{N}(\boldsymbol{x}=\mathbf{0}, \boldsymbol{t})$ is the integrated current of ASEP at the origin and $\boldsymbol{\xi}_{\text {TW }}$ obeys the GUE Tracy-Widom distributions;

$$
\boldsymbol{F}_{\mathrm{TW}}(s)=\mathbb{P}\left[\xi_{\mathrm{TW}} \leq s\right]=\operatorname{det}\left(1-\boldsymbol{P}_{s} \boldsymbol{K}_{\mathrm{Ai}} \boldsymbol{P}_{s}\right)
$$

wher \boldsymbol{P}_{s} : projection onto the interval $[s, \infty)$ and $\boldsymbol{K}_{\mathbf{A i}}$ is the Airy kernel

$$
K_{\mathrm{Ai}}(x, y)=\int_{0}^{\infty} \mathrm{d} \lambda \mathrm{Ai}(x+\lambda) \mathrm{Ai}(y+\lambda)
$$

Other cases

	wedge	flat	stationary
1pt	GUE TW	GOE TW	$\boldsymbol{F}_{\mathbf{0}}$
multi	Airy $_{\mathbf{2}}$	Airy $_{\mathbf{1}}$	Airy $_{\mathbf{0}}(?)$

2000 Baik Rains GOE TW

2000 Baik Rains, Prähofer Ferrari Spohn $\boldsymbol{F}_{\mathbf{0}}$
2001 Prähofer Spohn, Johansson Airy ${ }_{2}$
2005 Borodin Ferrari Prähofer S Airy ${ }_{1}$
2009 Baik Ferrari Péché Airyo(?)

3. Experiments by liquid crystal turbulence

2010-2012 Takeuchi Sano (see arXiv:1203.2530)

Figure 2 |Family-Vicsek scaling. a,b, Interface width $w(l, t)$ against the length scale l at different times t for the circular (a) and flat (b) interfaces. The four data correspond, from bottom to top, to $t=2.0 \mathrm{~s}, 4.0 \mathrm{~s}, 12.0 \mathrm{~s}$ and 30.0 s for the panel a and to $t=4.0 \mathrm{~s}, 10.0 \mathrm{~s}, 25.0 \mathrm{~s}$ and 60.0 s for the panel b . The insets show the same data with the rescaled axes. c , Growth of the overall width $W(t) \equiv \sqrt{\left\langle[h(x, t)-\langle h\rangle]^{2}\right\rangle}$. The dashed lines are guides for the eyes showing the exponent values of the KPZ class.

Fluctuations in experiments

Airy ${ }_{1,2}$
$\operatorname{Max}\left[\right.$ Airy $\left._{2}-x^{2}\right]$

Challenges for us: time correlation, persistence...

4. The narrow wedge KPZ equation

2010 Sasamoto Spohn, Amir Corwin Quastel

- Narrow wedge initial condition
- Based on (i) the fact that the weakly ASEP is KPZ equation (1997 Bertini Giacomin) and (ii) a formula for step ASEP by 2009 Tracy Widom
- In the book by Barabási Stanley [1995], they write "the KPZ equation cannot be solved in closed form"

Before this

2009 Balaźs, Quastel, and Seppäläinen

The $1 / 3$ exponent for the stationary case

Narrow wedge initial condition

We consider the initial condition, $Z(x, 0)=\boldsymbol{\delta}(x)$.
This corresponds to the droplet growth with the following narrow wedge initial conditions:

$$
h(x, 0)=-|x| / \delta, \quad \delta \ll 1
$$

For finite \boldsymbol{t}, the macroscopic shape is

$$
h(x, t)= \begin{cases}-x^{2} / 2 t & \text { for }|x| \leq t / \delta \\ \left(1 / 2 \delta^{2}\right) t-|x| / \delta & \text { for }|x|>t / \delta\end{cases}
$$

Distribution

$$
h(x, t)=-x^{2} / 2 t-\frac{1}{12} \gamma_{t}^{3}+\gamma_{t} \xi_{t}
$$

where $\gamma_{t}=(t / 2)^{1 / 3}$.
The distribution function of ξ_{t}

$$
\begin{aligned}
& \qquad \boldsymbol{F}_{t}(s)=\mathbb{P}\left[\xi_{t} \leq s\right]=1-\int_{-\infty}^{\infty} \exp \left[-\mathrm{e}^{\gamma_{t}(s-u)}\right] \\
& \quad \times\left(\operatorname{det}\left(1-\boldsymbol{P}_{u}\left(\boldsymbol{B}_{t}-\boldsymbol{P}_{\mathrm{Ai}}\right) \boldsymbol{P}_{u}\right)-\operatorname{det}\left(1-\boldsymbol{P}_{u} \boldsymbol{B}_{t} \boldsymbol{P}_{u}\right)\right) \mathrm{d} \boldsymbol{u} \\
& \text { where } \boldsymbol{P}_{\mathrm{Ai}}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{Ai}(\boldsymbol{x}) \operatorname{Ai}(\boldsymbol{y})
\end{aligned}
$$

$\boldsymbol{P}_{\boldsymbol{u}}$ is the projection onto $[\boldsymbol{u}, \infty)$ and the kernel $\boldsymbol{B}_{\boldsymbol{t}}$ is

$$
\begin{aligned}
& B_{t}(x, y)=K_{\mathrm{Ai}}(x, y)+\int_{0}^{\infty} \mathrm{d} \lambda\left(\mathrm{e}^{\gamma_{t} \lambda}-1\right)^{-1} \\
& \quad \times(\operatorname{Ai}(x+\lambda) \operatorname{Ai}(y+\lambda)-\operatorname{Ai}(x-\lambda) \operatorname{Ai}(y-\lambda))
\end{aligned}
$$

Developments(Not all!)

- Structural

2010 O'Connell A directed polymer model related to q-Toda
2011 COSZ Tropical RSK for inverse gamma polymer
2011 Borodin Corwin Macdonald process

- Probabilistic
- Generalizations by replica method

2010 Calabrese Le Doussal Rosso, Dotsenko Narrow wedge
2010 Prolhac Spohn Multi-point distributions
2011 Calabrese Le Dossal Flat
2011 Imamura Sasamoto Half-BM and stationary

5. Stationary case

- Narrow wedge is technically the simplest (transient).
- Flat case is a well-studied case in surface growth (transient)
- Stationary case is important for stochastic process and nonequilibrium statistical mechanics
- Two-point correlation function
- Experiments: Scattering, direct observation
- A lot of approximate methods (renormalization, mode-coupling, etc.) have been applied to this case.
- Nonequilibrium steady state(NESS): No principle. Dynamics is even harder.

Modification of initial condition

Original: two sided BM

$$
h(x, 0)= \begin{cases}B_{-}(-x), & x<0 \\ B_{+}(x), & x>0\end{cases}
$$

where $\boldsymbol{B}_{ \pm}(\boldsymbol{x})$ are two independent standard BMs is stationary.
Modification: we consider a generalized initial condition

$$
h(x, 0)= \begin{cases}\tilde{B}(-x)+v_{-} x, & x<0 \\ B(x)-v_{+} x, & x>0\end{cases}
$$

where $\boldsymbol{B}(\boldsymbol{x}), \tilde{\boldsymbol{B}}(\boldsymbol{x})$ are independent standard BMs and $\boldsymbol{v}_{ \pm}$are the strength of the drifts.

Result

For the generalized initial condition with $\boldsymbol{v}_{ \pm}$

$$
\begin{aligned}
& F_{v_{ \pm}, t}(s):=\operatorname{Prob}\left[h(x, t)+\gamma_{t}^{3} / 12 \leq \gamma_{t} s\right] \\
& =\frac{\Gamma\left(v_{+}+v_{-}\right)}{\Gamma\left(v_{+}+v_{-}+\gamma_{t}^{-1} d / d s\right)}\left[1-\int_{-\infty}^{\infty} d u e^{-e^{\gamma_{t}(s-u)}} \nu_{v_{ \pm}, t}(u)\right]
\end{aligned}
$$

Here $\boldsymbol{\nu}_{\boldsymbol{v}_{ \pm}, t}(\boldsymbol{u})$ is expressed as a difference of two Fredholm determinants,

$$
\nu_{v_{ \pm}, t}(u)=\operatorname{det}\left(1-P_{u}\left(B_{t}^{\Gamma}-P_{A_{\mathrm{i}}}^{\Gamma}\right) P_{u}\right)-\operatorname{det}\left(1-P_{u} B_{t}^{\Gamma} P_{u}\right),
$$

where \boldsymbol{P}_{s} represents the projection onto (s, ∞),

$$
P_{A \mathrm{~A}}^{\Gamma}\left(\xi_{1}, \xi_{2}\right)=\mathrm{Ai}_{\Gamma}^{\Gamma}\left(\xi_{1}, \frac{1}{\gamma_{t}}, v_{-}, v_{+}\right) \mathrm{Ai}_{\Gamma}^{\Gamma}\left(\xi_{2}, \frac{1}{\gamma_{t}}, v_{+}, v_{-}\right)
$$

$$
\begin{aligned}
B_{t}^{\Gamma}\left(\xi_{1}, \xi_{2}\right)= & \int_{-\infty}^{\infty} d y \frac{1}{1-e^{-\gamma_{t} y}} \mathrm{Ai}_{\Gamma}^{\Gamma}\left(\xi_{1}+y, \frac{1}{\gamma_{t}}, v_{-}, v_{+}\right) \\
& \times \mathrm{Ai}_{\Gamma}^{\Gamma}\left(\xi_{2}+y, \frac{1}{\gamma_{t}}, v_{+}, v_{-}\right)
\end{aligned}
$$

and

$$
A i_{\Gamma}^{\Gamma}(a, b, c, d)=\frac{1}{2 \pi} \int_{\Gamma_{i \frac{d}{b}}} d z e^{i z a+i \frac{z^{3}}{3}} \frac{\Gamma(i b z+d)}{\Gamma(-i b z+c)}
$$

where $\boldsymbol{\Gamma}_{\boldsymbol{z}_{\boldsymbol{p}}}$ represents the contour from $-\infty$ to ∞ and, along the way, passing below the pole at $\boldsymbol{z}=\boldsymbol{i d} / \boldsymbol{b}$.

Height distribution for the stationary KPZ equation

$$
F_{0, t}(s)=\frac{1}{\Gamma\left(1+\gamma_{t}^{-1} d / d s\right)} \int_{-\infty}^{\infty} d u \gamma_{t} e^{\gamma_{t}(s-u)+e^{-\gamma_{t}(s-u)}} \nu_{0, t}(u)
$$

where $\boldsymbol{\nu}_{0, t}(\boldsymbol{u})$ is obtained from $\boldsymbol{\nu}_{\boldsymbol{v}_{ \pm}, t}(\boldsymbol{u})$ by taking $\boldsymbol{v}_{ \pm} \rightarrow \mathbf{0}$ limit.

Figure 1: Stationary height distributions for the KPZ equation for $\gamma_{t}=\mathbf{1}$ case. The solid curve is $\boldsymbol{F}_{\mathbf{0}}$.

Stationary 2pt correlation function

$$
\begin{gathered}
C(x, t)=\left\langle(h(x, t)-\langle h(x, t)\rangle)^{2}\right\rangle \\
g_{t}(y)=(2 t)^{-2 / 3} C\left((2 t)^{2 / 3} y, t\right)
\end{gathered}
$$

Figure 2: Stationary 2 pt correlation function $\boldsymbol{g}_{t}^{\prime \prime}(\boldsymbol{y})$ for $\gamma_{t}=\mathbf{1}$. The solid curve is the corresponding quantity in the scaling limit $g^{\prime \prime}(y)$.

Derivation

Cole-Hopf transformation

1997 Bertini and Giacomin

$$
h(x, t)=\log (Z(x, t))
$$

$Z(x, t)$ is the solution of the stochastic heat equation,

$$
\frac{\partial Z(x, t)}{\partial t}=\frac{1}{2} \frac{\partial^{2} Z(x, t)}{\partial x^{2}}+\eta(x, t) Z(x, t) .
$$

and can be considered as directed polymer in random potential $\boldsymbol{\eta}$.

Feynmann-Kac and Generating function

Feynmann-Kac expression for the partition function,

$$
Z(x, t)=\mathbb{E}_{x}\left(\exp \left[\int_{0}^{t} \eta(b(s), t-s) d s\right] Z(b(t), 0)\right)
$$

We consider the N th replica partition function $\left\langle Z^{N}(x, t)\right\rangle$ and compute their generating function $G_{t}(s)$ defined as

$$
G_{t}(s)=\sum_{N=0}^{\infty} \frac{\left(-e^{-\gamma_{t} s}\right)^{N}}{N!}\left\langle Z^{N}(0, t)\right\rangle e^{N \frac{\gamma_{t}^{3}}{12}}
$$

with $\gamma_{t}=(t / 2)^{1 / 3}$.
Apparently the series is divergent but should be a "shadow" of a rigorous version at a higher level.

Replica method

For a system with randomness, e.g. for random Ising model,

$$
H=\sum_{\langle i j\rangle} J_{i j} s_{i} s_{j}
$$

where \boldsymbol{i} is site, $\boldsymbol{s}_{\boldsymbol{i}}= \pm \mathbf{1}$ is Ising spin, $\boldsymbol{J}_{i j}$ is iid random variable(e.g. Bernoulli), we are interested in the averaged free energy $\langle\log Z\rangle, Z=\sum_{s_{i}= \pm 1} e^{-\boldsymbol{H}}$.
In replica method, one often resorts to the following identity,

$$
\langle\log Z\rangle=\lim _{n \rightarrow 0} \frac{\left\langle Z^{n}\right\rangle-1}{n},
$$

which needs an analytic continuation wrt \boldsymbol{n}.

δ-Bose gas

Taking the Gaussian average over the noise $\boldsymbol{\eta}$, one finds that the replica partition function can be written as

$$
\begin{aligned}
&\left\langle Z^{N}(x, t)\right\rangle \\
&= \prod_{j=1}^{N} \int_{-\infty}^{\infty} d y_{j} \int_{x_{j}(0)=y_{j}}^{x_{j}(t)=x} D\left[x_{j}(\tau)\right] \exp \left[-\int_{0}^{t} d \tau\left(\sum_{j=1}^{N} \frac{1}{2}\left(\frac{d x}{d \tau}\right)^{2}\right.\right. \\
&\left.\left.-\sum_{j \neq k=1}^{N} \delta\left(x_{j}(\tau)-x_{k}(\tau)\right)\right)\right] \times\left\langle\exp \left(\sum_{k=1}^{N} h\left(y_{k}, 0\right)\right)\right\rangle \\
&=\langle x| e^{-H_{N} t}|\Phi\rangle .
\end{aligned}
$$

$\boldsymbol{H}_{\boldsymbol{N}}$ is the Hamiltonian of the $\boldsymbol{\delta}$-Bose gas,

$$
H_{N}=-\frac{1}{2} \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}-\frac{1}{2} \sum_{j \neq k}^{N} \delta\left(x_{j}-x_{k}\right)
$$

$|\Phi\rangle$ represents the state corresponding to the initial condition. We compute $\left\langle\boldsymbol{Z}^{N}(x, t)\right\rangle$ by expanding in terms of the eigenstates of H_{N},

$$
\left\langle Z(x, t)^{N}\right\rangle=\sum_{z}\left\langle x \mid \Psi_{z}\right\rangle\left\langle\Psi_{z} \mid \Phi\right\rangle e^{-E_{z} t}
$$

where $\boldsymbol{E}_{\boldsymbol{z}}$ and $\left|\boldsymbol{\Psi}_{z}\right\rangle$ are the eigenvalue and the eigenfunction of $\boldsymbol{H}_{\boldsymbol{N}}: \boldsymbol{H}_{\boldsymbol{N}}\left|\Psi_{z}\right\rangle=\boldsymbol{E}_{z}\left|\Psi_{z}\right\rangle$.
[Old fashoned...probably possible to do like BC.]

The state $|\boldsymbol{\Phi}\rangle$ can be calculated because the initial condition is Gaussian. For the region where $x_{1}<\ldots<x_{l}<0<x_{l+1}<\ldots<x_{N}, 1 \leq l \leq N$ it is given by

$$
\begin{aligned}
& \left\langle x_{1}, \cdots, x_{N} \mid \Phi\right\rangle=e^{v_{-} \sum_{j=1}^{l} x_{j}-v_{+} \sum_{j=l+1}^{N} x_{j}} \\
& \quad \times \prod_{j=1}^{l} e^{\frac{1}{2}(2 l-2 j+1) x_{j}} \prod_{j=1}^{N-l} e^{\frac{1}{2}(N-l-2 j+1) x_{l+j}}
\end{aligned}
$$

We symmetrize wrt x_{1}, \ldots, x_{N}.

Bethe states

By the Bethe ansatz, the eigenfunction is given as

$$
\begin{aligned}
& \left\langle x_{1}, \cdots, x_{N} \mid \Psi_{z}\right\rangle=C_{z} \sum_{P \in S_{N}} \operatorname{sgn} P \\
& \times \prod_{1 \leq j<k \leq N}\left(z_{P(j)}-z_{P(k)}+i \operatorname{sgn}\left(x_{j}-x_{k}\right)\right) \exp \left(i \sum_{l=1}^{N} z_{P(l)} x_{l}\right)
\end{aligned}
$$

N momenta $z_{j}(1 \leq j \leq N)$ are parametrized as

$$
z_{j}=q_{\alpha}-\frac{i}{2}\left(n_{\alpha}+1-2 r_{\alpha}\right), \text { for } j=\sum_{\beta=1}^{\alpha-1} n_{\beta}+r_{\alpha}
$$

($\mathbf{1} \leq \boldsymbol{\alpha} \leq M$ and $1 \leq r_{\alpha} \leq \boldsymbol{n}_{\alpha}$). They are divided into \boldsymbol{M} groups where $1 \leq M \leq N$ and the $\boldsymbol{\alpha}$ th group consists of $\boldsymbol{n}_{\boldsymbol{\alpha}}$ quasimomenta $\boldsymbol{z}_{j}^{\prime} s$ which shares the common real part $\boldsymbol{q}_{\boldsymbol{\alpha}}$.

$$
\begin{aligned}
C_{z} & =\left(\frac{\prod_{\alpha=1}^{M} n_{\alpha}}{N!} \prod_{1 \leq j<k \leq N} \frac{1}{\left|z_{j}-z_{k}-i\right|^{2}}\right)^{1 / 2} \\
E_{z} & =\frac{1}{2} \sum_{j=1}^{N} z_{j}^{2}=\frac{1}{2} \sum_{\alpha=1}^{M} n_{\alpha} q_{\alpha}^{2}-\frac{1}{24} \sum_{\alpha=1}^{M}\left(n_{\alpha}^{3}-n_{\alpha}\right)
\end{aligned}
$$

Expanding the moment in terms of the Bethe states, we have

$$
\begin{aligned}
& \left\langle Z^{N}(x, t)\right\rangle \\
& =\sum_{M=1}^{N} \frac{N!}{M!} \prod_{j=1}^{N} \int_{-\infty}^{\infty} d y_{j}\left(\int_{-\infty}^{\infty} \prod_{\alpha=1}^{M} \frac{d q_{\alpha}}{2 \pi} \sum_{n_{\alpha}=1}^{\infty}\right) \delta_{\sum_{\beta=1}^{M} n_{\beta}, N} \\
& \quad \times e^{-E_{z} t}\left\langle x \mid \Psi_{z}\right\rangle\left\langle\Psi_{z} \mid y_{1}, \cdots, y_{N}\right\rangle\left\langle y_{1}, \cdots, y_{N} \mid \Phi\right\rangle
\end{aligned}
$$

The completeness of Bethe states is known (e.g. Prolhac Spohn).

We see

$$
\begin{aligned}
& \left\langle\Psi_{z} \mid \Phi\right\rangle=N!C_{z} \sum_{P \in S_{N}} \operatorname{sgn} P \prod_{1 \leq j<k \leq N}\left(z_{P(j)}^{*}-z_{P(k)}^{*}+i\right) \\
& \quad \times \sum_{l=0}^{N}(-1)^{l} \prod_{m=1}^{l} \frac{1}{\sum_{j=1}^{m}\left(-i z_{P_{j}}^{*}+v_{-}\right)-m^{2} / 2} \\
& \quad \times \prod_{m=1}^{N-l} \frac{1}{\sum_{j=N-m+1}^{N}\left(-i z_{P_{j}}^{*}-v_{+}\right)+m^{2} / 2} .
\end{aligned}
$$

Combinatorial identities

(1)

$$
\begin{aligned}
& \sum_{P \in S_{N}} \operatorname{sgn} P \prod_{1 \leq j<k \leq N}\left(w_{P(j)}-w_{P(k)}+i f(j, k)\right) \\
& =N!\prod_{1 \leq j<k \leq N}\left(w_{j}-w_{k}\right)
\end{aligned}
$$

(2)For any complex numbers $\boldsymbol{w}_{\boldsymbol{j}}(\mathbf{1} \leq \boldsymbol{j} \leq N)$ and \boldsymbol{a},

$$
\begin{aligned}
& \sum_{P \in S_{N}} \operatorname{sgn} P \prod_{1 \leq j<k \leq N}\left(w_{P(j)}-w_{P(k)}+a\right) \\
& \times \sum_{l=0}^{N}(-1)^{l} \prod_{m=1}^{l} \frac{1}{\sum_{j=1}^{m}\left(w_{P(j)}+v_{-}\right)-m^{2} a / 2} \\
& \times \prod_{m=1}^{N-l} \frac{1}{\sum_{j=N-m+1}^{N}\left(w_{P j}-v_{+}\right)+m^{2} a / 2} \\
& =\frac{\prod_{m=1}^{N}\left(v_{+}+v_{-}-a m\right) \prod_{1 \leq j<k \leq N}\left(w_{j}-w_{k}\right)}{\prod_{m=1}^{N}\left(w_{m}+v_{-}-a / 2\right)\left(w_{m}-v_{+}+a / 2\right)}
\end{aligned}
$$

A similar identity in the context of ASEP has not been found.

Generating function

$G_{t}(s)=\sum_{N=0}^{\infty} \prod_{l=1}^{N}\left(v_{+}+v_{-}-l\right) \sum_{M=1}^{N} \frac{\left(-e^{-\gamma_{t} s}\right)^{N}}{M!}$
$\prod_{\alpha=1}^{M}\left(\int_{0}^{\infty} d \omega_{\alpha} \sum_{n_{\alpha}=1}^{\infty}\right) \delta_{\sum_{\beta=1}^{M} n_{\beta}, N}$
$\operatorname{det}\left(\int_{C} \frac{d q}{\pi} \frac{e^{-\gamma_{t}^{3} n_{j} q^{2}+\frac{\gamma_{t}^{3}}{12} n_{j}^{3}-n_{j}\left(\omega_{j}+\omega_{k}\right)-2 i q\left(\omega_{j}-\omega_{k}\right)}}{\prod_{r=1}^{n_{j}}\left(-i q+v_{-}+\frac{1}{2}\left(n_{j}-2 r\right)\right)\left(i q+v_{+}+\frac{1}{2}\left(n_{j}-2 r\right)\right)}\right)$
where the contour is $C=\mathbb{R}-\boldsymbol{i c}$ with \boldsymbol{c} taken large enough.

This generating function itself is not a Fredholm determinant due to the novel factor $\prod_{l=1}^{N}\left(v_{+}+v_{-}-l\right)$.

We consider a further generalized initial condition in which the initial overall height χ obeys a certain probability distribution.

$$
\tilde{h}=h+\chi
$$

where \boldsymbol{h} is the original height for which $\boldsymbol{h}(\mathbf{0}, \mathbf{0})=\mathbf{0}$. The random variable $\boldsymbol{\chi}$ is taken to be independent of \boldsymbol{h}.

Moments

$$
\left\langle e^{N \tilde{h}}\right\rangle=\left\langle e^{N h}\right\rangle\left\langle e^{N \chi}\right\rangle
$$

We postulate that χ is distributed as the inverse gamma distribution with parameter $v_{+}+v_{-}$, i.e., if $1 / \chi$ obeys the gamma distribution with the same parameter. Its N th moment is $1 / \prod_{l=1}^{N}\left(v_{+}+v_{-}-l\right)$ which compensates the extra factor.

Distributions

$$
\boldsymbol{F}(s)=\frac{1}{\kappa\left(\gamma_{t}^{-1} \frac{d}{d s}\right)} \tilde{\boldsymbol{F}}(s)
$$

where $\tilde{\boldsymbol{F}}(s)=\operatorname{Prob}\left[\tilde{\boldsymbol{h}}(\mathbf{0}, \boldsymbol{t}) \leq \gamma_{t} s\right]$,
$\boldsymbol{F}(s)=\operatorname{Prob}\left[\boldsymbol{h}(\mathbf{0}, \boldsymbol{t}) \leq \gamma_{t} s\right]$ and $\boldsymbol{\kappa}$ is the Laplace transform of the pdf of χ. For the inverse gamma distribution, $\kappa(\xi)=\Gamma(v+\xi) / \Gamma(v)$, by which we get the formula for the generating function.

Summary

- Explicit formulas for the stationary situation of the KPZ equation by replica method.

Height distribution and two point correlation function.

- Questions:

A rigorous version.
Other initial and boundary conditions?

- See also the poster by Imamura.

Random matrix theory

GUE (Gaussian Unitary Ensemble) hermitian matrices

$$
A=\left[\begin{array}{cccc}
u_{11} & u_{12}+i v_{12} & \cdots & u_{1 N}+i v_{1 N} \\
u_{12}-i v_{12} & u_{22} & \cdots & u_{2 N}+i v_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1 N}-i v_{1 N} & u_{2 N}-i v_{2 N} & \cdots & u_{N N}
\end{array}\right]
$$

$u_{j j} \sim N(0,1 / 2) \quad u_{j k}, v_{j k} \sim N(0,1 / 4)$
The largest eigenvalue $x_{\text {max }} \cdots$ GUE TW distribution
GOE (Gaussian Orthogonal Ensemble) real symmetric matrices
... GOE TW distribution

Connection to random matrix: Johansson

TASEP(Totally ASEP, hop only in one direction)
Step initial condition ($\boldsymbol{t}=\mathbf{0}$)

$N(t)$: Number of particles which crossed $(0,1)$ up to time t
LUE formula
$\mathbb{P}[N(t) \geq N]=\frac{1}{Z_{N}} \int_{[0, t]^{N}} \prod_{i<j}\left(x_{i}-x_{j}\right)^{2} \prod_{i} e^{-x_{i}} d x_{1} \cdots d x_{N}$

