The bulk scaling limit of the Laguerre ensemble

Stéphanie Jacquot (joint with Benedek Valkó)
University of Cambridge

Objective of the talk:

- Family of random matrices: $\left(M_{n}\right)_{n \geq 1} ; M_{n}: n \times n$ matrix with random entries.
- AIM: To study the structure of the spectrum (set of eigenvalues) for large random matrices.
- Ensemble of random matrices considered: the β-Laguerre ensemble, $\beta>0$, a generalization of the Wishart ensembles.

β-ensemble: the β-Laguerre ensemble, $\beta>0$

Fix $\beta>0$. For $\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in\left(\mathbb{R}^{+}\right)^{n}$, define

$$
\mathbb{P}_{\beta}\left(\lambda_{1}, \cdots, \lambda_{n}\right)=\frac{1}{Z_{n, m+1}^{\beta}} \prod_{1 \leq j<k \leq n}\left|\lambda_{j}-\lambda_{k}\right|^{\beta} \prod_{\ell=1}^{n} \lambda_{\ell}^{\frac{\beta}{2}(m-n)-1} e^{-\frac{\beta}{2} \lambda_{\ell}}
$$

where $m-1 \geq n$ and $Z_{n, m-1}^{\beta}$ is a normalizing constant.

- $\beta=1$: Wishart real ensemble
- $\beta=2$: Wishart complex ensemble
- $\beta=4$: Wishart quaternion ensemble

Local limit

- The eigenvalues form a point process Λ_{n} on \mathbb{R}_{+}
- To study local behavior of eigenvalues, rescale and translate the eigenvalues to zoom in on a particular region of the spectrum (typically edges and bulk) and then let $n \rightarrow \infty$.

Does $a_{n}\left(\Lambda_{n}-b_{n}\right) \Rightarrow$? as $n \rightarrow \infty$

The Laguerre spectrum

Let $\lambda_{1}, \ldots, \lambda_{n}$ have joint density distribution \mathbb{P}_{β}. Suppose that $m / n \rightarrow \gamma \in[1, \infty)$. Then,

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i} / n} \rightarrow \mu \text { weakly, as } n \rightarrow \infty
$$

$$
\frac{d \mu}{d x}=\tilde{\sigma}^{\gamma}(x)=\frac{\sqrt{\left(x-a^{2}\right)\left(b^{2}-x\right)}}{2 \pi x} 1_{\left[a^{2}, b^{2}\right]}(x), a=\gamma^{1 / 2}-1, b=\gamma^{1 / 2}+1
$$

Marchenko-Pastur distribution.
Laguerre spectrum: $\left[(\sqrt{m}-\sqrt{n})^{2},(\sqrt{m}+\sqrt{n})^{2}\right]$.

The bulk limit of the β-Laguerre ensemble

Theorem (Bulk limit of the Laguerre ensemble, J.,Valkó, 2011) Fix $\beta>0$, assume that $m / n \rightarrow \gamma \in[1, \infty)$ and let $c \in\left(a^{2}, b^{2}\right)$ for $a=\gamma^{1 / 2}-1, b=\gamma^{1 / 2}+1$. Let Λ_{n}^{L} denote the point process with joint eigenvalue \mathbb{P}_{β}. Then

$$
2 \pi \tilde{\sigma}^{\gamma}(c)\left(\Lambda_{n}^{L}-c n\right) \Rightarrow \text { Sine }_{\beta} .
$$

- In the edges case, the limit point process is described by the mean of stochastic operators.
- Valkó and Virág, in 2007, showed that, for the β-Hermite ensemble, the bulk scaling can be described by a discrete point process: the Sine_{β} process or Brownian carousel.
- We prove that the bulk scaling of the β-Laguerre ensemble converges to the $\operatorname{Sine}_{\beta}$ process which completes the picture about the point process scaling limits of the Laguerre ensemble.

Description of the local limits

Model solvable for $\beta=1,2,4$
$\beta=2$: Determinantal processes.

- Bulk: Sine 2 determinantal process with kernel

$$
K(x, y)=\frac{\sin (\pi(x-y))}{\pi(x-y)}
$$

Problem: For general $\beta>0$, there is no form of the general β correlations that seem amenable to a description of the asymptotics.

Matrix model for the Laguerre β-ensemble, $\beta>0$

It was then a big deal when Dimitriu and Edelman,in 2002 found that if $A_{n, m}$ is the following $n \times n$ bidiagonal matrix:

$$
A_{n, m}=\frac{1}{\sqrt{\beta}}\left[\begin{array}{ccccc}
\tilde{\chi}_{\beta(m-1)} & & & & \\
\chi_{\beta(n-1)} & \tilde{\chi}_{\beta(m-2)} & & & \\
& \ddots & \ddots & & \\
& & \chi_{\beta \cdot 2} & \tilde{\chi}_{\beta(m-n+1)} & \\
& & & \chi_{\beta} & \tilde{\chi}_{\beta(m-n)}
\end{array}\right]
$$

where the entries are independent, and each χ_{r} stands for the square root of an independent χ^{2} with parameter r. In other words,

$$
\mathbb{P}\left(\chi_{r} \in d x\right)=\frac{1}{2^{r-2 / 2} \Gamma(r / 2)} x^{r-1} e^{-x^{2} / 2} d x
$$

Then, the eigenvalues of the tridiagonal matrix $L_{\beta}^{n}=A_{n, m} A_{n, m}^{T}$ are distributed according to \mathbb{P}_{β}.

The Sine $_{\beta}$ process

Let Z be a 2-dimensional Brownian motion and consider the oneparametrised system of SDE for $\lambda \in \mathbb{R}$.

$$
d \alpha_{\lambda}=\lambda \frac{\beta}{4} \exp \left(-\frac{\beta}{4} t\right) d t+\Re\left(\left(e^{-i \alpha_{\lambda}}-1\right) d Z\right)
$$

with $\alpha_{\lambda}(0)=0$. Then,

$$
N(\lambda)=\frac{1}{2 \pi} \lim _{t \rightarrow \infty} \alpha_{\lambda}(t)
$$

exists, and is integer valued a.s. We define the $\operatorname{Sine}_{\beta}$ point process as the discontinity points of $N(\lambda)$.

$$
N(\lambda)=\sharp\left\{\text { points of } \operatorname{Sine}_{\beta} \in(0, \lambda]\right\}
$$

The Sine $_{\beta}$ process

The Sine $_{\beta}$ process

For a fixed $\lambda>0$,

$$
\begin{aligned}
\Re\left(\left(e^{-i \alpha_{\lambda}}-1\right) d Z\right) & =\Re\left(e^{-i \frac{\alpha_{\lambda}}{2}}\left(e^{-i \frac{\alpha_{\lambda}}{2}}-e^{i \frac{\alpha_{\lambda}}{2}}\right) d Z\right) \\
& =2 \sin \left(\frac{\alpha_{\lambda}}{2}\right) \Im\left(e^{-i \frac{\alpha_{\lambda}}{2}} d Z\right) \\
& =2 \sin \left(\frac{\alpha_{\lambda}}{2}\right) d W
\end{aligned}
$$

where W is a Brownian motion. Thus,

$$
d \alpha_{\lambda}=\lambda \frac{\beta}{4} \exp \left(-\frac{\beta}{4} t\right) d t+2 \sin \left(\frac{\alpha_{\lambda}}{2}\right) d W
$$

with $\alpha_{\lambda}(0)=0$.

A simulation of $\alpha_{\lambda}(t)$

- If it hits an integer multiple of 2π it will stay above it.
- The limit as $t \rightarrow \infty$ exists and is an integer multiple of 2π.

Ideas of the proof

Tridiagonal representation of the β-Laguerre ensemble: Let A be the following $n \times n$ bidiagonal matrix:

$$
A=\frac{1}{\sqrt{\beta}}\left[\begin{array}{ccccc}
a_{1} & & & & \\
b_{1} & a_{2} & & & \\
& \ddots & \ddots & & \\
& & b_{n-2} & a_{n-1} & \\
& & & b_{n-1} & a_{n}
\end{array}\right], a_{k}=\tilde{\chi}_{\beta(n-k)}, b_{k}=\chi_{\beta(n-k)}
$$

Then the eigenvalues of $A A^{T}$ are distributed according to \mathbb{P}_{β}.

- We want to understand the bulk scaling limit of the eigenvalues of $A A^{T}$.
- Problem: not enough independence- we will use another matrix.

Ideas of the proof

Consider the $2 n \times 2 n$ tridiagonal matrix:

$$
B=\frac{1}{\sqrt{\beta}}\left[\begin{array}{ccccc}
0 & a_{1} & & & \\
a_{1} & 0 & b_{1} & & \\
& b_{1} & \ddots & \ddots & \\
& & \ddots & \ddots & a_{n} \\
& & & a_{n} & 0
\end{array}\right]
$$

- If $\left[u_{1}, v_{1}, u_{2}, \ldots\right]^{T}$ is an eigenvector for B with eigenvalue λ, then, $\left[u_{1}, u_{2}, \ldots\right]^{T}$ is an eigenvector for $A^{T} A$ with eigenvalue λ^{2} and $\left[v_{1}, v_{2}, \ldots\right]^{T}$ is an eigenvector for $A A^{T}$ with eigenvalue λ^{2}.
- ADVANTAGE: independence of the entries modulo symmetry.

Ideas of the proof

Tridiagonal matrix representation L_{n}^{β} for the β-Laguerre ensemble. The proof relies on being able to track the eigenvalues of a tridiagonal matrix. Consider the $n \times n$ tridiagonal matrix

$$
M=\left[\begin{array}{ccccc}
a_{1} & b_{1} & & & \\
c_{1} & a_{2} & b_{2} & & \\
& c_{2} & \ddots & \ddots & \\
& & \ddots & \ddots & b_{n-1} \\
& & & c_{n-1} & a_{n}
\end{array}\right], b_{i}>0, c_{i}>0
$$

If $\left[u_{1}, u_{2}, \ldots, u_{n}\right]^{T}$ is an eigenvector corresponding to Λ, then the ratio $r_{\ell, \Lambda}=u_{\ell+1} / u_{\ell}$ satisfies the single term recursive recursion:

$$
r_{0, \Lambda}=\infty, r_{\ell, \Lambda}=\frac{1}{b_{\ell}}\left(-\frac{c_{\ell-1}}{r_{\ell-1, \Lambda}}+\Lambda-a_{\ell}\right) .
$$

FACT: Λ is an eigenvalue if and only if $r_{n, \Lambda}=0$.

We can turn $r_{\ell, \Lambda}$ into an angle

$$
r_{\ell, \Lambda} \in \mathbb{R} \cup\{\infty\} \longleftrightarrow z_{\ell}=e^{i \varphi_{\ell, \Lambda}}, \varphi_{\ell, \Lambda}: \text { phase function. }
$$

$\left(\varphi_{\ell, \wedge}\right)_{\ell \leq n}$ has the following properties:

- For each fixed $0 \leq \ell \leq n, \varphi_{\ell, \Lambda}$ is continuous monotone increasing function of Λ.
- $\varphi_{n, \Lambda}=0 \bmod 2 \pi$ identifies the eigenvalues. More precisely,

$$
\sharp\left\{\left(\varphi_{n, 0}, \varphi_{n, \Lambda}\right] \cap 2 \pi \mathbb{Z}\right\}=\sharp \text { eigenvalues in }(0, \Lambda] .
$$

- $\varphi_{\ell, \wedge}$ is a Markov chain with respect to the filtration $\mathcal{F}_{\ell}=\sigma\left(\varphi_{k, \Lambda}: k \leq \ell\right)$.

Rescale according to theorem:

$$
\Lambda=\frac{\lambda}{2 \pi \sigma(c)}+c n
$$

and consider $\varphi_{\ell, \lambda}$.
Problem: The increments $\varphi_{\ell+1, \lambda}-\varphi_{\ell, \lambda}$ are not infinitesimal in the limit.

However, a simple transformation (monotone and 2π invariant) allows to reguralise it. Call $\tilde{\varphi}_{\ell, \lambda}$ the reguralised version.

- The reguralised phase function $\tilde{\varphi}_{\ell, \lambda}$ converges, as $n \rightarrow \infty$ to the solution to a stochastic differential equation (version of the Kurtz theorem). More precisely, for $t<1$,

$$
\tilde{\varphi}_{\lfloor n t\rfloor, \lambda} \Rightarrow \tilde{\varphi}_{\lambda}(t) \text { in distribution as } n \rightarrow \infty
$$

- Particularly, $\alpha_{\lfloor n t\rfloor, \lambda}=\tilde{\varphi}_{\lfloor n t\rfloor, \lambda}-\tilde{\varphi}_{\lfloor n t\rfloor, 0}$ converges to a time changed version of the stochastic Sine equation.
- Letting $t \rightarrow 1$, we obtain that

$$
\sharp\left\{\left(\tilde{\varphi}_{n, 0}, \tilde{\varphi}_{n, \lambda}\right] \cap 2 \pi \mathbb{Z}\right\} \Rightarrow \lim _{t \rightarrow 1} \frac{\alpha_{\lambda}(t)}{2 \pi}=N(\lambda) .
$$

Thank you !

