Tunneling for spatially cut-off $P(\phi)_{2^{-}}$- Hamiltonian

Shigeki Aida
Tohoku University
April 16, 2012

Introduction

(Spatially cut-off) $\boldsymbol{P}(\boldsymbol{\phi})_{2}$-Hamiltonian $-\boldsymbol{L}+\boldsymbol{V}_{\boldsymbol{\lambda}}$ is an ∞-dimensional Schrödinger operator defined on
$L^{2}\left(\mathcal{S}^{\prime}(I), \mu\right)$, where $I=[-l / 2, l / 2]$ or $I=\mathbb{R}$ and
$\lambda=\frac{1}{\hbar}$.
I explain my recent results:

- Determination of the semi-classical limit of $\boldsymbol{E}_{1}(\boldsymbol{\lambda})$ as $\lambda \rightarrow \infty$
- An estimate on the asymptotic behavior of the gap of spectrum $\boldsymbol{E}_{2}(\boldsymbol{\lambda})-\boldsymbol{E}_{1}(\boldsymbol{\lambda})$ as $\boldsymbol{\lambda} \rightarrow \infty$.

Plan of Talk

1. $\boldsymbol{P}(\phi)_{2}$-Hamiltonian
2. Results for Schrödinger operator $-\Delta+\lambda U(\cdot / \lambda)$
3. Main Result 1: $\lim _{\lambda \rightarrow \infty} \boldsymbol{E}_{1}(\boldsymbol{\lambda})$
4. Main Result 2 :

$$
\limsup _{\lambda \rightarrow \infty} \frac{\log \left(E_{2}(\lambda)-E_{1}(\lambda)\right)}{\lambda} \leq-d_{U}^{W}\left(-h_{0}, h_{0}\right)
$$

5. Properties of Agmon distance $\boldsymbol{d}_{U}^{\boldsymbol{A g}}$.

$P(\phi)_{2}$-Hamiltonian

Let $\boldsymbol{I}=[-l / 2, l / 2]$ or $\boldsymbol{I}=\mathbb{R}$ and $\boldsymbol{m}>\mathbf{0}$. Let $\boldsymbol{H}^{s}(\boldsymbol{I}, \boldsymbol{d x})$ be the Sobolev space with the norm:

$$
\|\varphi\|_{H^{s}(I, d x)}=\left\|\left(m^{2}-\Delta\right)^{s / 2} \varphi\right\|_{L^{2}(I, d x)} .
$$

Let $\boldsymbol{H}=\boldsymbol{H}^{1 / 2}(\boldsymbol{I}, \boldsymbol{d x})$. Let $\boldsymbol{\mu}$ be the Gaussian measure whose covariance operator is $\left(m^{2}-\Delta\right)^{-1 / 2}$ on $L^{2}(I, d x)$. Let us consider a Hilbert space \boldsymbol{W} :
(1) When $\boldsymbol{I}=[-l / 2, l / 2], \boldsymbol{W}=\boldsymbol{H}^{-\varepsilon}(\boldsymbol{I}, d x)$, where ε is any positive number.
(2) When $\boldsymbol{I}=\mathbb{R}$,

$$
\begin{aligned}
W= & \left\{w \in \mathcal{S}^{\prime}(\mathbb{R}) \mid\right. \\
& \left.\|w\|_{W}^{2}=\int_{\mathbb{R}}\left|\left(1+|x|^{2}-\Delta\right)^{-1} w(x)\right|^{2} d x<\infty\right\} .
\end{aligned}
$$

Then $(\boldsymbol{W}, \boldsymbol{H}, \boldsymbol{\mu})$ is an abstract Wiener space in the sense of
Gross. Define a self-adjoint operator \boldsymbol{A} on \boldsymbol{H} by

$$
\begin{aligned}
A h & =\left(m^{2}-\Delta\right)^{1 / 4} h \\
\mathrm{D}(A) & =H^{1} \subset H
\end{aligned}
$$

Definition 1 (Free Hamiltonian)

Let \mathcal{E}_{A} be the Dirichlet form defined by

$$
\mathcal{E}_{A}(f, f)=\int_{W}\|A D f(w)\|_{H}^{2} d \mu(w) \quad f \in \mathrm{D}\left(\mathcal{E}_{A}\right)
$$

where

$$
\begin{aligned}
\mathrm{D}\left(\mathcal{E}_{A}\right)= & \{f \mid D f(w) \in \mathrm{D}(A) \text { and } \\
& \left.\int_{W}\|A D f(w)\|_{H}^{2} d \mu(w)<\infty\right\}
\end{aligned}
$$

D: H-derivative,
$-\boldsymbol{L}$: the non-negative generator of $\mathcal{E}_{\boldsymbol{A}}$.

Definition 2 Let $\boldsymbol{P}(x)=\sum_{k=0}^{2 M} a_{k} x^{k}$ with $\boldsymbol{a}_{2 M}>\mathbf{0}$.
Let $\boldsymbol{g} \in \boldsymbol{C}_{0}^{\infty}(\boldsymbol{I})$ with $\boldsymbol{g}(\boldsymbol{x}) \geq \mathbf{0}$ for all \boldsymbol{x} and define

$$
\begin{aligned}
V(h) & =\int_{I} P(h(x)) g(x) d x \quad h \in H \\
U(h) & =\frac{1}{4}\|A h\|_{H}^{2}+V(h) \quad \text { for } \quad h \in \mathrm{D}(A)
\end{aligned}
$$

Remark $3 \boldsymbol{V}$ is well-defined on \boldsymbol{H} and we can rewrite

$$
\begin{aligned}
U(h)= & \frac{1}{4} \int_{I}\left(h^{\prime}(x)^{2}+m^{2} h(x)^{2}\right) d x \\
& +\int_{I} P(h(x)) g(x) d x \quad h \in H^{1}
\end{aligned}
$$

Definition 4 (1) Let $\boldsymbol{\lambda}>\mathbf{0}$. For the polynomial $P=P(x)=\sum_{k=0}^{2 M} a_{k} x^{k}$ with $a_{2 M}>0$, define

$$
\begin{aligned}
\int_{I} & : P\left(\frac{w(x)}{\sqrt{\lambda}}\right): g(x) d x \\
& =\sum_{k=0}^{2 M} a_{k} \int_{I}:\left(\frac{w(x)}{\sqrt{\lambda}}\right)^{k}: g(x) d x .
\end{aligned}
$$

We write

$$
: V\left(\frac{w}{\sqrt{\lambda}}\right):=\int_{I}: P\left(\frac{w(x)}{\sqrt{\lambda}}\right): g(x) d x
$$

and

$$
V_{\lambda}(w)=\lambda: V\left(\frac{w}{\sqrt{\lambda}}\right): .
$$

(2) It is known that $\left(-\boldsymbol{L}+\boldsymbol{V}_{\lambda}, \mathfrak{F} C_{A}^{\infty}(\boldsymbol{W})\right)$ is essentially self-adjoint, where $\mathfrak{F} C_{A}^{\infty}(\boldsymbol{W})$ denotes the set of smooth cylindrical functions.

We use the same notaion $-\boldsymbol{L}+\boldsymbol{V}_{\boldsymbol{\lambda}}$ for the self-adjoint extension.

It is known that $-\boldsymbol{L}+\boldsymbol{V}_{\boldsymbol{\lambda}}$ is bounded from below and the lowest eigenvalue $\boldsymbol{E}_{\mathbf{1}}(\boldsymbol{\lambda})$ is simple.

Some known results

- (Hoegh-Krohn and Simon 1972) $\sigma_{\text {ess }}\left(-L+V_{\lambda}\right) \cap\left[E_{1}(\lambda), E_{1}(\lambda)+m\right)=\emptyset$.
- (Simon 1972) Example of spatially cut-off $\boldsymbol{P}(\phi)_{2}$-Hamiltonian for which there exist an eigenvalue which is in a continuous spectrum.
- (Dereziński and Gérard, 2000) $\boldsymbol{- L}+\boldsymbol{V}_{\boldsymbol{\lambda}}$ does not have singular continuous spectrum.
- (A.Arai, 1996) Calculation of $\lim _{\lambda \rightarrow \infty} \operatorname{tr} e^{t\left(L-V_{\lambda}\right) / \lambda}$ for certain $\boldsymbol{P}(\phi)$-type models (not including $\boldsymbol{P}(\phi)_{2}$-model)

Schrödinger operators on \mathbb{R}^{N}

Assume
(i) $\boldsymbol{U} \in C^{\infty}\left(\mathbb{R}^{N}\right), \boldsymbol{U}(x) \geq 0$ for all $x \in \mathbb{R}^{N}$ and $\liminf _{|x| \rightarrow \infty} U(x)>0$.
(ii) $\{x \mid U(x)=0\}=\left\{x_{1}, \ldots, x_{n}\right\}$.
(iii) $Q_{i}=\frac{1}{2} D^{2} U\left(x_{i}\right)>0$ for all i.

Then the lowest eigenvalue $\boldsymbol{E}_{1}(\boldsymbol{\lambda})$ of $-\Delta+\lambda \boldsymbol{U}(\cdot / \sqrt{\lambda})$ is simple and

$$
\lim _{\lambda \rightarrow \infty} E_{1}(\lambda)=\min _{1 \leq i \leq n} \operatorname{tr} \sqrt{Q_{i}}
$$

In addition to (i), (ii), (iii), we assume the symmetry of \boldsymbol{U} :
(iv) $U(x)=U(-x)$,
(v) $\{x \mid U(x)=0\}=\left\{-x_{0}, x_{0}\right\} \quad\left(x_{0} \neq 0\right)$.

Then we have (due to Harrell, Jona-Lasinio, Martinelli and Scoppola, Simon, Helffer and Sjöstrand,...)

$$
\lim _{\lambda \rightarrow \infty} \frac{\log \left(E_{2}(\lambda)-E_{1}(\lambda)\right)}{\lambda}=-d_{U}^{A g}\left(-x_{0}, x_{0}\right)
$$

where $\boldsymbol{E}_{2}(\boldsymbol{\lambda})$ is the second eigenvalue and $\boldsymbol{d}_{\boldsymbol{U}}^{\boldsymbol{A g}}\left(-\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}_{\mathbf{0}}\right)$ is the Agmon distance between $-x_{0}$ and x_{0} such that

$$
\begin{aligned}
d_{U}^{A g}\left(-x_{0}, x_{0}\right)= & \inf \left\{\int_{-T}^{T} \sqrt{U(x(t))}|\dot{x}(t)| d t\right. \\
& \mid x \text { is a smooth curve on } \mathbb{R}^{N} \\
& \text { with } \left.x(-T)=-x_{0}, x(T)=x_{0}\right\} .
\end{aligned}
$$

The definition is independent of $\boldsymbol{T}>0$.
The Agmon distance $d_{U}^{A g}\left(-x_{0}, x_{0}\right)$ is equal to the following action integral which is introduced by
Carmona and Simon (1981). The minimizing path of the following variational problem is called an instanton.

$$
d_{U}^{C S}\left(-x_{0}, x_{0}\right)=\inf \left\{\int_{-T}^{T}\left(\frac{1}{4}\left|x^{\prime}(t)\right|^{2}+U(x(t))\right) d t\right.
$$

\boldsymbol{x} is a smooth curve on $\mathbb{R}^{\boldsymbol{N}}$ with

$$
\left.x(-T)=-x_{0}, x(T)=x_{0}, T>0\right\}
$$

The elementary inequality $a b \leq \frac{a^{2}}{2}+\frac{b^{2}}{2}$ implies
$\int_{-T}^{T} \sqrt{U(x(t))}\left|x^{\prime}(t)\right| d t \leq \int_{-T}^{T}\left(\frac{1}{4}\left|x^{\prime}(t)\right|^{2}+U(x(t))\right) d t$ and $d_{U}^{A g}\left(-x_{0}, x_{0}\right) \leq d_{U}^{C S}\left(-x_{0}, x_{0}\right)$.

$-L+V_{\lambda}$ as an ∞-dimensional Schrödinger operator

$-L+V_{\lambda}$ is informally unitarily equivalent to the ∞-dimensional Schrödinger operator on $L^{2}\left(L^{2}(I, d x), d w\right):$

$$
-\Delta_{L^{2}(I)}+\lambda: U(w / \sqrt{\lambda}):-\frac{1}{2} \operatorname{tr}\left(m^{2}-\Delta\right)^{1 / 2}
$$

where

$$
\begin{aligned}
: U(w):= & \frac{1}{4} \int_{I} w^{\prime}(x)^{2} d x \\
& +\int_{I}\left(\frac{m^{2}}{4} w(x)^{2}+: P(w(x)): g(x)\right) d x
\end{aligned}
$$

In fact, $\boldsymbol{P}(\phi)_{2}$-Hamiltonian is related with the quantization of the classical field (nonlinear Klein-Gordon equation):

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}}(t, x)= & -2(\nabla U)(w(t, x)),(t, x) \in \mathbb{R} \times I \\
U(w)= & \frac{1}{4} \int_{I}\left(w^{\prime}(x)^{2}+m^{2} w(x)^{2}\right) d x \\
& +\int_{I} P(w(x)) g(x) d x \\
2(\nabla U)(w(t, x))= & -\frac{\partial^{2} w}{\partial x^{2}}(t, x)+m^{2} w(t, x) \\
& +2 P^{\prime}(w(t, x)) g(x) .
\end{aligned}
$$

Main Result 1

Assumption 5

(A1) $\boldsymbol{U}(\boldsymbol{h}) \geq 0$ for all $h \in \boldsymbol{H}^{1}$ and

$$
\mathcal{Z}=\left\{h \in H^{1} \mid U(h)=0\right\}=\left\{h_{1}, \ldots, h_{n}\right\}
$$

is a finite set.
(A2) The Hessian $D^{2} \boldsymbol{U}\left(\boldsymbol{h}_{i}\right)(1 \leq i \leq n)$ is strictly positive. The derivative \boldsymbol{D} stands for the \boldsymbol{H}-derivative.

Remark 6

$$
D^{2} U\left(h_{i}\right)=\frac{1}{2} A^{2}+D^{2} V\left(h_{i}\right)
$$

is an unbounded operator on \boldsymbol{H}.

$$
\inf \sigma\left(D^{2} U\left(h_{i}\right)\right)>0 \Longleftrightarrow \inf \sigma\left(m^{2}-\Delta+4 v_{i}\right)>0
$$

where

$$
v_{i}(x)=\frac{1}{2} P^{\prime \prime}\left(h_{i}(x)\right) g(x) .
$$

Theorem 7 Assume (A1) and (A2) hold.
Let $\boldsymbol{E}_{1}(\boldsymbol{\lambda})=\inf \sigma\left(-\boldsymbol{L}+\boldsymbol{V}_{\lambda}\right)$. Then

$$
\lim _{\lambda \rightarrow \infty} E_{1}(\lambda)=\min _{1 \leq i \leq n} E_{i},
$$

where

$$
\begin{aligned}
E_{i} & =\inf \sigma\left(-L+Q_{v_{i}}\right), \\
Q_{v_{i}} & =\int_{I}: w(x)^{2}: v_{i}(x) d x \\
v_{i}(x) & =\frac{1}{2} P^{\prime \prime}\left(h_{i}(x)\right) g(x) .
\end{aligned}
$$

Main Result 2 (Tunneling estimate)

Let

$$
\boldsymbol{E}_{2}(\boldsymbol{\lambda})=\inf \left\{\sigma\left(-\boldsymbol{L}+\boldsymbol{V}_{\lambda}\right) \backslash\left\{\boldsymbol{E}_{1}(\boldsymbol{\lambda})\right\}\right\}
$$

We prove that $\boldsymbol{E}_{2}(\boldsymbol{\lambda})-\boldsymbol{E}_{1}(\boldsymbol{\lambda})$ is exponentially small when $\boldsymbol{\lambda} \rightarrow \infty$ under a certain assumption on \boldsymbol{P}.

To state our estimate, we introduce infinite dimensional analogue of Agmon distance in quantum mechanics.

Let us fix $\boldsymbol{T}>\mathbf{0}$ and take $h, \boldsymbol{k} \in \boldsymbol{H}\left(=\boldsymbol{H}^{1 / 2}(\boldsymbol{I})\right)$.
Let

$$
\begin{aligned}
& H_{T, h, k}^{1}(I) \\
& \quad=\{u=u(t, x)((t, x) \in(-T, T) \times I) \\
& \quad u \in H^{1}((-T, T) \times I) \\
& \quad u(-T, \cdot)=h, u(T, \cdot)=k \text { in the sense of trace }\}
\end{aligned}
$$

Note $\boldsymbol{H}_{T, h, \boldsymbol{k}}^{1}(\boldsymbol{I}) \neq \emptyset$.

Let \boldsymbol{U} be a non-negative potential function which we introduced. Here we do not assume (A1), (A2).

For any $\boldsymbol{u} \in \boldsymbol{H}_{\boldsymbol{T}, h, \boldsymbol{k}}^{1}(\boldsymbol{I})$, the following properties hold:
(i) $\boldsymbol{u}(t, \cdot) \in \boldsymbol{H}^{1}(I)$ for almost every t and $t(\in[-T, T]) \mapsto U(u(t, \cdot))$ is a Lebesgue measurable function,
(ii) $\boldsymbol{t}(\in(-\boldsymbol{T}, \boldsymbol{T})) \rightarrow \boldsymbol{u}(\boldsymbol{t}, \cdot) \in \boldsymbol{L}^{2}(\boldsymbol{I})$ is an absolutely continuous function and its derivative is in $L^{2}\left((-T, T) \rightarrow L^{2}(I)\right)$,
(iii) $\int_{-T}^{T} \sqrt{U(u(t, \cdot))}\left\|\partial_{t} u(t, \cdot)\right\|_{L^{2}(I)} d t<\infty$.

The fact (iii) follows from the following argument. Let $u \in \boldsymbol{H}^{1}((-T, T) \times I)$ and define
$I_{T, P}(u)$

$$
\begin{aligned}
& =\frac{1}{4} \iint_{(-T, T) \times I}\left(\left|\frac{\partial u}{\partial t}(t, x)\right|^{2}+\left|\frac{\partial u}{\partial x}(t, x)\right|^{2}\right) d t d x \\
& +\iint_{(-T, T) \times I}\left(\frac{m^{2}}{4} u(t, x)^{2}+P(u(t, x)) g(x)\right) d t d x
\end{aligned}
$$

By Sobolev's theorem, $\boldsymbol{I}_{\boldsymbol{T}, \boldsymbol{P}}(\boldsymbol{u})<\infty$ for any
$u \in H^{1}((-T, T) \times I)$.

Hence

$$
\begin{aligned}
& \int_{-T}^{T} \sqrt{U(u(t, \cdot))}\left\|\partial_{t} u(t,)\right\|_{L^{2}} \\
& \quad \leq \int_{-T}^{T} U(u(t, \cdot)) d t+\frac{1}{4} \int_{-T}^{T}\left\|\partial_{t} u(t, \cdot)\right\|_{L^{2}}^{2} d t \\
& \quad=I_{T, P}(u)<\infty
\end{aligned}
$$

Now we define an infinite dimensional analogue of Agmon distance.

Definition 8 Let $0<\boldsymbol{T}<\infty$. We define the Agmon distance between $h, k \in \boldsymbol{H}\left(=\boldsymbol{H}^{1 / 2}(\boldsymbol{I})\right)$ by

$$
\begin{gathered}
d_{U}^{A g}(h, k)=\inf \left\{\int_{-T}^{T} \sqrt{U(u(t, \cdot))}\left\|\partial_{t} u(t, \cdot)\right\|_{L^{2}} d t \mid\right. \\
\left.u \in H_{T, h, k}^{1}(I)\right\} .
\end{gathered}
$$

The definition of $\boldsymbol{d}_{U}^{A g}$ does not depend on \boldsymbol{T}.
To prove tunneling estimates, we need another quantity \boldsymbol{d}_{U}^{W}.

Definition 9 Let \boldsymbol{u} be a non-negative bounded continuous function on \boldsymbol{W}. Let $\overline{\boldsymbol{H}}$ be the all mappings
$c:[-1,1] \rightarrow L^{2}(I, d x)$ such that
(i) \boldsymbol{c} is an absolutely continuous path on \boldsymbol{L}^{2} and

$$
\int_{-1}^{1}\left\|c^{\prime}(t)\right\|_{L^{2}}^{2} d t<\infty
$$

(ii) $\boldsymbol{c}(\boldsymbol{t}) \in \boldsymbol{H}$ for almost every $\boldsymbol{t} \in[-1,1]$ and

$$
c(\cdot) \in L^{2}((-1,1) \rightarrow H)
$$

For $\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{\mathbf{2}} \in \boldsymbol{W}$, define

$$
\begin{aligned}
& \rho_{u}^{W}\left(w_{1}, w_{2}\right) \\
& =\inf \left\{\int_{-1}^{1} \sqrt{u\left(w_{1}+c(t)\right)}\left\|c^{\prime}(t)\right\|_{L^{2}} d t \mid c \in \bar{H}\right. \\
& \left.\quad c(-1)=0 \text { and } c(1)=w_{2}-w_{1}\right\} .
\end{aligned}
$$

- If $\boldsymbol{h} \in \boldsymbol{H}$, then $\rho_{u}^{\boldsymbol{W}}(\boldsymbol{w}, \boldsymbol{w}+\boldsymbol{h})<\infty$ for any $\boldsymbol{w} \in \boldsymbol{W}$.
- $H_{1, h, k}^{1}(I) \subset \bar{H}$.

Definition 10 Let \mathcal{F}_{U}^{W} be the set of non-negative bounded globally Lipschitz continuous functions \boldsymbol{u} on \boldsymbol{W} which satisfy the following conditions.
(1)

$$
\begin{gathered}
0 \leq u(h) \leq U(h) \quad \text { for all } h \in H^{1}, \\
\left\{h \in H^{1} \mid U(h)-u(h)=0\right\}=\mathcal{Z}, \\
D^{2}(U-u)\left(h_{i}\right)>0, \quad \text { for all } h_{i} \in \mathcal{Z},
\end{gathered}
$$

where \mathcal{Z} is the zero point set of \boldsymbol{U}.
(2) There exists $\varepsilon>0$ such that

$$
u(\boldsymbol{w})=\varepsilon\left\|w-\boldsymbol{h}_{i}\right\|_{W}^{2} \quad \text { in a n.b.d. of } \boldsymbol{h}_{i}, 1 \leq i \leq n .
$$

Let $\boldsymbol{h}, \boldsymbol{k} \in \boldsymbol{H}$ and we write
$\boldsymbol{B}_{\varepsilon}(\boldsymbol{h})=\left\{\boldsymbol{w} \in \boldsymbol{W} \mid\|\boldsymbol{w}-\boldsymbol{h}\|_{W} \leq \varepsilon\right\}$.
Definition 11 For $u \in \mathcal{F}_{U}^{W}$, set

$$
\underline{\rho}_{u}^{W}(h, k)=\lim _{\varepsilon \rightarrow 0} \inf _{w \in B_{\varepsilon}(h), \eta \in B_{\varepsilon}(k)} \rho_{u}^{W}(w, \eta)
$$

and define

$$
d_{U}^{W}(h, k)=\sup _{u \in \mathcal{F}_{U}^{W}} \underline{\rho}_{u}^{W}(h, k)
$$

Lemma 12

$$
d_{U}^{W}(h, k) \leq d_{U}^{A g}(h, k)<\infty \quad \text { for all } h, k \in H
$$

Assumption 13 (Double-well potential function)

Let $\boldsymbol{P}=\boldsymbol{P}(\boldsymbol{x})$ be the polynomial function which defines \boldsymbol{U}.
We consider the following assumption.
(A3) For all $\boldsymbol{x}, \boldsymbol{P}(\boldsymbol{x})=\boldsymbol{P}(-\boldsymbol{x})$ and $\mathcal{Z}=\left\{\boldsymbol{h}_{\mathbf{0}},-\boldsymbol{h}_{\mathbf{0}}\right\}$, where $\boldsymbol{h}_{\mathbf{0}} \neq 0$.

The following is our second main theorem.

Theorem 14 Assume that \boldsymbol{U} satisfies (A1),(A2),(A3).
(1) $d_{U}^{W}\left(h_{0},-h_{0}\right)>0$ and

(2) Let $I=[-l / 2, l / 2]$. Then

$$
d_{U}^{W}\left(-h_{0}, h_{0}\right)=d_{U}^{A g}\left(-h_{0}, h_{0}\right) .
$$

Properties of Agmon distance

(1) Properties of Agmon distance

Proposition 15

(1) Assume \boldsymbol{U} is non-negative. Then $\boldsymbol{d}_{U}^{A g}$ is a continuous distance function on \boldsymbol{H}.
(2) Let $\boldsymbol{U}(\boldsymbol{h})=\frac{1}{4}\|\boldsymbol{A}\|_{\boldsymbol{H}}^{2}$ (that is $\boldsymbol{P}=0$). Then

$$
d_{U}^{A g}(0, h)=\frac{1}{4}\|h\|_{H}^{2} \quad \text { for any } h \in \boldsymbol{H}
$$

(3) Let $\boldsymbol{I}=[-l / 2, l / 2]$ and assume (A1), (A2). Then

$$
d_{U}^{A g}(h, k)=d_{U}^{W}(h, k) \quad \text { for any } h, k \in \boldsymbol{H}^{1} .
$$

(2) Instanton

Let us consider a non-linear ellptic boundary value problem

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}(t, x)+\frac{\partial^{2} u}{\partial x^{2}}(t, x)=m^{2} u(t, x)+2 P^{\prime}(u(t, x)) g(x) \\
\lim _{t \rightarrow-\infty} u(t, x)=-h_{0}(x), \quad \lim _{t \rightarrow \infty} u(t, x)=h_{0}(x) . \\
(t, x) \in \mathbb{R} \times I
\end{gathered}
$$

The solution is a candidate of minimizers (instanton) whose action integral attain the value:

$$
\inf _{T>0, u \in H_{T,-h_{0}, h_{0}}^{1}(I)} I_{T, P}(u),
$$

where
$\boldsymbol{I}_{T, P}(\boldsymbol{u})$

$$
\begin{aligned}
& =\frac{1}{4} \iint_{(-T, T) \times I}\left(\left|\frac{\partial u}{\partial t}(t, x)\right|^{2}+\left|\frac{\partial u}{\partial x}(t, x)\right|^{2}\right) d t d x \\
& +\iint_{(-T, T) \times I}\left(\frac{m^{2}}{4} u(t, x)^{2}+P(u(t, x)) g(x)\right) d t d x
\end{aligned}
$$

It is very likely that the minimum action integral of the instanton is equal to the Agmon distance $d_{U}^{A g}\left(-h_{0}, h_{0}\right)$. I show such a simple example.
(3) Example

Let us consider the case $I=[-l / 2, l / 2]$ and $g=1$. Let $\boldsymbol{x}_{0}(\in \mathbb{R}) \neq 0$ and $\boldsymbol{a}>0$.

We consider the case where

$$
U(h)=\frac{1}{4} \int_{I} h^{\prime}(x)^{2} d x+a \int_{I}\left(h(x)^{2}-x_{0}^{2}\right)^{2} d x
$$

This can be realized by a suitable choice of \boldsymbol{P}.
Note $\mathcal{Z}=\left\{x_{0},-x_{0}\right\}$.
These are zero points also of the potential function

$$
Q(x)=a\left(x^{2}-x_{0}^{2}\right)^{2} \quad x \in \mathbb{R}
$$

$$
\begin{array}{r}
d_{1-\operatorname{dim}}^{A g}\left(-x_{0}, x_{0}\right)=\inf \left\{\int_{-T}^{T} \sqrt{Q(x(t))}\left|x^{\prime}(t)\right| d t \mid\right. \\
\left.x(-T)=-x_{0}, \quad x(T)=x_{0}\right\}
\end{array}
$$

This is the Agmon distance which corresponds to
1-dimensional Schrödinger operator $-\frac{d^{2}}{d x^{2}}+Q(x)$ and

$$
d_{1-\operatorname{dim}}^{A g}\left(-x_{0}, x_{0}\right)=\int_{-x_{0}}^{x_{0}} \sqrt{Q(x)} d x=\frac{5 \sqrt{a} x_{0}^{3}}{3}
$$

We can prove the following.

Proposition 16 Assume $2 a x_{0}^{2} l^{2} \leq \pi^{2}$.
(1) $d_{U}^{A g}\left(-x_{0}, x_{0}\right)=l d_{1-\operatorname{dim}}^{A g}\left(-x_{0}, x_{0}\right)$.
(2) Let $u_{0}(t)=x_{0} \tanh \left(2 \sqrt{a} x_{0} t\right)$.

Then $u_{0}(t)$ is the solution to

$$
u^{\prime \prime}(t)=2 Q^{\prime}(u(t)) \quad \text { for all } t \in \mathbb{R}
$$

$\lim _{t \rightarrow-\infty} u(t)=-x_{0}, \quad \lim _{t \rightarrow \infty} u(t)=x_{0}$
and

$$
\begin{aligned}
I_{\infty, P}\left(u_{0}\right) & =\left(\frac{1}{4} \int_{-\infty}^{\infty} u_{0}^{\prime}(t)^{2} d t+\int_{-\infty}^{\infty} Q\left(u_{0}(t)\right) d t\right) l \\
& =d_{1-\operatorname{dim}}^{A g}\left(-x_{0}, x_{0}\right) l \\
& =d_{U}^{A g}\left(-h_{0}, h_{0}\right)
\end{aligned}
$$

That is,

- u_{0} is the instanton for both operators: 1-dimensional Schrödinger operator $-\frac{d^{2}}{d x^{2}}+\lambda Q(\cdot / \sqrt{\lambda})$ and $-L+V_{\lambda}$.
- The Agmon distance $d_{U}^{A g}\left(-h_{0}, h_{0}\right)$ is equal to the action integral of the instanton in this case.

Open problems

- $d_{U}^{W}\left(-h_{0}, h_{0}\right)=d_{U}^{A g}\left(-h_{0}, h_{0}\right)$ in the case of $I=\mathbb{R}$?
- Instanton solutions for general cases ?
- $\lim _{\lambda \rightarrow \infty} \frac{\log \left(E_{2}(\lambda)-E_{1}(\lambda)\right)}{\lambda}=-d_{U}^{A g}\left(h_{0},-h_{0}\right) . ?$

References

- S. Agmon, Lectures on Exponential decay of solutions of second order elliptic equations. Bounds on eigenfunctions of \boldsymbol{N}-body Schrödinger operators, Mathematical Notes, Princeton Univ. Press, Princeton, N.J., 1982.
- S. Aida, Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space: II. $\boldsymbol{P}(\phi)_{2}$-model on a finite volume, J. Funct. Anal. 256 (2009), no. 10, 3342-3367.
- S. Aida, Tunneling for spatially cut-off $\boldsymbol{P}(\phi)_{2_{2}}$-Hamiltonians, (http://arxiv.org/abs/1104.0486).
- A. Arai, Trace formulas, a Golden-Thompson inequality and classical limit in boson Fock space, J. Funct. Anal. 136, (1996), 510-547.
- R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems, V. Lower bounds and path integrals, Comm. Math. Phys. 80 (1981), 59-98.
- J. Dereziński and C. Gérard, Spectral scattering theory of spatially cut-off $\boldsymbol{P}(\phi)_{2}$ Hamiltonians, Commun. Math. Phys. 213, 39-125, (2000).
- B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit. I. Comm. Partial Diffrential Equation 9 (1984), no.4, 337-408.
- B. Helffer and J. Sjöstrand, Puits multiples en limite semi-classique. II. Interaction mol'eculaire. Symétries. Pertuabation. Ann. Inst. H. Poincaré Phys. Théor. 42, no. 2 (1985), 127-212.
- B. Simon, Continuum embedded eigenvalues in a spatially cutoff $\boldsymbol{P}(\phi)_{2}$ field theory, Proc. Amer. Math. Soc. 35 (1972), 223-226.
- B. Simon, Semiclassical Analysis of Low Lying Eigenvalues I. Nondegenerate Minima: Asymptotic Expansions, Ann. Inst. Henri Poincaré, Section A, Vol. XXXVIII, no. 4, (1983), 295-308.
- B. Simon, Semiclassical analysis of low lying eigenvalues, II. Tunneling, Annals of Math. 120, (1984), 89-118.
- B. Simon and R. Hoegh-Krohn, Hypercontractive Semigroups and Two Dimensional Self-Coupled Bose Fields, J. Funct. Anal., Vol. 9, (1972), 121-180.

