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CABM’s

Thinning relation:

(Xi
t) under PA

Θ(Ω)
D
=

Θ(Xi
t) underPC

Ω

Proof :Colouring

Particles perform
independent Brownian
motions on R until they
meet

At the moment of collision
particles instantly
coagulate. The aggregate
follows a Brownian path
with the same diffusion
rate

The main object of interest:
ρn(t, x1, . . . , xn)dx1 . . . dxn -
the probability of finding n

particles in dx1, . . . , dxn at
time t
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Mean field analysis

’Chemist’: Aggregation rate is proportional to the
number of pairs of particles within the interaction range

Hence the rate equation: ∂tρ1(t) = −λ(r,D)ρ1(t)
2

Solution: ρ1(t) ∼ 1
t

Implicit mean field assumption: ρn(t) ∼ ρ1(t)
n

Consequently, ρn ∼ 1
tn
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The breakdown of mean field theory: anti-correlations
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Known rigorous results for t → ∞

d = 1
ρ1(t) ∼ 1√

t

(Bramson-Griffeath,
Z, 1980;
Bramson-Lebowitz,
1988)

Exact expression for
ρn(t) for all t’s using
empty interval method
in the form of the sum
of products of duffu-
sive Greens’ functions
with alternating signs.
(ben-Avraham, 1998)

d ≥ 2

For d = 2, ρ1(t) ∼ ln(t)
t

(Bramson-Lebowitz,
1988)

For d > 2, ρ1(t) ∼
1
t (Bramson-Lebowitz,
1988; van den Berg
and Kesten, finite re-
action rates, 2002)
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Predictions from (non-rigorous) renormalization group analysis

ρn(t) ∼



















t−
n
2−

n(n−1)
4 d = 1

(

ln t
t

)n
(ln t)−

n(n−1)
2 d = 2

t−n d > 2

Note the non-linear dependence of the scaling
exponent on n in d = 1
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Multi-scaling of occupation probabilities

Theorem 1 Under the maximal entrance law for C(A)BM’s,

sup
|xi|<<t1/2

∣

∣

∣

∣

ρ
(2n)
t (x1, x2, . . . , x2n)− cnt

−n

∣

∣

∣

∣

∆2n

(

x√
t

)
∣

∣

∣

∣

∣

∣

∣

∣

→ 0 as t → ∞,

∆2n(x) =
∏

1≤i<j≤2n(xi − xj), cABM
n = 1

4n c
CBM
n

IC’s: Maximal entrance law initial conditions (Arratia,
1981): ’one particle per site’ at t = 0 - as in Brownian
web

Construction: Poisson(λ) initial distribution with λ → ∞
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Pfaffians and interacting particle systems

Theorem 2 Consider a system of ABM’s with 2n particles
at t = 0, x1 < x2 < . . . x2n. Then the product moment

m
(2n)
t (x1, . . . , x2n) = E

A
(x1,...,xn)

(
∏

i∈It g(X
i
t)
)

is given by the

Pfaffian of an 2n× 2n antisymmetric matrix:

m
(2n)
t (x1, . . . , x2n) = Pf

(

(−1)χ(j>i)m
(2)
t (xi, xj)

)

Proof. m
(2n)
t (x1, . . . , x2n) solves heat equation on the cell

x1 < x2 < . . . x2n ⊂ R
2n. BC’s: m(2n)

t |xi=xi+1
= m

(2n−2)
t . IC’s:

m
(2n)
0 =

∏2n
k=1 g(xk). Pfaffian solves the equation and

satisfies IC’s, BC’s. The theorem follows by uniqueness
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Coalescing Brownian motions and Pfaffians

CBM-ABM duality (Arratia) for the maximal entrance
law:

PC
∞[Nt[a1, a2] = 0 . . . Nt[a2n−1, a2n] = 0] = PA

(ai)
(τ < t)

The right hand side is the Pfaffian of P (A)
ai,aj(τ < t)

(Brownian hitting prob)
Proof: set g ≡ 0 in Thm 2

Conclusion: empty interval probabilities are Pfaffians
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CBM’s and Pfaffian point processes.

Theorem 3 Under the maximal entrance law for coalescing
Brownian motions, the particle positions at time t form a
Pfaffian point process with kernel t−1/2K(xt−1/2, yt−1/2),
where

K(x, y) =

(

−F ′′(y − x) −F ′(y − x)

F ′(y − x) sgn(y − x)F (|y − x|)

)

and F (x) = π−1/2
∫∞
x e−z2/4dz. (Here sgn(z) = 1 for z > 0,

sgn(z) = −1 for z < 0 and sgn(0) = 0.)
Proof: Differentiate the pfaffian expression for empty interval
probabilities with respect to right end points.
Closing the loop: Theorem 1 follows from the large-t
expansion of the pfaffian formulae for ρn’s
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CABM’s and random matrices

Corollary 4

KABM
t (x, y) =

1√
2t
KGinibre

rr

(

x√
2t
,

y√
2t

)

,

where KGinibre
rr is the N → ∞ limit of the Kernel of the

Pfaffian point process characterising the law of real
eigenvalues in the real Ginibre(N) ensemble,

µN (dM) =
1

(2π)N
2/2

e−
1

2
Tr(MT

M)λN×N (dM)

(Ginibre, Edelman, Sommers, Akemann, Forrester, Sinclair,
Borodin, ...)
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Conclusions

Mean field approximation in d = 1 is invalidated by
strong negative correlations between the particles

Multi-point probability densities exhibit quadratic
multi-scaling

One-dimensional occupation densities in CBM’s are a
Pfaffian point process

The same process describes occupation densities of
real eigenvalues in N → ∞ limit of real Ginibre matrix
ensemble
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Open questions, references

Is there a relation between CABM’s and the
GL(N)-valued Brownian Motions? ("Ginibre process").
Conjecture presented in [2] incorrect

Rigorous derivation of logarithmic corrections in d = 2?
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