Second class particles and random Young tableaux joint work with Dan Romik

Piotr Śniady

Polish Academy of Sciences
and
University of Wrocław

infinite Young tableau

Ω — set of infinite Young tableaux

Young tableau as a growth process

Young tableau and dynamics of particles

jeu de taquin and second class particles

jeu de taquin trajectory - rouge path of the gap

jeu de taquin and second class particles

jeu de taquin trajectory - rouge path of the gap
jeu de taquin and second class particles

jeu de taquin trajectory - rouge path of the gap

jeu de taquin and second class particles

jeu de taquin trajectory - rouge path of the gap
jeu de taquin and second class particles

jeu de taquin trajectory - rouge path of the gap
jeu de taquin and second class particles

jeu de taquin trajectory - rouge path of the gap
jeu de taquin and second class particles

jeu de taquin trajectory - rouge path of the gap
jeu de taquin and second class particles

jeu de taquin trajectory - rouge path of the gap
jeu de taquin and second class particles

jeu de taquin trajectory - rouge path of the gap
jeu de taquin and second class particles

second class particle

second class particle $=$ jeu de taquin
jeu de taquin - overview

original tableau T
jeu de taquin - overview

outcome of slidings
jeu de taquin - overview

new tableau $J(T)$

jeu de taquin - overview

jeu de taquin applied to T gives two pieces of information:

- trajectory $\mathbf{p}(T)$ of jeu de taquin,
- the new tableau $J(T)$,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK
(1) start from the first row,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK
(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

infinite Robinson-Schensted-Knuth (RSK) map

 infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$
insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK
(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

insertion tableau

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK

(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

F	L	P	W
D	G	M	R
B	E	J	Q
A	C	H	I

insertion tableau

7	11	22	24
4	10	16	17
3	9	14	15
1	2	5	6

recording tableau

FONDPXBZULGEATWRSMYVCJHQIK
(1) start from the first row,
(2) insert the letter as far to the right as possible, so that the row is increasing and no gaps are created,
(3) insert the bumped element into the next row,
(4) information about the new box into the recording tableau,

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\xrightarrow{\text { RSK }}$ recording tableau $\in \Omega$

	7	11	22	24	
	4	10	16	17	
	3	9	14	15	
	1	2	5	6	
	recording tableau				

FONDPXBZULGEATWRSMYVCJHQIK

infinite Robinson-Schensted-Knuth (RSK) map

infinite word $\stackrel{\text { RSK }}{\mapsto}$ recording tableau $\in \Omega$

	7	11	22		
	4	10	16		
	3	9	14		
	1	2	5		
	recording tableau				

FONDPXBZULGEATWRSMYVCJHQIK
if X_{0}, X_{1}, \ldots are i.i.d. $U(0,1)$ random variables then
$\operatorname{RSK}\left(X_{0}, X_{1}, \ldots\right) \stackrel{\text { distribution }}{=}$ Plancherel measure

trajectories

trajectories

jeu de taquin
$\Theta(T)$ - asymptotic angle of jeu de taquin

second class particle asymptotic speed of second class particle

$$
\begin{gathered}
T_{0} \\
T_{\theta_{0}}
\end{gathered}
$$

jeu de taquin dynamical system (Ω, Plancherel, J)

jeu de taquin dynamical system (Ω, Plancherel, J)

jeu de taquin dynamical system (Ω, Plancherel, J)

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$

$$
\left(x_{0}, x_{1}, \ldots\right) \stackrel{s}{\longmapsto}\left(x_{1}, x_{2}, \ldots\right) \stackrel{s}{\longmapsto}
$$

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$

$$
\left(x_{0}, x_{1}, \ldots\right) \stackrel{s}{\longmapsto}\left(x_{1}, x_{2}, \ldots\right) \stackrel{s}{\longmapsto}
$$

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$

jeu de taquin dynamical system (Ω, Plancherel, J)
i.i.d. shift dynamical system $\left([0,1]^{\mathbb{N}}, \prod\right.$ Lebesgue, $\left.s\right)$

$\theta_{0}=f\left(x_{0}\right)$
$\theta_{1}=f\left(x_{1}\right)$
jeu de taquin dynamical system (Ω, Plancherel, J)
the jeu de taquin dynamical system is isomorphic to i.i.d. shift the inverse map is given by $x_{i}=f^{-1}\left(\theta_{i}\right)$

main results

- slope angles $\theta_{0}, \theta_{1}, \ldots$
(and hence asymptotic speeds of second class particles!) exist almost surely,
- they are independent random variables with explicit distribution,
- RSK is an isomorphism between the dynamical system of shift and jeu de taquin,
- jeu de taquin is an ergodic transformation,

open problems

睩 Dan Romik, Piotr Śniady
Jeu de taquin dynamics on infinite Young tableaux and second class particles arXiv:1111.0575

