Occupation probabilities for coalescing (annihilating) Brownian motions on \mathbb{R}

Roger Tribe and Oleg Zaboronski

Department of Mathematics, University of Warwick

Plan

- Quantities
- Coalescing (annihilating) Brownian motions (CABM)
- Review of known results
- The main result for occupation probabilities
- Structures
- Pfaffian representation for occupation probabilities
- Duality and the maximal entrance law
- Pfaffian point processes and CABM
- Conclusions

CABM's

- Thinning relation:
$\left(X_{t}^{i}\right)$ under $P_{\Theta(\Omega)}^{A} \stackrel{D}{=}$
$\Theta\left(X_{t}^{i}\right)$ under P_{Ω}^{C}
- Proof :Colouring
- Particles perform independent Brownian motions on \mathbb{R} until they meet
- At the moment of collision particles instantly coagulate. The aggregate follows a Brownian path with the same diffusion rate
- The main object of interest: $\rho_{n}\left(t, x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}-$ the probability of finding n particles in $d x_{1}, \ldots, d x_{n}$ at time t

Mean field analysis

- 'Chemist': Aggregation rate is proportional to the number of pairs of particles within the interaction range
- Hence the rate equation: $\partial_{t} \rho_{1}(t)=-\lambda(r, D) \rho_{1}(t)^{2}$
- Solution: $\rho_{1}(t) \sim \frac{1}{t}$
- Implicit mean field assumption: $\rho_{n}(t) \sim \rho_{1}(t)^{n}$
- Consequently, $\rho_{n} \sim \frac{1}{t^{n}}$

The breakdown of mean field theory: anti-correlations

(Monte-Carlo simulations on \mathbb{Z}. ${ }^{\times \Delta x}$ Courtesy of Colm Connaughton)

Known rigorous results for $t \rightarrow \infty$

$$
d=1
$$

- $\rho_{1}(t) \sim \frac{1}{\sqrt{t}}$
(Bramson-Griffeath,
Z, 1980;
Bramson-Lebowitz, 1988)
- Exact expression for $\rho_{n}(t)$ for all t 's using empty interval method in the form of the sum of products of duffusive Greens' functions with alternating signs. (ben-Avraham, 1998)

- For $d=2, \rho_{1}(t) \sim \frac{\ln (t)}{t}$ (Bramson-Lebowitz, 1988)
- For $d>2, \rho_{1}(t) \sim$ $\frac{1}{t}$ (Bramson-Lebowitz, 1988; van den Berg and Kesten, finite reaction rates, 2002)

Predictions from (non-rigorous) renormalization group analysis

$$
\rho_{n}(t) \sim \begin{cases}t^{-\frac{n}{2}-\frac{n(n-1)}{4}} & d=1 \\ \left(\frac{\ln t}{t}\right)^{n}(\ln t)^{-\frac{n(n-1)}{2}} & d=2 \\ t^{-n} & d>2\end{cases}
$$

- Note the non-linear dependence of the scaling exponent on n in $d=1$

Multi-scaling of occupation probabilities

Theorem 1 Under the maximal entrance law for $C(A) B M$'s,
$\sup _{\left|x_{i}\right| \ll t^{1 / 2}}\left|\rho_{t}^{(2 n)}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)-c_{n} t^{-n}\right| \Delta_{2 n}\left(\frac{x}{\sqrt{t}}\right)| | \rightarrow 0$ as $t \rightarrow \infty$,
$\Delta_{2 n}(x)=\prod_{1 \leq i<j \leq 2 n}\left(x_{i}-x_{j}\right), c_{n}^{A B M}=\frac{1}{4^{n}} C_{n}^{C B M}$

- IC's: Maximal entrance law initial conditions (Arratia, 1981): 'one particle per site' at $t=0$ - as in Brownian web
- Construction: Poisson (λ) initial distribution with $\lambda \rightarrow \infty$

Pfaffians and interacting particle systems

Theorem 2 Consider a system of ABM's with $2 n$ particles at $t=0, x_{1}<x_{2}<\ldots x_{2 n}$. Then the product moment $m_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\mathbb{E}_{\left(x_{1}, \ldots, x_{n}\right)}^{A}\left(\prod_{i \in I_{t}} g\left(X_{t}^{i}\right)\right)$ is given by the Pfaffian of an $2 n \times 2 n$ antisymmetric matrix:

$$
m_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)=\operatorname{Pf}\left((-1)^{\chi(j>i)} m_{t}^{(2)}\left(x_{i}, x_{j}\right)\right)
$$

Proof. $m_{t}^{(2 n)}\left(x_{1}, \ldots, x_{2 n}\right)$ solves heat equation on the cell
$x_{1}<x_{2}<\ldots x_{2 n} \subset \mathbf{R}^{2 n}$. BC's: $\left.m_{t}^{(2 n)}\right|_{x_{i}=x_{i+1}}=m_{t}^{(2 n-2)}$. IC's:
$m_{0}^{(2 n)}=\prod_{k=1}^{2 n} g\left(x_{k}\right)$. Pfaffian solves the equation and
satisfies IC's, BC's. The theorem follows by uniqueness

Coalescing Brownian motions and Pfaffians

- CBM-ABM duality (Arratia) for the maximal entrance law:

$$
P_{\infty}^{C}\left[N_{t}\left[a_{1}, a_{2}\right]=0 \ldots N_{t}\left[a_{2 n-1}, a_{2 n}\right]=0\right]=P_{\left(a_{i}\right)}^{A}(\tau<t)
$$

- The right hand side is the Pfaffian of $P_{a_{i}, a_{j}}^{(A)}(\tau<t)$
(Brownian hitting prob)
- Proof: set $g \equiv 0$ in Thm 2
- Conclusion: empty interval probabilities are Pfaffians

CBM's and Pfaffian point processes.

Theorem 3 Under the maximal entrance law for coalescing Brownian motions, the particle positions at time t form a Pfaffian point process with kernel $t^{-1 / 2} K\left(x t^{-1 / 2}, y t^{-1 / 2}\right)$, where

$$
K(x, y)=\left(\begin{array}{cc}
-F^{\prime \prime}(y-x) & -F^{\prime}(y-x) \\
F^{\prime}(y-x) & \operatorname{sgn}(y-x) F(|y-x|)
\end{array}\right)
$$

and $F(x)=\pi^{-1 / 2} \int_{x}^{\infty} e^{-z^{2} / 4} d z$. (Here $\operatorname{sgn}(z)=1$ for $z>0$, $\operatorname{sgn}(z)=-1$ for $z<0$ and $\operatorname{sgn}(0)=0$.)
Proof: Differentiate the pfaffian expression for empty interval probabilities with respect to right end points.
Closing the loop: Theorem 11 follows from the large- t expansion of the pfaffian formulae for ρ_{n} 's

CABM's and random matrices

Corollary 4

$$
K_{t}^{A B M}(x, y)=\frac{1}{\sqrt{2 t}} K_{r r}^{\text {Ginibre }}\left(\frac{x}{\sqrt{2 t}}, \frac{y}{\sqrt{2 t}}\right),
$$

where $K_{r r}^{\text {Ginibre }}$ is the $N \rightarrow \infty$ limit of the Kernel of the Pfaffian point process characterising the law of real eigenvalues in the real Ginibre (N) ensemble,

$$
\mu_{N}(d \mathbf{M})=\frac{1}{(2 \pi)^{N^{2} / 2}} e^{-\frac{1}{2} \operatorname{Tr}\left(\mathbf{M}^{T} \mathbf{M}\right)} \lambda_{N \times N}(d \mathbf{M})
$$

(Ginibre, Edelman, Sommers, Akemann, Forrester, Sinclair, Borodin, ...)

- Mean field approximation in $d=1$ is invalidated by strong negative correlations between the particles
- Multi-point probability densities exhibit quadratic multi-scaling
- One-dimensional occupation densities in CBM's are a Pfaffian point process
- The same process describes occupation densities of real eigenvalues in $N \rightarrow \infty$ limit of real Ginibre matrix ensemble

Open questions, references

- Is there a relation between CABM's and the $G L(N)$-valued Brownian Motions? ("Ginibre process"). Conjecture presented in [2] incorrect
- Rigorous derivation of logarithmic corrections in $d=2$?
- References:

1. Multi-Scaling of the n-Point Density Function for Coalescing Brownian Motions , CMP Vol. 268, No. 3, December 2006;
2. Pfaffian formulae for one dimensional coalescing and annihilating systems, arXiv Math.PR: 1009.4565; EJP, vol. 16, Article 76 (2011)
