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1. Introduction: 1D surface growth

An example: ballistic deposition model
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........................................

3 snapshots for flat substrate
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Kinetic roughening




Motivations

e Ubiquitous and interesting physical phenomenon in itself
e Beautiful hidden mathematical structure (e.g. Macdonald)

e Two aspects from non-eq stat. mech: dynamic and stationary
Kinetic roughening (dynamical)
Nonequilibrium steady state (NESS)

Nonlinearity + Noise




Scaling

h(x,t): surface height at position & and at time ¢

e In stationary state, height

looks like a random walk.

_ ~ 1/2
h(z,t) — h(0,t) ~ O(x"/*) O(t1/3)
for large x
c
o h(xz,t) ~ vt + O(t'/?)
for large t
o h(at?/3,t), h(bt?/3,t) has X

nontrivial correlation.



Kardar-Parisi-Zhang(KPZ) equation

Oith(x,t) = %A(@mh(az, t))? + vd2h(x,t) + v Dn(z,t)
where 77 is the Gaussian noise with mean 0 and covariance
(n(z, t)n(z’,t')) = 6(x — 2')d(t — ')

e [he Brownian motion is stationary.

e By a dynamical RG analysis, one can see the KPZ equation

exhibit the correct scaling. — KP/Z universality class



1/2
e By z — o?x, t — 2ratt, h—>%h, a:(;l‘jm,we

can and will do set v = %,)\ =D =1.
e Noisy Burgers equation: For ’li(a?,t) = O, h(x,t),
Oty = Eaiu + 58;,,’11,2 + Ozm(x, t)

e KPZ equation is not really wel-defined.

We consider the Cole-Hopf solution,
h(xz,t) = log (Z(x,t))
where Z(x,t) is the solution of the stochastic heat equation,

10%Z(x,t
dZ(x,t) = 5 8(;; )dt—I—Z(w,t)dB(ac,t).

where B(x,t) is the cylindrical Brownian motion.




2. Scaling limit results from discrete models

An example: ASEP(asymmetric simple exclusion process)

q P q P q
- {0k ‘00l 1@

Bernoulli measure is stationary.

Mapping to surface growth




Surface growth and 2 initial conditions besides stationary

Flat

Wedge /\/\/\/\

Step Alternating

Integrated current N (x,t) in ASEP < Height h(x,t) in surface
growth



Current distributions for ASEP with wedge initial conditions
(TASEP) (ASEP)

N(0,t/(g — p)) ~ 5t — 27 /3¢ 3¢y

Here N(x = 0,t) is the integrated current of ASEP at the origin
and &tw obeys the GUE Tracy-Widom distributions;

FTw(S) = ]P)[éTW < S] = det(l — PSKAiPS)

wher Ps: projection onto the interval [s, c0) and

K Aj; is the Airy kernel 02

& @)

Kai(z,y) :/o dAAi(x + N)Ai(y + ) © _Sz



Other cases

wedge flat stationary
1pt | GUE TW | GOE TW Fy
multi Airyo Airyq Airyo(?)
GOE TW
Fo
Airys
Airyq
Airyo(?)
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3. Experiments by liquid crystal turbulence

2010-2012 Takeuchi Sano (see arXiv:1203.2530)
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Figure 2 | Family-Vicsek scaling. a,b, Interface width w{l, t) against the length scale I at different times t for the circular (a) and flat (b} interfaces.
The four data correspond, from bottom to top, to t = 2.0 5,4.0 5, 12.0 sand 30.0 s for the panel aand to ¢ = 4.0 5, 10.0 5, 25.0 sand 60.0 s for the panel b.

The insets show the same data with the rescaled axes. ¢, Growth of the overall width W(t)=/ ([h(z,t] - {h}lz} The dashed lines are guides for the eyes
showing the exponent values of the KPZ class.
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Fluctuations in experiments

Circular, Airy,
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rescaled height g

Challenges for us: time correlation, persistence...
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4. The narrow wedge KPZ equation

e Narrow wedge initial condition

e Based on (i) the fact that the weakly ASEP is KPZ equation
( ) and (ii) a formula for step ASEP by

e In the book by [1995], they write "the KPZ
equation cannot be solved in closed form”

Before this

The 1/3 exponent for the stationary case
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Narrow wedge initial condition

We consider the initial condition, Z(x,0) = d(x).

This corresponds to the droplet growth with the following narrow

wedge initial conditions:

h(z,0) = —|z|/5, &< 1

For finite t, the macroscopic shape is

)
—x? /2t for || < t/4,

h(z,t) = «
\(1/262)15 — |z|/8 for |x| > t/6
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4 h(x.t)
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Distribution

h(x,t) = —x2/2t — 1—12’)’5’ + Ye&i
where v¢ = (t/2)1/3.

The distribution function of &;

& @)

Fi(s) =Pl& < s] =1 — /_ exp | — e'ﬁ(s_“)]

X(det(l — P, (Bt — Pa;)P,) — det(1 — PuBtPu))du

where Pai(x,y) = Ai(x)Ai(y) .
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P, is the projection onto [u, c0) and the kernel By is

Bi(z,y) = Kai(m,y) + / dA(e™> — 1)1
0

x (Ai(z 4+ A)Ai(y + A) — Ai(z — M) Ai(y — N)).
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Developments(Not all!)

e Structural
A directed polymer model related to g-Toda
Tropical RSK for inverse gamma polymer

Macdonald process
e Probabilistic

e Generalizations by replica method
Narrow wedge
Multi-point distributions
Flat
Half-BM and stationary
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5. Stationary case

e Narrow wedge is technically the simplest (transient).
e Flat case is a well-studied case in surface growth (transient)
e Stationary case is important for stochastic process and
nonequilibrium statistical mechanics
— Two-point correlation function
— Experiments: Scattering, direct observation

— A lot of approximate methods (renormalization,

mode-coupling, etc.) have been applied to this case.

— Nonequilibrium steady state(NESS): No principle.
Dynamics is even harder.
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Modification of initial condition

Original: two sided BM

)
B_(—x), =<0,

h(x,0) = <
\B—I-(w)? x > 0,

where By (x) are two independent standard BMs is stationary.

Modification: we consider a generalized initial condition

( ~
B(— _x, 0,
h(z,0) = 4 (—x) +v_x, =<

\B(:c) — vy, x > 0,

where B(x), B(x) are independent standard BMs and v are
the strength of the drifts.

20



Result

For the generalized initial condition with v+
F,. t(s) := Prob [h(z,t) + v} /12 < 5]

—_ I‘(,U+ _I_ ’U_) [1 /00 d —ert(s—u)
— — — ue
I'(vy +v— +~, "d/ds) —oo

Here v, (w) is expressed as a difference of two Fredholm

szl:,t(u’)

determinants,
Vo, t(u) = det (1 — P, (B} — P,)P,) —det (1 — P,B/P,),

where Ps represents the projection onto (s, 00),

. 1 _ 1
P,AI\;(glv 52) — A'F (619 73”—9”4—) A'F (529 77”4—7”—)
t t
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oo

1
B{(sla 52) — / dy ! Ai; (51 + v, 7’U—9’U—I—)

oo 1 —e Y Yt

T 1
XA'r fz—l—’y,—,’l)_|_,0_ 9

Yt

and

1 . .28 T (2b d
AL (a, b, c,d) = — / dzeiatiy L0z +d)

21 Jr I' (—ibz + ¢)
b

where I', | represents the contour from —oo to oo and, along the

way, passing below the pole at z = 2d/b.

22



Height distribution for the stationary KPZ equation

1 oo
T'(1+~; 'd/ds) /-

where v ¢(u) is obtained from v, ;(u) by taking v+ — 0 limit.

Fo,t(S) =

0.4¢
03f
02f

0.1f

0.0k

Figure 1: Stationary height distributions for the KPZ equation for

v+ = 1 case. The solid curve is Fy.
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Stationary 2pt correlation function

C(z,t) = ((h(z,t) — <h’($9t)>)2>
g (y) = (20)72/3C ((20)*/%y, ¢)

20f V=1 - - -

0s5f

oob— o v TS -

Figure 2: Stationary 2pt correlation function g;’(y) for v+ = 1.

The solid curve is the corresponding quantity in the scaling limit

9" (y).
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Derivation

Cole-Hopf transformation

h(z,t) = log (Z(x,t))
Z(x,t) is the solution of the stochastic heat equation,

0Z(x,t) 108°Z(x,t)
ot 2 dx2

and can be considered as directed polymer in random potential 7.

+ n(z,t)Z(x, ).
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Feynmann-Kac and Generating function

Feynmann-Kac expression for the partition function,
t
Z(x,t) = E, (exp [/ n (b(s),t — s) ds] Z(b(t), O))
0

We consider the N'th replica partition function {Z (x,t)) and

compute their generating function G¢(s) defined as

X (—e S N V3
Gi(s) = ) _ | N L (2%, 1)) e
N=0 |

with v = (t/2)1/3.
Apparently the series is divergent but should be a "shadow” of a

rigorous version at a higher level.
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Replica method

For a system with randomness, e.g. for random Ising model,
H = Z JijSiSj
(5)
where 7 is site, s; = =1 is Ising spin, J;; is iid random
variable(e.g. Bernoulli), we are interested in the averaged free

energy (log Z), Z = >, . _ 1, e H.

In replica method, one often resorts to the following identity,

(log Z) = lim (Z7%) = 1,

n—0 n

which needs an analytic continuation wrt n.
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0-Bose gas

Taking the Gaussian average over the noise i, one finds that the

replica partition function can be written as

(ZN (x,t))
N 0o xj(t)== I t N
= H/_ dyj/'(o): Dlz;j(r)] exp —/O dr | ;(
N | _ N
— Y b(zi(r) —a(7)) | | X <eXp (Z h(yk,0)>>
jAk=1 | k=1

= (z|e” "N ).
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H p; is the Hamiltonian of the d-Bose gas,

1N g2 1 Y
Hy=—2) ——— 5 0@ — =),
j=1 9%; ik

|®) represents the state corresponding to the initial condition. We
compute (ZN (x,t)) by expanding in terms of the eigenstates of

Hn,
(Z(x,t)N) = Z<{B|\Ifz> (W, |®)e F=t

where E, and |W,) are the eigenvalue and the eigenfunction of
HNZ HNl\Ifz> = Ezl\Ilz>.

[Old fashoned...probably possible to do like BC.]
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The state |®) can be calculated because the initial condition is
Gaussian. For the region where

1 <...<<0<x11<...<2N, 1 SIS Nitis
given by

(T1,+++ ,ZzN|P) = e~ Yj=1 @i —v+ jli4 @

l N-—1
> H e%(zl—zj+1)mj H e%(N—l—zj-|-1)ml+j
71=1 71=1

We symmetrize wrt 1,...,TN.
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Bethe states
By the Bethe ansatz, the eigenfunction is given as

<w19' . 933N|\I'z> = C, Z sgnP
PeSn

X H (ZP(_’]) — Zp(k) T ZSgn(fL’g — ka) exp < Z ZP(l)CW)

1<j<k<N

N momenta z; (1 < 3 < NN) are parametrized as

a—1

zj =q ——(na—|—1—2ra), for]—z'ng—l—'ra
B=1
(1<a< Mandl<7ry <ng). They are divided into M
groups where 1 < M < N and the ath group consists of ng

’s which shares the common real part q..

guasimomenta Z;
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1/2

1<j<k<N '7J
M M
1

N
Yo=Y nadd = oo Y (1~ na).

a=1

¢, — [ Haz17e 1l !
© N! |z; — zp — 2|2
1
2

Expanding the moment in terms of the Bethe states, we have

(ZN (, 1))
N a1t N oo o M dge, &
= MZ: M1 1} /_oo W (/_oo 1] on Z;) OS M mp,N

The completeness of Bethe states is known ( ).
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We see

(I,|®) = N!C, Z sgn P H (z}';(j) — Zpw) t z)

PeSN 1<j<k<N
>< z< 1) H .
23 1(_ZZP +v_) —m?/2
N —1 1
X

N : y
m=1 Zj:N—m+1(_ZZ}ij —vy) +m?2/2
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Combinatorial identities

(1)
Z sgnP H (wp)y — wpr) + tf (4, k))
PeSN 1<j<k<N
= IN! H (wj — ’wk)
1<j<k<N

34



2)For any complex numbers w; (1 < 7 < IN) and a,
J

> senP || (wpy) —wpw) + a)
PeSN 1<j<k<N

: 1

N
PRV
X ;}( 1) H ZTzl(wP(j) +v_) — m2a/2

m=1

N -1 1

N
m=1 Zj:N_m+1(ij —vy) + mPa/2

[ (o4 +v— = am) [T o5 cpen (w5 — wk)
[N _ i (W +v— — a/2) (W — vy + a/2)

X

A similar identity in the context of ASEP has not been found.
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Generating function

—e ’ytS)N

Gils) = 3 H(v+ +v_ —1) Z

N=01=1
M oo oo
a=1 Na=

dq e_'yf'"’jqz"‘g"? —nj(wjtwr)—2iq(w; —wk)
det /

C
(—zq Tu—+ (ng —2r))(iq + vy + - (n‘7 — 27))
\ r=1 )

where the contour is C' = R — 2c with ¢ taken large enough.
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This generating function itself is not a Fredholm determinant due
to the novel factor Hl]i1(”+ +v_ —1).

We consider a further generalized initial condition in which the
initial overall height x obeys a certain probability distribution.

h=h+x

where h is the original height for which h(0,0) = 0. The
random variable x is taken to be independent of h.

Moments <€Nl~z> _ <€Nh><6NX>.
We postulate that x is distributed as the inverse gamma
distribution with parameter vy 4+ v_, i.e., if 1/x obeys the

gamma distribution with the same parameter. Its Nth moment is
1/ Hl]\;l(m_ + v_ — 1) which compensates the extra factor.
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Distributions

F(S) — ﬁ(s)v

k(Y g
where F'(s) = Prob[h(0,t) < ~;s],
F(s) = Prob[h(0,t) < ~¢s] and k is the Laplace transform of
the pdf of x. For the inverse gamma distribution,

k() = T'(v+ &)/T'(v), by which we get the formula for the
generating function.
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Summary

e Explicit formulas for the stationary situation of the KPZ

equation by replica method.

Height distribution and two point correlation function.

e Questions:
A rigorous version.

Other initial and boundary conditions?

e See also the poster by Imamura.
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Random matrix theory

GUE (Gaussian Unitary Ensemble) hermitian matrices

U711 U2 + 112 - UIN + UIN
U2 — 1V12 U2 cee UN + V2N
A =
UIN — TUIN UaN — TU2N  **° UNN

ujj ~ N(0,1/2) wjr,vjr ~ N(0,1/4)
The largest eigenvalue ©max +++ GUE TW distribution

GOE (Gaussian Orthogonal Ensemble) real symmetric matrices
-+« GOE TW distribution
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Connection to random matrix:

TASEP(Totally ASEP, hop only in one direction)
Step initial condition (¢ = 0)

-3 -2 -1 0 1 2 3

N (t): Number of particles which crossed (0,1) up to time ¢
LUE formula

1
PIN() > N] = /[0 @ e da - dax
U™ < i
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