# Occupation probabilities for coalescing (annihilating) Brownian motions on $\mathbb{R}$

**Roger Tribe and Oleg Zaboronski** 

Department of Mathematics, University of Warwick

# Plan

#### Quantities

- Coalescing (annihilating) Brownian motions (CABM)
- Review of known results
- The main result for occupation probabilities

#### Structures

- Pfaffian representation for occupation probabilities
- Duality and the maximal entrance law
- Pfaffian point processes and CABM

#### Conclusions



- Thinning relation:  $(X_t^i)$  under  $P_{\Theta(\Omega)}^A \stackrel{D}{=} \Theta(X_t^i)$  under  $P_{\Omega}^C$
- **Proof** :Colouring

# CABM's

- Particles perform
   independent Brownian
   motions on R until they
   meet
- At the moment of collision particles instantly coagulate. The aggregate follows a Brownian path with the same diffusion rate
- The main object of interest:  $\rho_n(t, x_1, \dots, x_n) dx_1 \dots dx_n$ the probability of finding nparticles in  $dx_1, \dots, dx_n$  at time t

# Mean field analysis

- Chemist': Aggregation rate is proportional to the number of pairs of particles within the interaction range
- Hence the rate equation:  $\partial_t \rho_1(t) = -\lambda(r, D)\rho_1(t)^2$
- **Solution:**  $\rho_1(t) \sim \frac{1}{t}$
- Implicit mean field assumption:  $\rho_n(t) \sim \rho_1(t)^n$
- Consequently,  $\rho_n \sim \frac{1}{t^n}$

#### The breakdown of mean field theory: anti-correlations



#### **Known rigorous results for** $t \to \infty$

- d = 1
- $\rho_1(t) \sim \frac{1}{\sqrt{t}}$ (Bramson-Griffeath, Z, 1980;
  Bramson-Lebowitz, 1988)
- Exact expression for  $\rho_n(t)$  for all t's using empty interval method in the form of the sum of products of duffusive Greens' functions with alternating signs. (ben-Avraham, 1998)

# $d \ge 2$

- For d = 2,  $\rho_1(t) \sim \frac{ln(t)}{t}$ (Bramson-Lebowitz, 1988)
- ▶ For d > 2,  $\rho_1(t) \sim \frac{1}{t}$  (Bramson-Lebowitz, 1988; van den Berg and Kesten, finite reaction rates, 2002)

#### **Predictions from (non-rigorous) renormalization group analysis**

$$\rho_n(t) \sim \begin{cases} t^{-\frac{n}{2} - \frac{n(n-1)}{4}} & d = 1\\ \left(\frac{\ln t}{t}\right)^n (\ln t)^{-\frac{n(n-1)}{2}} & d = 2\\ t^{-n} & d > 2 \end{cases}$$

Solution Note the non-linear dependence of the scaling exponent on n in d = 1

#### **Multi-scaling of occupation probabilities**

**Theorem 1** Under the maximal entrance law for C(A)BM's,

$$\sup_{|x_i| < < t^{1/2}} \left| \rho_t^{(2n)}(x_1, x_2, \dots, x_{2n}) - c_n t^{-n} \left| \Delta_{2n} \left( \frac{x}{\sqrt{t}} \right) \right| \right| \to 0 \text{ as } t \to \infty,$$

$$\Delta_{2n}(x) = \prod_{1 \le i < j \le 2n} (x_i - x_j), \ c_n^{ABM} = \frac{1}{4^n} c_n^{CBM}$$

- IC's: Maximal entrance law initial conditions (Arratia, 1981): 'one particle per site' at t = 0 as in Brownian web
- **•** Construction: Poisson( $\lambda$ ) initial distribution with  $\lambda \to \infty$

#### **Pfaffians and interacting particle systems**

**Theorem 2** Consider a system of ABM's with 2n particles at t = 0,  $x_1 < x_2 < ... x_{2n}$ . Then the product moment  $m_t^{(2n)}(x_1,...,x_{2n}) = \mathbb{E}^A_{(x_1,...,x_n)} \left(\prod_{i \in I_t} g(X_t^i)\right)$  is given by the Pfaffian of an  $2n \times 2n$  antisymmetric matrix:

$$m_t^{(2n)}(x_1,\ldots,x_{2n}) = Pf\left((-1)^{\chi(j>i)}m_t^{(2)}(x_i,x_j)\right)$$

**Proof.**  $m_t^{(2n)}(x_1, \ldots, x_{2n})$  solves heat equation on the cell  $x_1 < x_2 < \ldots x_{2n} \subset \mathbb{R}^{2n}$ . BC's:  $m_t^{(2n)} \mid_{x_i = x_{i+1}} = m_t^{(2n-2)}$ . IC's:  $m_0^{(2n)} = \prod_{k=1}^{2n} g(x_k)$ . Pfaffian solves the equation and satisfies IC's, BC's. The theorem follows by uniqueness

# **Coalescing Brownian motions and Pfaffians**

CBM-ABM duality (Arratia) for the maximal entrance law:

$$P_{\infty}^{C}[N_{t}[a_{1}, a_{2}] = 0 \dots N_{t}[a_{2n-1}, a_{2n}] = 0] = P_{(a_{i})}^{A}(\tau < t)$$

The right hand side is the Pfaffian of  $P_{a_i,a_j}^{(A)}(\tau < t)$  (Brownian hitting prob)

• Proof: set  $g \equiv 0$  in Thm 2

Conclusion: empty interval probabilities are Pfaffians

# **CBM's and Pfaffian point processes.**

**Theorem 3** Under the maximal entrance law for coalescing Brownian motions, the particle positions at time *t* form a Pfaffian point process with kernel  $t^{-1/2}K(xt^{-1/2}, yt^{-1/2})$ , where

$$K(x,y) = \begin{pmatrix} -F''(y-x) & -F'(y-x) \\ F'(y-x) & sgn(y-x)F(|y-x|) \end{pmatrix}$$

and  $F(x) = \pi^{-1/2} \int_x^\infty e^{-z^2/4} dz$ . (Here sgn(z) = 1 for z > 0, sgn(z) = -1 for z < 0 and sgn(0) = 0.)

**Proof:** Differentiate the pfaffian expression for empty interval probabilities with respect to right end points. **Closing the loop:** Theorem 1 follows from the large-*t* expansion of the pfaffian formulae for  $\rho_n$ 's

#### **CABM's and random matrices**

# **Corollary 4**

$$K_t^{ABM}(x,y) = \frac{1}{\sqrt{2t}} K_{rr}^{Ginibre} \left(\frac{x}{\sqrt{2t}}, \frac{y}{\sqrt{2t}}\right),$$

where  $K_{rr}^{Ginibre}$  is the  $N \rightarrow \infty$  limit of the Kernel of the Pfaffian point process characterising the law of real eigenvalues in the real Ginibre(N) ensemble,

$$\mu_N(d\mathbf{M}) = \frac{1}{(2\pi)^{N^2/2}} e^{-\frac{1}{2}Tr(\mathbf{M}^T\mathbf{M})} \lambda_{N \times N}(d\mathbf{M})$$

(Ginibre, Edelman, Sommers, Akemann, Forrester, Sinclair, Borodin, ...)

# Conclusions

- Mean field approximation in d = 1 is invalidated by strong negative correlations between the particles
- Multi-point probability densities exhibit quadratic multi-scaling
- One-dimensional occupation densities in CBM's are a Pfaffian point process
- The same process describes occupation densities of real eigenvalues in  $N \rightarrow \infty$  limit of real Ginibre matrix ensemble

# **Open questions, references**

- Is there a relation between CABM's and the GL(N)-valued Brownian Motions? ("Ginibre process").
   Conjecture presented in [2] incorrect
- Rigorous derivation of logarithmic corrections in d = 2?

#### References:

- Multi-Scaling of the *n*-Point Density Function for Coalescing Brownian Motions, CMP Vol. 268, No. 3, December 2006;
- 2. *Pfaffian formulae for one dimensional coalescing and annihilating systems*, arXiv Math.PR: 1009.4565; EJP, vol. **16**, Article 76 (2011)