Stochastic calculus of variations on the diffeomorphisms group
 Warwick, April 2012

Ana Bela Cruzeiro
Dep. Mathematics IST (TUL)
Grupo de Física-Matemática Univ. Lisboa

The diffeomorphisms group

M compact finite-dim. Riemannian manifold Here $M=\mathbb{T}^{2}$
$G^{S}=\left\{g \in H^{s}(M, M): g\right.$ bijective , $\left.g^{-1} \in H^{s}(M, M)\right\}$
If $s>2, H^{s} \subset C^{1}$ and is a (infinite dim.) Hilbert manifold, locally diffeomorphic to
$H_{g}^{s}(T M)=\left\{X \in H^{s}(M ; T M): \pi o X=g\right\}, \pi: T M \rightarrow M$
chart at g given by:
$\varphi: H_{g}^{s}(T M) \rightarrow\{$ diffeom.on $M\}$
$\varphi(X)()=.\exp \circ X($.
G^{s} is a group for composition of maps
Lie algebra:
$\mathcal{G}^{s}=H^{s}(T M)\left(=H_{e}^{s}(T M)\right)$
($e=\mathrm{id}$)
On G^{s} we consider the Riemannian metric

$$
<X_{g}, Y_{g}>_{L^{2}}=\int_{M}<X_{g}(x), Y_{g}(x)>d m(x)
$$

for $X, Y \in T_{g}\left(G^{s}(M)\right)=H_{g}^{s}(T M)$ (weak Riemannian structure, Ebin-Marsden)

Volume preserving counterparts:

$$
\begin{aligned}
& G_{V}^{s}=\left\{g \in G^{s}:(g)_{*}(d m)=d m\right\} \\
& \mathcal{G}_{V}^{s}=\left\{X \in H^{s}: \operatorname{div} X=0\right\}
\end{aligned}
$$

G_{V}^{s} submanifold of G^{s}
There exists a right-invariant Levi-Civita connection ∇^{0} :

$$
\nabla_{X}^{0} Y=P_{e}\left(\nabla_{X} Y\right)
$$

where P_{e} orth. projection into the divergence free part in the Hodge decomposition,

$$
H^{s}(T M)=\operatorname{div}^{-1}(\{0\}) \oplus_{L^{2}} \operatorname{grad} H^{s+1}(M)
$$

Hydrodynamics:

Geodesic equation for $\nabla^{0}=$ Euler equation

$$
\frac{\partial u}{\partial t}+(u . \nabla u)=-\nabla p
$$

equaivalent to

$$
\frac{\partial u}{\partial t}+\nabla_{u}^{0}(u)=-\nabla p
$$

Brownian motions

On the Lie algebra we consider

$$
d x(t)=\sum_{k}\left(A_{k} d x_{k}^{1}(t)+B_{k} d x_{k}^{2}(t)\right)
$$

x_{k}^{i} i.i.d. real valued Br. motions, $A_{k}, B_{k} L^{2}$ o.n. basis:

$$
\begin{aligned}
A_{k} & \left.=\frac{1}{|k|}\left[\left(k_{2} \cos k \cdot \theta\right) \partial_{1}-\left(k_{1} \cos k \cdot \theta\right) \partial_{2}\right)\right] \\
B_{k} & \left.=\frac{1}{|k|}\left[\left(k_{2} \sin k \cdot \theta\right) \partial_{1}-\left(k_{1} \sin k \cdot \theta\right) \partial_{2}\right)\right]
\end{aligned}
$$

$k \in \tilde{Z}^{2}-\{(0,0)\}$,
$|k|^{2}=k_{1}^{2}+k_{2}^{2}$,
$\partial_{i}=\frac{\partial}{\partial \theta^{\prime}}$

Brownian motions on the group G_{V} :

$$
d g(t)=o \rho(x(t)) g(t), \quad g(0)=e
$$

for ρ an Hermitian operator that diagonalizes in the basis A_{k} and B_{k} with the same eigenvalues λ_{k}.

Theorem.

The process is well defined iff $\sum_{k} \lambda_{k}^{2}<\infty$
Proof. Use S. Fang's methodology, e.g.
Generator:

$$
\begin{gathered}
\Delta_{\rho}=\frac{1}{2} \sum_{k} \lambda_{k}^{2}\left(\partial_{A_{k}}^{2}+\partial_{B_{k}}^{2}\right) \\
\partial_{Z} f(g)=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f(\exp (\epsilon Z) g
\end{gathered}
$$

In particular no canonical L^{2} Brownian motion.

Constants of structure:

$$
\begin{gathered}
{\left[A_{k}, A_{l}\right]=\frac{[k, I]}{2|k| I \| \mid}\left(|k+I| B_{k+1}+|k-I| B_{k-1}\right)} \\
{\left[B_{k}, B_{l}\right]=-\frac{[k, I]}{2|k| I| |}\left(|k+I| B_{k+1}-|k-I| B_{k-1}\right)} \\
{\left[A_{k}, B_{l}\right]=-\frac{[k, l]}{2|k| I| |}\left(|k+I| A_{k+1}-|k-I| A_{k-1}\right)} \\
{\left[\partial_{i}, A_{k}\right]=-k_{i} B_{k}} \\
{\left[\partial_{i}, B_{k}\right]=k_{i} A_{k}}
\end{gathered}
$$

For

$$
\begin{gathered}
\alpha_{k, l}:=\frac{1}{2|k| I I| | k+I \mid}(I \mid(I+k)) \\
\beta_{k, l}:=\alpha_{-k, l}=\frac{1}{2|k| I \|||k-I|}(I \mid(I-k)) \\
{[k, l]=k_{1} l_{2}-k_{2} l_{1}}
\end{gathered}
$$

Christoffel symbols:
$\nabla_{A_{k}, A_{l}}^{0}=[k, I]\left(\alpha_{k, l} B_{k+l}+\beta_{k, l} B_{k-l}\right), \quad \nabla_{B_{k}, B_{l}}^{0}=[k, I]\left(-\alpha_{k, l} B_{k+l}+\beta_{k, I} B_{k-l}\right)$
$\nabla_{A_{k}, B_{l}}^{0}=[k, I]\left(-\alpha_{k, l} A_{k+I}+\beta_{k, l} A_{k-I}\right), \quad \nabla_{B_{k}, A_{l}}^{0}=[k, I]\left(-\alpha_{k, l} A_{k+I}-\beta_{k, l} A_{k-I}\right)$

Remarks:

1. The Christoffel symbols give rise to unbounded antihermitian operators on \mathcal{G}.
2. Since $\nabla_{A_{k}, A_{k}}^{0}=\nabla_{B_{k}, B_{k}}^{0}=0$, Stratanovich = Itô in the equation for $g(t)$.
3. We do not want use the metric $<U, V>_{\rho}=<\rho(U), V>$.

Lifting to the frame bundle

Orthonormal frames above G_{V} :
$r: T_{g}\left(G_{V}\right) \rightarrow \mathcal{G}_{V}$ isometric isomorphism
$O\left(G_{V}\right)=$ collection of o.n. frames (frame bundle) above G_{V}
it can be identified with $S=\mathcal{U}\left(\mathcal{G}_{V}\right) \times G_{V}$
where \mathcal{U} stands for unitary group.
Lie algebra of $S=\mathcal{S}=s u\left(G_{V}\right) \times \mathcal{G}_{V}$.
Denote (σ, ω) the parallelism in S defined by the Levi-Civita connection.

Lift of a vector filed Z :

$$
<\tilde{Z}, \sigma>_{U, g}=U Z, \ldots \quad,<\tilde{Z}, \omega>=0
$$

We have $\left[\partial_{Z} f\right] \circ \pi=\partial_{\tilde{Z}}(f \circ \pi), \pi: \mathcal{S} \rightarrow G_{V}$
Lifted Laplacian:

$$
\tilde{\Delta}_{\rho}=\frac{1}{2} \sum_{k} \lambda_{k}^{2}\left(\partial_{\tilde{A}_{k}}^{2}+\partial_{\tilde{B}_{k}}^{2}\right)
$$

Then $\left[\Delta_{\rho} f\right] \circ \pi=\tilde{\Delta}_{\rho}(f \circ \pi)$ generates the lifted ρ-Brownian motion $r_{x}(t)$
$\pi\left(r_{x}(t)\right)=g(t)$
$<o d r_{x}(t), \omega>=0$

Stochastic calculus of variations

Derivation of the Itô map $x \rightarrow r_{x}(t)$:
Theorem. For $r_{0} \in S$ and given a semimartingale ξ with values in $T_{r_{0}}(S)$ with an antisymmetric diffusion coefficient, we have,

$$
\begin{aligned}
& <\left.\frac{d}{d \tau}\right|_{\tau=0} r_{x}\left(r_{0}+\tau \xi\right)(t), \sigma>=\xi_{x, t}^{\prime} \\
& <\left.\frac{d}{d \tau}\right|_{\tau=0} r_{x}\left(r_{0}+\tau \xi\right)(t), \omega>=\gamma_{x, t}
\end{aligned}
$$

where

$$
\begin{gathered}
d \xi^{\prime}(t)=\left(\Gamma_{\xi_{x, t}^{\prime}} \rho-\rho \Gamma_{\xi_{x, t}^{\prime}}\right) \circ d x(t)+\gamma_{x, t}(\rho \circ d x(t)) \\
d \gamma(t)=\Omega\left(\xi^{\prime}(t), \rho \circ d x(t)\right)
\end{gathered}
$$

with $\gamma_{x, 0}=0$ and $\xi_{x, 0}^{\prime}=<\xi, \sigma>$

Difficulty:

We cannot choose $\rho=l d$ and

$$
\Gamma_{\xi_{x, t}^{\prime}} \rho-\rho \Gamma_{\xi_{x, t}^{\prime}}
$$

is not antisymmetric.

Truncated diffusions

Consider the case $\lambda_{k}=1$ for $|k| \leq N$ and $\lambda_{k}=0$ for $|k|>N, \rho^{N}$ the corresponding operator;
Denote by $r_{x}^{N}(t)$ the S-valued process for such this choice and call it truncated diffusion.
(r_{x}^{N} not finite dimensional projections: still infinite-dimensional, but driven by a finite number of Brownian motions)

$$
\begin{gathered}
\pi\left(\tilde{r}_{x, t}^{N}\right)=g_{x, t}^{N} \\
<o d \tilde{r}_{x, t}^{N}, \omega>=0
\end{gathered}
$$

where

$$
d g_{x, t}^{N}=o d x^{N}(t) g_{x, t}^{N}, \quad \quad g_{x, 0}^{N}=e
$$

and

$$
d x^{N}(t)=\sum_{|k| \leq N}\left(A_{k} d x_{k}^{1}(t)+B_{k} d x_{k}^{2}(t)\right)
$$

Theorem.

For $r_{0} \in S$ and given a semimartingale ξ with values in $T_{r_{0}}(S)$, with an antisymmetric diffusion coefficient, we have

$$
\begin{aligned}
& <\left.\frac{d}{d \tau}\right|_{\tau=0} r_{x}^{N}\left(r_{0}+\tau \xi\right)(t), \sigma>=\xi_{x, t}^{N} \\
& <\left.\frac{d}{d \tau}\right|_{\tau=0} r_{x}^{N}\left(r_{0}+\tau \xi\right)(t), \omega>=\gamma_{x, t}^{N}
\end{aligned}
$$

where, for components k such that $|k| \leq N$ we have

$$
\begin{aligned}
& d\left(\xi^{N}(t)\right)^{k}=\left(\gamma_{x, t}^{N}\left(\circ d x^{N}(t)\right)^{k}\right. \\
& d \gamma^{N}(t)=\Omega\left(\xi^{N}(t), \circ d x^{N}(t)\right)
\end{aligned}
$$

where $\gamma_{x, 0}^{N}=0$ and $\xi_{x, 0}^{N}=<\xi, \sigma>$.

Proof.

As Γ antisymmetric, matrix $\left(\Gamma \rho^{N}-\rho^{N} \Gamma\right)_{k, j}$, with $|k|,|j| \leq N$ equal to zero.

Among the consequences

Corollary.(Bismut formula)
If Φ is a cylindrical functional on G_{V}, we have

$$
\left.\frac{d}{d \tau}\right|_{\tau=0} E\left(\Phi\left(\pi\left(\tilde{r}_{x}^{N, N}\left(r_{0}+\tau \xi\right)\right)\right)\right)=E\left(<\left[\tilde{r}_{x}^{N, N}\right]^{-1}\left(\zeta_{x, t}^{N}\right), D \Phi>_{g_{x, t}^{N}}\right)
$$

where ζ^{N} satisfies

$$
\left(d \zeta^{N}\right)^{k}=\left(\gamma_{x, t}^{N} d x^{N}(t)\right)^{k}-\frac{1}{2}\left(\operatorname{Ricci}^{N}\left(\zeta^{N}(t)\right)\right)^{k} d t
$$

$|k| \leq N$, and where $\operatorname{Ricci}{ }^{N}$ is the operator defined by

$$
\operatorname{Ricci}^{N}(Z)=-\sum_{|k| \leq N}\left(\Omega\left(A_{k}, Z, A_{k}\right)+\Omega\left(B_{k}, Z, B_{k}\right)\right)
$$

Expression of the Ricci tensor:

$$
\begin{aligned}
& \operatorname{Ricci}^{N}\left(A_{j}\right)=-\sum_{|k| \leq N}[k, j]^{4} \frac{|k|^{2}+|j|^{2}}{|k|^{2}|j|^{2}|k-j|^{2}|k+j|^{2}} A_{j} \\
& \operatorname{Ricci}^{N}\left(B_{j}\right)=-\sum_{|k| \leq N}[k, j]^{4} \frac{|k|^{2}+|j|^{2}}{|k|^{2}|j|^{2}|k-j|^{2}|k+j|^{2}} B_{j}
\end{aligned}
$$

Weitzenbock formulae:

$$
\begin{aligned}
& \qquad d(\Delta f)_{l}-\Delta(d f)_{l}-\operatorname{Ricci}_{\rho}(d f)_{l} \\
& =\sum_{k, i} \rho(k)^{2} \Gamma_{l, k}^{i}\left(\partial_{k} \partial_{i} f+\partial_{i} \partial_{k} f\right)+\sum_{k, m, j} \rho(k)^{2}\left(\Gamma_{k, m}^{\prime}\left[e_{j}, e_{m}\right]^{k}+\Gamma_{m, k}^{\prime}\left[e_{k}, e_{j}\right]^{m}\right) \partial_{j} \\
& \left(e_{k}=A_{k} \text { or } B_{k}\right) .
\end{aligned}
$$

Back to Hydrodynamics:

The equation

$$
\frac{\partial u}{\partial t}+\nabla_{u}^{0}(u)+\nu \sum_{|k| \leq N} \nabla_{k}^{0} \nabla_{k}^{0}(u)+\nu \operatorname{Ricci}^{N}(u)=-\nabla p
$$

is equivalent to

$$
\frac{\partial u}{\partial t}+(u . \nabla u)+\nu c(N) \Delta u=-\nabla p
$$

(Navier-Stokes equation)
A. B. C., P. Malliavin, Renormalized stochastic calculus of variations for a renormalized infinite-dimensional Brownian motion, Stochastics (2009)

- A. B. C., Stochastic calculus of variations for the diffeomorphisms group , Bulletin des Sciences Mathématiques (2011)
A. B. C., Hydrodynamics, probability and the geometry of the diffeomorphisms group, Seminar on StochasticAnalysis, Random Fields and Applicatios IV, R. C. Dalang. M. Dozzy, F. Russo ed, Birkhauser P.P. 63 (2011)

