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Beta Tracy-Widom, no spikes

Many years ago J. Raḿırez, B. Virág extended the Tracy-Widom laws to the
limiting distributions of the largest points in for the standard beta ensembles.

In particular, consider the law on n points λ1, . . . , λn with density proportional
to ∏

j<k

|λj − λk|β
n∏

k=1

w(λk)

for w(λ) = e−βλ
2/4 (beta-Hermite) or w(λ) = λ

β

2
(m−n)+1e−βλ/2 (beta-Laguerre).

Then the limit distribution is described by:

TWβ = sup
f∈L

2√
β

∫ ∞

0

f2(x)db(x)−
∫ ∞

0

[(f ′(x))2 + xf2(x)]dx.

Here L are those functions with
∫ ∞

0
f2 = 1,

∫ ∞
0

[(f ′)2 + xf2] <∞ and f(0) = 0.



Riccati correspondence

This variational formula has the interpretation that −TWβ is the ground state
eigenvalue for

Hβ = −
d2

dx2
+ x+ 2√

β
b′(x)

on R+ with Dirichlet conditions at the origin. In this way the above established
a conjecture of Edelman-Sutton.

For fixed values of the spectral parameter λ, following the zeros of

dψ′(x) = (x− λ)ψ(x)dx+ 2√
β
ψ(x)db(x) with ψ(0) = 0, ψ′(0) = 1

counts the eigenvalues of Hβ below λ. Now set p(x) = ψ′(x)/ψ(x), which
starts at +∞, solves

dp(x) = 2√
β
db(x) + (−λ+ x− p2(x))dx

and Fβ(λ) = P∞(p(·,−λ) never explodes). For β = 1,2,4 these have Painlevé
expressions.



Tridiagonals

For the Laguerre setting, put, for any β > 0,

Lβ =
1√
β


χmβ χ(n−1)β

χ(m−1)β χ(n−2)β
. . . . . .

χ(m−n+2)β χβ
χ(m−n+1)β


where each χr is independent.

Then, the eigenvalues of LβL
†
β follow the law of the w(λ) = λ

β

2
(m−n)+1e−βλ

beta ensemble.

This fact is due to Dumitriu and Edelman. At β = 1,2 can be arrived at by
the well known Householder transformations from the “full” sample covariance
matrices S = XX† for X an n×m independent Gaussian matrix.



Spiked models, Wishart setup

Classically, one takes the matrix S = XX† with X = [X1 . . . Xm], each Xk ∈ Rn

drawn from a centered population, in the regime m� n.

In this case 1
m
S is a consistent estimator for the population covariance matrix,

Σ = EX1X1
†.

In the RMT regime m = O(n), we have at this point discussed the limit of
λmax when Σ = I.

Johnstone asked the question: When can λmax detect between Σ = I and an
arbitrary Σ?

To cut the problem down to size introduce the “spiked” model in which

Σ = diag(c1, c2, . . . , cr,1,1, . . . ,1)

and r is fixed as n ↑ ∞. How does the law of λmax depend on c′s?



The phase transition

In 2005 Baik, Ben Arous, and Peché found the following phenomena at β = 2,
which I only describe in for a single “spike”.

If c < c: P
(
σn(λmax − µn) ≤ t

)
→ F2(t).

If c > c: P
(
σ′n(λmax − µ′n) ≤ t

)
→
∫ t
−∞ e

−x2/2 dx√
2π
.

If c = c− wn−1/3: P
(
σn(λmax − µn) ≤ t

)
→ F (t, w) = F2(t)f(t, w), all described

in terms of Painlevé II.

This is a steepest descent analysis on a fairly explicit integral kernel of the
underlying determinantal process.

Soon after D. Wong obtained a result for β = 4, and there is also work of Mo
at β = 1.



Spikes for general beta

The main insight is that if you spike at say β = 1,2 the bidiagonalization pro-
cedure goes through with the only change in the top entry: χmβ becomes

√
cχmβ.

Bloemendal-Virág (2011) proved (among other things) that λmax(Lβ,cL
†
β,c)

under critical spiking (c = c− wn−1/3) has a scaled limit distribution given by

TWβ,w = sup
f∈L′

2√
β

∫ ∞

0

f2(x)db(x)−
∫ ∞

0

[(f ′(x))2 + xf2(x)]dx

where L′ is again those functions with
∫ ∞

0
[(f ′)2 + xf2] <∞, but subject to

f ′(0) = wf(0)

at the origin.

So all is familiar, but with Robin rather than Dirichlet conditions. This ex-
tra variable now makes the PDE tied to the Riccati correspondence more
meaningful (one can get back the Painlevé formulas for instance).



Bringing in the hard edge

In the basic XX† Gaussian Wishart ensemble the behavior of the limiting
density of states can be very different in the vicinity of λmin vs. λmax.

With m
n
→ γ, that object is given by

1

n

n∑
k=1

δλk(λ)→

√
(λ− `−)(`+ − λ)

2πλ
dλ

where `± = (1±√γ)2.

When γ > 1 both edges are “soft”, and we have Tracy-Widom fluctuations.

When γ = 1, then a− = 0 and the eigenvalues now feel the “hard edge” of
the origin.

In fact, if m = n+ a as n ↑ ∞ there is a one-parameter family of limit laws
for λmin indexed by a (first described in terms of Painlevé by Tracy-Widom).

As a→∞ recover the soft-edge Tracy-Widom laws. (And true for all β, as
should be.)



Spiking (down) the hard edge

Return now to the spiked tridiagonal model, tuned to see the hard edge: for
any a > −1

Lβ,c =
1√
β


√
cχ(n+a)β χ(n−1)β

χ(n+a−1)β χ(n−2)β
. . . . . .

χ(a+2)β χβ
χ(a+1)β


We want to understand the limit law for λmin(Lβ,cL

†
β,c), tuning c ↓ 0 as n ↑ ∞.

With c = 1, the charactering limit operator was already found by J. Raḿırez
and myself (2009).

The “critical” scaling turns is c = κ
n
.

At β = 2 this problem was studied at the level of correlation functions (via
multiple-orthogonal polynomials) by Desrosiers-Forrester.



Limit operator(s)

What we show is that (nLβ,cL
†
β,c)
−1, after embedding into an appropriate L2

space, converges in norm to the (compact) integral operator:

(Gβ,a,κf)(x) =

∫ ∞

0

∫ x∧y

0

s(dz)f(y)m(dy) + κ−1

∫ ∞

0

f(y)m(dy).

Here x 7→ b(x) a Brownian motion,

m(dx) = exp
(
−(a+ 1)x− 2√

β
b(x)

)
dx, s(dx) = exp

(
ax+ 2√

β
b(x)

)
dx.

This is the resolvent for the diffusion t 7→ xt with speed measure m(dx), scale
function

∫ x
0
s(dx′), and killing measure κδ0(x).

Take t 7→ x̄t with the same speed and scale, but with simple reflection at the
origin. With Lt the local time of x̄t at the origin, xt equals x̄t up to time T
defined by

P(T > t | x̄·) = e−κLt,

at which point the path is killed. The unspiked case corresponds to κ =∞.



Aside on the “supercritical” regime

This is the analog of the Gaussian limit at the supercritically spiked soft-edge.

Denoting Λ(β, a, κ) the limiting hard edge eigenvalue (one over the largest
eigenvalue of Gβ,a,κ):

κ−1Λ(β, a, κ)→
1

β
χ2
β(a+1).

as κ ↓ 0.

A simple perturbation argument implies that κGβ,a,κ, for small κ, has ground

state approaching the constant function with corresponding eigenvalue
∫ ∞

0
m(dx).

The equality in law∫ ∞

0

m(dx) =

∫ ∞

0

exp [−(a+ 1)x− 2√
β
b(x)] dx =

1

β
χ−2
β(a+1)

,

is due to Dufresne (motivated by a problem in finance).



PDEs and spiked hard to soft transition

Again there is a hitting time description. With the process

dp(x) = 2√
β
p(x)db(x) +

(
(a+ 2

β
)p(x)− p2(x)− λe−x

)
dx,

it holds

P(Λ(β, a, κ) > λ) := Pκ
(
p(·) never vanishes

)
.

Can certainly write down a PDE in (λ, κ) for this probability; the connection
to Painlevé remains open.

What you can check is that you do indeed recover the spiked soft edge
distributions by taking a ↑ ∞:

a2 − Λ(β,2a, a+ a1/3w)

a4/3
⇒ TW β,ω.

(The convergence takes place over the entire point processes.)



Spiking and growth models

As is well known, there is an equality in law between last passage with inde-
pendent exponential weights and the largest eigenvalue of the β = 2 Laguerre
ensemble:

P
(
`n,m ≤ λ

)
= P
(
λmax(n,m) ≤ λ

)
.

Spiking (once) on the random matrix side corresponds to changing the mean
of the exponentials on the x-axis in the last passage setup.

The hard edge appears in Hammersley’s process: take the unit square with
Poisson points of intensity t and make a path from origin to (1,1) by “con-
necting the dots”, keeping the slope positive. Then,

P(`t ≤ a) = e−t〈e2
√
t
∑a

k=1
cos(θk)〉U(a) = P

(
Λ(2, a) ≥ 4t

)
.

Hammersley’s process with boundaries was in fact where the spiked soft edge
laws first appeared (in the large t limit). But there are no Painlevé expressions
pre-limit, and no apparent connection to any “perturbed” hard edge.


