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1. Introduction: 1D surface growth

An example: ballistic deposition model
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Motivations

• Ubiquitous and interesting physical phenomenon in itself

• Beautiful hidden mathematical structure (e.g. Macdonald)

• Two aspects from non-eq stat. mech: dynamic and stationary

Kinetic roughening (dynamical)

Nonequilibrium steady state (NESS)

Nonlinearity + Noise
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Scaling

h(x, t): surface height at position x and at time t

• In stationary state, height

looks like a random walk.

h(x, t) − h(0, t) ∼ O(x1/2)

for large x

• h(x, t) ∼ vt + O(t1/3)

for large t

• h(at2/3, t), h(bt2/3, t) has

nontrivial correlation.
x

h ↔
O(t2/3)

↕
O(t1/3)
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Kardar-Parisi-Zhang(KPZ) equation

1986 Kardar Parisi Zhang

∂th(x, t) = 1
2
λ(∂xh(x, t))

2 + ν∂2
xh(x, t) +

√
Dη(x, t)

where η is the Gaussian noise with mean 0 and covariance

⟨η(x, t)η(x′, t′)⟩ = δ(x − x′)δ(t − t′)

• The Brownian motion is stationary.

• By a dynamical RG analysis, one can see the KPZ equation

exhibit the correct scaling. → KPZ universality class
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• By x → α2x, t → 2να4t, h → λ
2ν

h, α = λ1/2

(2ν)3/2
, we

can and will do set ν = 1
2
, λ = D = 1.

• Noisy Burgers equation: For u(x, t) = ∂xh(x, t),

∂tu =
1

2
∂2
xu +

1

2
∂xu

2 + ∂xη(x, t)

• KPZ equation is not really wel-defined.

We consider the Cole-Hopf solution,

h(x, t) = log (Z(x, t))

where Z(x, t) is the solution of the stochastic heat equation,

dZ(x, t) =
1

2

∂2Z(x, t)

∂x2
dt + Z(x, t)dB(x, t).

where B(x, t) is the cylindrical Brownian motion.
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2. Scaling limit results from discrete models

An example: ASEP(asymmetric simple exclusion process)

q p q p q

Bernoulli measure is stationary.

Mapping to surface growth
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Surface growth and 2 initial conditions besides stationary

Step

Droplet

Wedge

↕ ↕

Alternating

Flat

↕ ↕

Integrated current N(x, t) in ASEP ⇔ Height h(x, t) in surface

growth
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Current distributions for ASEP with wedge initial conditions

2000 Johansson (TASEP) 2008 Tracy-Widom (ASEP)

N(0, t/(q − p)) ≃ 1
4
t − 2−4/3t1/3ξTW

Here N(x = 0, t) is the integrated current of ASEP at the origin

and ξTW obeys the GUE Tracy-Widom distributions;

FTW(s) = P[ξTW ≤ s] = det(1 − PsKAiPs)

wher Ps: projection onto the interval [s,∞) and

KAi is the Airy kernel

KAi(x, y) =

∫ ∞

0
dλAi(x + λ)Ai(y + λ) -6 -4 -2 0 2

0.0

0.1

0.2

0.3

0.4

0.5

s
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Other cases

wedge flat stationary

1pt GUE TW GOE TW F0

multi Airy2 Airy1 Airy0(?)

2000 Baik Rains GOE TW

2000 Baik Rains, Prähofer Ferrari Spohn F0

2001 Prähofer Spohn, Johansson Airy2

2005 Borodin Ferrari Prähofer S Airy1

2009 Baik Ferrari Péché Airy0(?)

10



3. Experiments by liquid crystal turbulence

2010-2012 Takeuchi Sano (see arXiv:1203.2530)
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Fluctuations in experiments

1pt Airy1,2

Max[Airy2 − x2]

Challenges for us: time correlation, persistence...
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4. The narrow wedge KPZ equation

2010 Sasamoto Spohn, Amir Corwin Quastel

• Narrow wedge initial condition

• Based on (i) the fact that the weakly ASEP is KPZ equation

(1997 Bertini Giacomin) and (ii) a formula for step ASEP by

2009 Tracy Widom

• In the book by Barabási Stanley [1995], they write ”the KPZ

equation cannot be solved in closed form”

Before this

2009 Balaźs, Quastel, and Seppäläinen

The 1/3 exponent for the stationary case
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Narrow wedge initial condition

We consider the initial condition, Z(x, 0) = δ(x).

This corresponds to the droplet growth with the following narrow

wedge initial conditions:

h(x, 0) = −|x|/δ , δ ≪ 1

For finite t, the macroscopic shape is

h(x, t) =

−x2/2t for |x| ≤ t/δ ,

(1/2δ2)t − |x|/δ for |x| > t/δ
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2λt/δ
x

h(x,t)
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Distribution

h(x, t) = −x2/2t − 1
12

γ3
t + γtξt

where γt = (t/2)1/3.

The distribution function of ξt

Ft(s) = P[ξt ≤ s] = 1 −
∫ ∞

−∞
exp

[
− eγt(s−u)

]
×
(
det(1 − Pu(Bt − PAi)Pu) − det(1 − PuBtPu)

)
du

where PAi(x, y) = Ai(x)Ai(y) .
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Pu is the projection onto [u,∞) and the kernel Bt is

Bt(x, y) = KAi(x, y) +

∫ ∞

0
dλ(eγtλ − 1)−1

×
(
Ai(x + λ)Ai(y + λ) − Ai(x − λ)Ai(y − λ)

)
.
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Developments(Not all!)

• Structural

2010 O’Connell A directed polymer model related to q-Toda

2011 COSZ Tropical RSK for inverse gamma polymer

2011 Borodin Corwin Macdonald process

• Probabilistic

• Generalizations by replica method

2010 Calabrese Le Doussal Rosso, Dotsenko Narrow wedge

2010 Prolhac Spohn Multi-point distributions

2011 Calabrese Le Dossal Flat

2011 Imamura Sasamoto Half-BM and stationary
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5. Stationary case

• Narrow wedge is technically the simplest (transient).

• Flat case is a well-studied case in surface growth (transient)

• Stationary case is important for stochastic process and

nonequilibrium statistical mechanics

– Two-point correlation function

– Experiments: Scattering, direct observation

– A lot of approximate methods (renormalization,

mode-coupling, etc.) have been applied to this case.

– Nonequilibrium steady state(NESS): No principle.

Dynamics is even harder.
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Modification of initial condition

Original: two sided BM

h(x, 0) =

B−(−x), x < 0,

B+(x), x > 0,

where B±(x) are two independent standard BMs is stationary.

Modification: we consider a generalized initial condition

h(x, 0) =

B̃(−x) + v−x, x < 0,

B(x) − v+x, x > 0,

where B(x), B̃(x) are independent standard BMs and v± are

the strength of the drifts.
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Result

For the generalized initial condition with v±

Fv±,t(s) := Prob
[
h(x, t) + γ3

t /12 ≤ γts
]

=
Γ(v+ + v−)

Γ(v+ + v− + γ−1
t d/ds)

[
1 −

∫ ∞

−∞
due−eγt(s−u)

νv±,t(u)

]
Here νv±,t(u) is expressed as a difference of two Fredholm

determinants,

νv±,t(u) = det
(
1 − Pu(B

Γ
t − PΓ

Ai)Pu

)
− det

(
1 − PuB

Γ
t Pu

)
,

where Ps represents the projection onto (s,∞),

PΓ
Ai(ξ1, ξ2) = AiΓΓ

(
ξ1,

1

γt
, v−, v+

)
AiΓΓ

(
ξ2,

1

γt
, v+, v−

)
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BΓ
t (ξ1, ξ2) =

∫ ∞

−∞
dy

1

1 − e−γty
AiΓΓ

(
ξ1 + y,

1

γt
, v−, v+

)
× AiΓΓ

(
ξ2 + y,

1

γt
, v+, v−

)
,

and

AiΓΓ(a, b, c, d) =
1

2π

∫
Γ
i d
b

dzeiza+iz
3

3
Γ (ibz + d)

Γ (−ibz + c)
,

where Γzp represents the contour from −∞ to ∞ and, along the

way, passing below the pole at z = id/b.
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Height distribution for the stationary KPZ equation

F0,t(s) =
1

Γ(1 + γ−1
t d/ds)

∫ ∞

−∞
duγte

γt(s−u)+e−γt(s−u)
ν0,t(u)

where ν0,t(u) is obtained from νv±,t(u) by taking v± → 0 limit.

4 2 0 2 4
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γt=1

γt=∞

s

Figure 1: Stationary height distributions for the KPZ equation for

γt = 1 case. The solid curve is F0.
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Stationary 2pt correlation function

C(x, t) = ⟨(h(x, t) − ⟨h(x, t)⟩)2⟩

gt(y) = (2t)−2/3C
(
(2t)2/3y, t

)

0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

y

γt=1

γt=∞

Figure 2: Stationary 2pt correlation function g′′
t (y) for γt = 1.

The solid curve is the corresponding quantity in the scaling limit

g′′(y).
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Derivation

Cole-Hopf transformation

1997 Bertini and Giacomin

h(x, t) = log (Z(x, t))

Z(x, t) is the solution of the stochastic heat equation,

∂Z(x, t)

∂t
=

1

2

∂2Z(x, t)

∂x2
+ η(x, t)Z(x, t).

and can be considered as directed polymer in random potential η.
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Feynmann-Kac and Generating function

Feynmann-Kac expression for the partition function,

Z(x, t) = Ex

(
exp

[∫ t

0
η (b(s), t − s) ds

]
Z(b(t), 0)

)
We consider the N th replica partition function ⟨ZN(x, t)⟩ and

compute their generating function Gt(s) defined as

Gt(s) =

∞∑
N=0

(
−e−γts

)N
N !

⟨
ZN(0, t)

⟩
eN

γ3
t

12

with γt = (t/2)1/3.

Apparently the series is divergent but should be a ”shadow” of a

rigorous version at a higher level.
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Replica method

For a system with randomness, e.g. for random Ising model,

H =
∑
⟨ij⟩

Jijsisj

where i is site, si = ±1 is Ising spin, Jij is iid random

variable(e.g. Bernoulli), we are interested in the averaged free

energy ⟨logZ⟩, Z =
∑

si=±1 e
−H .

In replica method, one often resorts to the following identity,

⟨logZ⟩ = lim
n→0

⟨Zn⟩ − 1

n
,

which needs an analytic continuation wrt n.
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δ-Bose gas

Taking the Gaussian average over the noise η, one finds that the

replica partition function can be written as

⟨ZN(x, t)⟩

=
N∏

j=1

∫ ∞

−∞
dyj

∫ xj(t)=x

xj(0)=yj

D[xj(τ )] exp

− ∫ t

0
dτ

 N∑
j=1

1

2

(
dx

dτ

)2

−
N∑

j ̸=k=1

δ (xj(τ ) − xk(τ ))

×
⟨
exp

(
N∑

k=1

h(yk, 0)

)⟩
= ⟨x|e−HN t|Φ⟩.
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HN is the Hamiltonian of the δ-Bose gas,

HN = −
1

2

N∑
j=1

∂2

∂x2
j

−
1

2

N∑
j ̸=k

δ(xj − xk),

|Φ⟩ represents the state corresponding to the initial condition. We

compute ⟨ZN(x, t)⟩ by expanding in terms of the eigenstates of

HN ,

⟨Z(x, t)N⟩ =
∑
z

⟨x|Ψz⟩⟨Ψz|Φ⟩e−Ezt

where Ez and |Ψz⟩ are the eigenvalue and the eigenfunction of

HN : HN |Ψz⟩ = Ez|Ψz⟩.

[Old fashoned...probably possible to do like BC.]
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The state |Φ⟩ can be calculated because the initial condition is

Gaussian. For the region where

x1 < . . . < xl < 0 < xl+1 < . . . < xN , 1 ≤ l ≤ N it is

given by

⟨x1, · · · , xN |Φ⟩ = ev−
∑l

j=1 xj−v+
∑N

j=l+1 xj

×
l∏

j=1

e
1
2
(2l−2j+1)xj

N−l∏
j=1

e
1
2
(N−l−2j+1)xl+j

We symmetrize wrt x1, . . . , xN .
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Bethe states
By the Bethe ansatz, the eigenfunction is given as

⟨x1, · · · , xN |Ψz⟩ = Cz

∑
P∈SN

sgnP

×
∏

1≤j<k≤N

(
zP (j) − zP (k) + isgn(xj − xk)

)
exp

(
i

N∑
l=1

zP (l)xl

)

N momenta zj (1 ≤ j ≤ N) are parametrized as

zj = qα −
i

2
(nα + 1 − 2rα) , for j =

α−1∑
β=1

nβ + rα.

(1 ≤ α ≤ M and 1 ≤ rα ≤ nα). They are divided into M

groups where 1 ≤ M ≤ N and the αth group consists of nα

quasimomenta z′
js which shares the common real part qα.
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Cz =

∏M
α=1 nα

N !

∏
1≤j<k≤N

1

|zj − zk − i|2

1/2

Ez =
1

2

N∑
j=1

z2
j =

1

2

M∑
α=1

nαq
2
α −

1

24

M∑
α=1

(
n3
α − nα

)
.

Expanding the moment in terms of the Bethe states, we have

⟨ZN(x, t)⟩

=

N∑
M=1

N !

M !

N∏
j=1

∫ ∞

−∞
dyj

(∫ ∞

−∞

M∏
α=1

dqα

2π

∞∑
nα=1

)
δ∑M

β=1 nβ,N

× e−Ezt⟨x|Ψz⟩⟨Ψz|y1, · · · , yN⟩⟨y1, · · · , yN |Φ⟩.

The completeness of Bethe states is known (e.g. Prolhac Spohn).
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We see

⟨Ψz|Φ⟩ = N !Cz

∑
P∈SN

sgnP
∏

1≤j<k≤N

(
z∗
P (j) − z∗

P (k) + i
)

×
N∑
l=0

(−1)l
l∏

m=1

1∑m
j=1(−iz∗

Pj
+ v−) − m2/2

×
N−l∏
m=1

1∑N
j=N−m+1(−iz∗

Pj
− v+) + m2/2

.
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Combinatorial identities

(1) ∑
P∈SN

sgnP
∏

1≤j<k≤N

(
wP (j) − wP (k) + if(j, k)

)
= N !

∏
1≤j<k≤N

(wj − wk)
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(2)For any complex numbers wj (1 ≤ j ≤ N) and a,∑
P∈SN

sgnP
∏

1≤j<k≤N

(
wP (j) − wP (k) + a

)
×

N∑
l=0

(−1)l
l∏

m=1

1∑m
j=1(wP (j) + v−) − m2a/2

×
N−l∏
m=1

1∑N
j=N−m+1(wPj − v+) + m2a/2

=

∏N
m=1(v+ + v− − am)

∏
1≤j<k≤N(wj − wk)∏N

m=1(wm + v− − a/2)(wm − v+ + a/2)
.

A similar identity in the context of ASEP has not been found.
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Generating function

Gt(s) =

∞∑
N=0

N∏
l=1

(v+ + v− − l)

N∑
M=1

(−e−γts)N

M !

M∏
α=1

(∫ ∞

0
dωα

∞∑
nα=1

)
δ∑M

β=1 nβ,N

det


∫
C

dq

π

e−γ3
t njq

2+
γ3
t

12
n3

j−nj(ωj+ωk)−2iq(ωj−ωk)

nj∏
r=1

(−iq + v− +
1

2
(nj − 2r))(iq + v+ +

1

2
(nj − 2r))


where the contour is C = R − ic with c taken large enough.

36



This generating function itself is not a Fredholm determinant due

to the novel factor
∏N

l=1(v+ + v− − l).

We consider a further generalized initial condition in which the

initial overall height χ obeys a certain probability distribution.

h̃ = h + χ

where h is the original height for which h(0, 0) = 0. The
random variable χ is taken to be independent of h.

Moments ⟨eNh̃⟩ = ⟨eNh⟩⟨eNχ⟩.

We postulate that χ is distributed as the inverse gamma

distribution with parameter v+ + v−, i.e., if 1/χ obeys the

gamma distribution with the same parameter. Its N th moment is

1/
∏N

l=1(v+ + v− − l) which compensates the extra factor.
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Distributions

F (s) =
1

κ(γ−1
t

d
ds
)
F̃ (s),

where F̃ (s) = Prob[h̃(0, t) ≤ γts],

F (s) = Prob[h(0, t) ≤ γts] and κ is the Laplace transform of

the pdf of χ. For the inverse gamma distribution,

κ(ξ) = Γ(v + ξ)/Γ(v), by which we get the formula for the

generating function.
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Summary

• Explicit formulas for the stationary situation of the KPZ

equation by replica method.

Height distribution and two point correlation function.

• Questions:

A rigorous version.

Other initial and boundary conditions?

• See also the poster by Imamura.
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Random matrix theory

GUE (Gaussian Unitary Ensemble) hermitian matrices

A =


u11 u12 + iv12 · · · u1N + iv1N

u12 − iv12 u22 · · · u2N + iv2N
...

...
. . .

...

u1N − iv1N u2N − iv2N · · · uNN


ujj ∼ N(0, 1/2) ujk, vjk ∼ N(0, 1/4)

The largest eigenvalue xmax · · · GUE TW distribution

GOE (Gaussian Orthogonal Ensemble) real symmetric matrices

· · · GOE TW distribution
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Connection to random matrix: Johansson

TASEP(Totally ASEP, hop only in one direction)

Step initial condition (t = 0)

· · ·

-3 -2 -1 0 1 2 3

N(t): Number of particles which crossed (0,1) up to time t

LUE formula

P[N(t) ≥ N ] =
1

ZN

∫
[0,t]N

∏
i<j

(xi−xj)
2
∏
i

e−xidx1 · · · dxN
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