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The diffeomorphisms group

The diffeomorphisms group
M compact finite-dim. Riemannian manifold
Here M = T2

Gs = {g ∈ Hs(M,M) : g bijective , g−1 ∈ Hs(M,M)}

If s > 2, Hs ⊂ C1 and is a (infinite dim.) Hilbert manifold, locally
diffeomorphic to
Hs

g(TM) = {X ∈ Hs(M; TM) : πoX = g}, π : TM → M

chart at g given by:
ϕ : Hs

g(TM)→ {diffeom.on M}
ϕ(X )(.) = exp oX (.)
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The diffeomorphisms group

Gs is a group for composition of maps
Lie algebra:
Gs = Hs(TM)(= Hs

e(TM))
(e = id)
On Gs we consider the Riemannian metric

< Xg ,Yg >L2=

∫
M
< Xg(x),Yg(x) > dm(x)

for X ,Y ∈ Tg(Gs(M)) = Hs
g(TM) (weak Riemannian structure,

Ebin-Marsden)

Volume preserving counterparts:
Gs

V = {g ∈ Gs : (g)∗(dm) = dm}
Gs

V = {X ∈ Hs : div X = 0}
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The diffeomorphisms group

Gs
V submanifold of Gs

There exists a right-invariant Levi-Civita connection ∇0:

∇0
X Y = Pe(∇X Y )

where Pe orth. projection into the divergence free part in the Hodge
decomposition,

Hs(TM) = div−1({0})⊕L2 grad Hs+1(M)
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The diffeomorphisms group

Hydrodynamics:

Geodesic equation for∇0 = Euler equation

∂u
∂t

+ (u.∇u) = −∇p

equaivalent to

∂u
∂t

+∇0
u(u) = −∇p
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Brownian motions

Brownian motions
On the Lie algebra we consider

dx(t) =
∑

k

(Akdx1
k (t) + Bkdx2

k (t))

x i
k i.i.d. real valued Br. motions, Ak , Bk L2 o.n. basis:

Ak =
1
|k |

[(k2 cos k .θ)∂1 − (k1 cos k .θ)∂2)]

Bk =
1
|k |

[(k2 sin k .θ)∂1 − (k1 sin k .θ)∂2)]

k ∈ Z̃ 2 − {(0,0)},
|k |2 = k2

1 + k2
2 ,

∂i = ∂
∂θi
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Brownian motions

Brownian motions on the group GV :

dg(t) = oρ(x(t)) g(t), g(0) = e

for ρ an Hermitian operator that diagonalizes in the basis Ak and Bk
with the same eigenvalues λk .
Theorem.
The process is well defined iff

∑
k λ

2
k <∞

Proof. Use S. Fang’s methodology, e.g.
Generator:

∆ρ =
1
2

∑
k

λ2
k (∂2

Ak
+ ∂2

Bk
)

∂Z f (g) =
d
dε
|ε=0f (exp (εZ )g

In particular no canonical L2 Brownian motion.
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Brownian motions

Constants of structure:

[Ak ,Al ] =
[k , l]

2|k ||l |
(|k + l |Bk+l + |k − l |Bk−l)

[Bk ,Bl ] = − [k , l]
2|k ||l |

(|k + l |Bk+l − |k − l |Bk−l)

[Ak ,Bl ] = − [k , l]
2|k ||l |

(|k + l |Ak+l − |k − l |Ak−l)

[∂i ,Ak ] = −kiBk

[∂i ,Bk ] = kiAk

( ) 7 / 19



Brownian motions

For
αk ,l :=

1
2|k ||l ||k + l |

(l | (l + k))

βk ,l := α−k ,l =
1

2|k ||l ||k − l |
(l | (l − k))

[k , l] = k1l2 − k2l1

Christoffel symbols:

∇0
Ak ,Al

= [k , l](αk ,lBk+l +βk ,lBk−l), ∇0
Bk ,Bl

= [k , l](−αk ,lBk+l +βk ,lBk−l)

∇0
Ak ,Bl

= [k , l](−αk ,lAk+l+βk ,lAk−l), ∇0
Bk ,Al

= [k , l](−αk ,lAk+l−βk ,lAk−l)
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Brownian motions

Remarks:

1. The Christoffel symbols give rise to unbounded antihermitian operators on
G.

2. Since ∇0
Ak ,Ak

= ∇0
Bk ,Bk

= 0, Stratanovich = Itô in the equation for g(t).

3. We do not want use the metric < U,V >ρ=< ρ(U),V >.
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Lifting to the frame bundle

Lifting to the frame bundle
Orthonormal frames above GV :
r : Tg(GV )→ GV isometric isomorphism

O(GV )= collection of o.n. frames (frame bundle) above GV

it can be identified with S = U(GV )×GV
where U stands for unitary group.

Lie algebra of S= S = su (GV )× GV .

Denote (σ, ω) the parallelism in S defined by the Levi-Civita connection.
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Lifting to the frame bundle

Lift of a vector filed Z :

< Z̃ , σ >U,g= UZ , ... , < Z̃ , ω >= 0

We have [∂Z f ] o π = ∂Z̃ (foπ), π : S → GV

Lifted Laplacian:

∆̃ρ =
1
2

∑
k

λ2
k (∂2

Ãk
+ ∂2

B̃k
)

Then [∆ρf ] o π = ∆̃ρ(foπ) generates the lifted ρ-Brownian motion rx (t)
π(rx (t)) = g(t)
< odrx (t), ω >= 0
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Stochastic calculus of variations

Stochastic calculus of variations
Derivation of the Itô map x → rx (t):
Theorem.For r0 ∈ S and given a semimartingale ξ with values in Tr0(S)
with an antisymmetric diffusion coefficient, we have,

<
d
dτ |τ=0

rx (r0 + τξ)(t), σ >= ξ′x ,t

<
d
dτ |τ=0

rx (r0 + τξ)(t), ω >= γx ,t

where
dξ′(t) = (Γξ′x,tρ− ρΓξ′x,t ) ◦ dx(t) + γx ,t (ρ ◦ dx(t))

dγ(t) = Ω(ξ′(t), ρ ◦ dx(t))

with γx ,0 = 0 and ξ′x ,0 =< ξ, σ >
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Stochastic calculus of variations

Difficulty:

We cannot choose ρ = Id and

Γξ′x,tρ− ρΓξ′x,t

is not antisymmetric.
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Truncated diffusions

Truncated diffusions
Consider the case λk = 1 for |k | ≤ N and λk = 0 for |k | > N , ρN the
corresponding operator;
Denote by rN

x (t) the S-valued process for such this choice and call it
truncated diffusion.
( rN

x not finite dimensional projections: still infinite-dimensional, but driven
by a finite number of Brownian motions)

π(r̃N
x ,t ) = gN

x ,t

< ◦dr̃N
x ,t , ω >= 0

where
dgN

x ,t = odxN(t)gN
x ,t , gN

x ,0 = e

and
dxN(t) =

∑
|k |≤N

(Akdx1
k (t) + Bkdx2

k (t))
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Truncated diffusions

Theorem.
For r0 ∈ S and given a semimartingale ξ with values in Tr0(S), with an
antisymmetric diffusion coefficient, we have

<
d
dτ |τ=0

rN
x (r0 + τξ)(t), σ >= ξN

x ,t

<
d
dτ |τ=0

rN
x (r0 + τξ)(t), ω >= γN

x ,t

where, for components k such that |k | ≤ N we have

d(ξN(t))k = (γN
x ,t (◦dxN(t))

k

dγN(t) = Ω(ξN(t), ◦dxN(t))

where γN
x ,0 = 0 and ξN

x ,0 =< ξ, σ >.

Proof.
As Γ antisymmetric, matrix (ΓρN − ρNΓ)k ,j , with |k |, |j | ≤ N equal to zero.
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Consequences

Among the consequences
Corollary.(Bismut formula)
If Φ is a cylindrical functional on GV , we have

d
dτ
|τ=0E(Φ(π(r̃N,N

x (r0 + τξ)))) = E(< [r̃N,N
x ]−1(ζN

x ,t ),DΦ >gN
x,t

)

where ζN satisfies

(dζN)k = (γN
x ,tdxN(t))k − 1

2
(RicciN(ζN(t)))kdt

|k | ≤ N , and where RicciN is the operator defined by

RicciN(Z ) = −
∑
|k |≤N

(Ω(Ak ,Z ,Ak ) + Ω(Bk ,Z ,Bk ))
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Consequences

Expression of the Ricci tensor:

RicciN(Aj) = −
∑
|k |≤N

[k , j]4
|k |2 + |j |2

|k |2|j |2|k − j |2|k + j |2
Aj

RicciN(Bj) = −
∑
|k |≤N

[k , j]4
|k |2 + |j |2

|k |2|j |2|k − j |2|k + j |2
Bj
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Consequences

Weitzenbock formulae:

d(∆f )l −∆(df )l − Ricciρ(df )l

=
∑
k ,i

ρ(k)2Γi
l,k (∂k∂i f +∂i∂k f )+

∑
k ,m,j

ρ(k)2(Γl
k ,m[ej ,em]k +Γl

m,k [ek ,ej ]
m)∂j

(ek = Ak or Bk ).
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Consequences

Back to Hydrodynamics:
The equation

∂u
∂t

+∇0
u(u) + ν

∑
|k |≤N

∇0
k∇

0
k (u) + νRicciN(u) = −∇p

is equivalent to

∂u
∂t

+ (u.∇u) + νc(N)∆u = −∇p

(Navier-Stokes equation)
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