The bulk scaling limit of the Laguerre ensemble

Stéphanie Jacquot (joint with Benedek Valkó) University of Cambridge

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Objective of the talk:

- ► Family of random matrices: (M_n)_{n≥1}; M_n : n × n matrix with random entries.
- AIM: To study the structure of the spectrum (set of eigenvalues) for large random matrices.
- Ensemble of random matrices considered: the β-Laguerre ensemble, β > 0, a generalization of the Wishart ensembles.

 β -ensemble: the β -Laguerre ensemble, $\beta > 0$

Fix $\beta > 0$. For $(\lambda_1, \cdots, \lambda_n) \in (\mathbb{R}^+)^n$, define

$$\mathbb{P}_{\beta}(\lambda_1,\cdots,\lambda_n) = \frac{1}{Z_{n,m+1}^{\beta}} \prod_{1 \le j < k \le n} |\lambda_j - \lambda_k|^{\beta} \prod_{\ell=1}^n \lambda_{\ell}^{\frac{\beta}{2}(m-n)-1} e^{-\frac{\beta}{2}\lambda_{\ell}}$$

where $m-1 \ge n$ and $Z_{n,m-1}^{\beta}$ is a normalizing constant.

- $\beta = 1$: Wishart real ensemble
- $\beta = 2$: Wishart complex ensemble
- $\beta = 4$: Wishart quaternion ensemble

Local limit

- The eigenvalues form a point process Λ_n on \mathbb{R}_+
- ▶ To study local behavior of eigenvalues, rescale and translate the eigenvalues to zoom in on a particular region of the spectrum (typically edges and bulk) and then let $n \rightarrow \infty$.

Does $a_n(\Lambda_n - b_n) \Rightarrow$? as $n \to \infty$

The Laguerre spectrum

Let $\lambda_1, \ldots, \lambda_n$ have joint density distribution \mathbb{P}_{β} . Suppose that $m/n \to \gamma \in [1, \infty)$. Then,

$$\frac{1}{n}\sum_{i=1}^n \delta_{\lambda_i/n} \to \mu \text{ weakly, as } n \to \infty.$$

$$\frac{d\mu}{dx} = \tilde{\sigma}^{\gamma}(x) = \frac{\sqrt{(x-a^2)(b^2-x)}}{2\pi x} \mathbb{1}_{[a^2,b^2]}(x), a = \gamma^{1/2} - 1, b = \gamma^{1/2} + 1.$$

Marchenko-Pastur distribution.

Laguerre spectrum: $[(\sqrt{m} - \sqrt{n})^2, (\sqrt{m} + \sqrt{n})^2].$

Theorem (Bulk limit of the Laguerre ensemble, J.,Valkó, 2011) Fix $\beta > 0$, assume that $m/n \rightarrow \gamma \in [1, \infty)$ and let $c \in (a^2, b^2)$ for $a = \gamma^{1/2} - 1, b = \gamma^{1/2} + 1$. Let Λ_n^L denote the point process with joint eigenvalue \mathbb{P}_{β} . Then

$$2\pi \tilde{\sigma}^{\gamma}(c) \left(\Lambda_{n}^{L} - cn
ight) \Rightarrow Sine_{eta}.$$

- In the edges case, the limit point process is described by the mean of stochastic operators.
- Valkó and Virág, in 2007, showed that, for the β-Hermite ensemble, the bulk scaling can be described by a discrete point process: the Sine_β process or Brownian carousel.
- We prove that the bulk scaling of the β-Laguerre ensemble converges to the Sine_β process which completes the picture about the point process scaling limits of the Laguerre ensemble.

Description of the local limits

Model solvable for $\beta = 1, 2, 4$

 $\beta = 2$: Determinantal processes.

Bulk: Sine₂ determinantal process with kernel

$$K(x,y) = \frac{\sin(\pi(x-y))}{\pi(x-y)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem: For general $\beta > 0$, there is no form of the general β correlations that seem amenable to a description of the asymptotics.

Matrix model for the Laguerre β -ensemble, $\beta > 0$

It was then a big deal when Dimitriu and Edelman, in 2002 found that if $A_{n,m}$ is the following $n \times n$ bidiagonal matrix:

$$A_{n,m} = \frac{1}{\sqrt{\beta}} \begin{bmatrix} \tilde{\chi}_{\beta(m-1)} & & & \\ \chi_{\beta(n-1)} & \tilde{\chi}_{\beta(m-2)} & & & \\ & \ddots & \ddots & & \\ & & \chi_{\beta\cdot 2} & \tilde{\chi}_{\beta(m-n+1)} & \\ & & & \chi_{\beta} & \tilde{\chi}_{\beta(m-n)} \end{bmatrix}$$

where the entries are independent, and each χ_r stands for the square root of an independent χ^2 with parameter *r*. In other words,

$$\mathbb{P}(\chi_r \in dx) = \frac{1}{2^{r-2/2} \Gamma(r/2)} x^{r-1} e^{-x^2/2} dx.$$

Then, the eigenvalues of the tridiagonal matrix $L_{\beta}^{n} = A_{n,m}A_{n,m}^{T}$ are distributed according to \mathbb{P}_{β} .

The Sine $_{\beta}$ process

Let Z be a 2-dimensional Brownian motion and consider the oneparametrised system of SDE for $\lambda \in \mathbb{R}$.

$$dlpha_{\lambda} = \lambda rac{eta}{4} \exp\left(-rac{eta}{4}t
ight) dt + \Re\left(\left(e^{-ilpha_{\lambda}}-1
ight) dZ
ight)$$

with $\alpha_{\lambda}(0) = 0$. Then,

$${\sf N}(\lambda) = rac{1}{2\pi} \lim_{t o \infty} lpha_\lambda(t)$$

exists, and is integer valued a.s. We define the $Sine_{\beta}$ point process as the discontinity points of $N(\lambda)$.

$$N(\lambda) = \sharp \{ \text{ points of Sine}_{eta} \in (0, \lambda] \}$$

The Sine $_{\beta}$ process

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

The Sine $_{\beta}$ process

For a fixed $\lambda > 0$,

$$\Re\left(\left(e^{-i\alpha_{\lambda}}-1\right)dZ\right) = \Re\left(e^{-i\frac{\alpha_{\lambda}}{2}}\left(e^{-i\frac{\alpha_{\lambda}}{2}}-e^{i\frac{\alpha_{\lambda}}{2}}\right)dZ\right)$$
$$= 2\sin\left(\frac{\alpha_{\lambda}}{2}\right)\Im\left(e^{-i\frac{\alpha_{\lambda}}{2}}dZ\right)$$
$$= 2\sin\left(\frac{\alpha_{\lambda}}{2}\right)dW$$

where W is a Brownian motion. Thus,

$$d\alpha_{\lambda} = \lambda \frac{\beta}{4} \exp\left(-\frac{\beta}{4}t\right) dt + 2\sin\left(\frac{\alpha_{\lambda}}{2}\right) dW$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

with $\alpha_{\lambda}(0) = 0$.

A simulation of $\alpha_{\lambda}(t)$

- If it hits an integer multiple of 2π it will stay above it.
- The limit as $t \to \infty$ exists and is an integer multiple of 2π .

Ideas of the proof

Tridiagonal representation of the β -Laguerre ensemble: Let A be the following $n \times n$ bidiagonal matrix:

$$A = \frac{1}{\sqrt{\beta}} \begin{bmatrix} a_1 & & & \\ b_1 & a_2 & & & \\ & \ddots & \ddots & & \\ & & b_{n-2} & a_{n-1} & \\ & & & & b_{n-1} & a_n \end{bmatrix}, a_k = \tilde{\chi}_{\beta(n-k)}, b_k = \chi_{\beta(n-k)}$$

Then the eigenvalues of AA^T are distributed according to \mathbb{P}_{β} .

- ► We want to understand the bulk scaling limit of the eigenvalues of AA^T.
- Problem: not enough independence
 – we will use another matrix.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ideas of the proof

Consider the $2n \times 2n$ tridiagonal matrix:

$$B = \frac{1}{\sqrt{\beta}} \begin{bmatrix} 0 & a_1 & & \\ a_1 & 0 & b_1 & & \\ & b_1 & \ddots & \ddots & \\ & & \ddots & \ddots & a_n \\ & & & a_n & 0 \end{bmatrix}$$

- If [u₁, v₁, u₂,...]^T is an eigenvector for B with eigenvalue λ, then, [u₁, u₂,...]^T is an eigenvector for A^TA with eigenvalue λ² and [v₁, v₂,...]^T is an eigenvector for AA^T with eigenvalue λ².
- ADVANTAGE: independence of the entries modulo symmetry.

Ideas of the proof

Tridiagonal matrix representation L_n^{β} for the β -Laguerre ensemble. The proof relies on being able to track the eigenvalues of a tridiagonal matrix. Consider the $n \times n$ tridiagonal matrix

$$M = \begin{bmatrix} a_1 & b_1 & & & \\ c_1 & a_2 & b_2 & & \\ & c_2 & \ddots & \ddots & \\ & & \ddots & \ddots & b_{n-1} \\ & & & c_{n-1} & a_n \end{bmatrix}, b_i > 0, c_i > 0.$$

If $[u_1, u_2, ..., u_n]^T$ is an eigenvector corresponding to Λ , then the ratio $r_{\ell,\Lambda} = u_{\ell+1}/u_{\ell}$ satisfies the single term recursive recursion:

$$r_{0,\Lambda} = \infty, r_{\ell,\Lambda} = \frac{1}{b_{\ell}} \left(-\frac{c_{\ell-1}}{r_{\ell-1,\Lambda}} + \Lambda - a_{\ell} \right).$$

FACT: Λ is an eigenvalue if and only if $r_{n,\Lambda} = 0$.

We can turn $r_{\ell,\Lambda}$ into an angle

 $r_{\ell,\Lambda} \in \mathbb{R} \cup \{\infty\} \longleftrightarrow z_{\ell} = e^{i\varphi_{\ell,\Lambda}}, \varphi_{\ell,\Lambda}$: phase function.

 $(\varphi_{\ell,\Lambda})_{\ell < n}$ has the following properties:

- For each fixed 0 ≤ ℓ ≤ n, φ_{ℓ,Λ} is continuous monotone increasing function of Λ.
- $\varphi_{n,\Lambda} = 0 \mod 2\pi$ identifies the eigenvalues. More precisely,

$$\sharp \{ (\varphi_{n,0}, \varphi_{n,\Lambda}] \cap 2\pi\mathbb{Z} \} = \sharp \text{ eigenvalues in } (0,\Lambda].$$

• $\varphi_{\ell,\Lambda}$ is a Markov chain with respect to the filtration $\mathcal{F}_{\ell} = \sigma(\varphi_{k,\Lambda} : k \leq \ell).$

Rescale according to theorem:

$$\Lambda = rac{\lambda}{2\pi\sigma(c)} + cn,$$

and consider $\varphi_{\ell,\lambda}$.

Problem: The increments $\varphi_{\ell+1,\lambda} - \varphi_{\ell,\lambda}$ are not infinitesimal in the limit.

However, a simple transformation (monotone and 2π invariant) allows to reguralise it. Call $\tilde{\varphi}_{\ell,\lambda}$ the reguralised version.

The reguralised phase function φ̃_{ℓ,λ} converges, as n→∞ to the solution to a stochastic differential equation (version of the Kurtz theorem). More precisely, for t < 1,</p>

$$\tilde{\varphi}_{\lfloor nt \rfloor,\lambda} \Rightarrow \tilde{\varphi}_{\lambda}(t)$$
 in distribution as $n \to \infty$.

Particularly, α_{lnt}, = φ̃_{lnt}, − φ̃_{lnt}, o converges to a time changed version of the stochastic Sine equation.

• Letting
$$t \rightarrow 1$$
, we obtain that

$$\sharp \{ (\tilde{\varphi}_{n,0}, \tilde{\varphi}_{n,\lambda}] \cap 2\pi\mathbb{Z} \} \Rightarrow \lim_{t \to 1} \frac{\alpha_{\lambda}(t)}{2\pi} = \mathcal{N}(\lambda).$$

Thank you !