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Introduction

(Spatially cut-off) P (φ)2-Hamiltonian −L + Vλ is an

∞-dimensional Schrödinger operator defined on

L2(S′(I), µ), where I = [−l/2, l/2] or I = R and

λ =
1

~
.

I explain my recent results:

• Determination of the semi-classical limit of E1(λ) as

λ → ∞

• An estimate on the asymptotic behavior of the gap of

spectrum E2(λ) − E1(λ) as λ → ∞.
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Plan of Talk

1. P (φ)2-Hamiltonian

2. Results for Schrödinger operator −∆ + λU(·/λ)

3. Main Result 1 : limλ→∞ E1(λ)

4. Main Result 2 :

lim sup
λ→∞

log (E2(λ) − E1(λ))

λ
≤ −dW

U (−h0, h0)

(= −dAg
U (−h0, h0) if I = [−l/2, l/2])

5. Properties of Agmon distance dAg
U .
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P (φ)2-Hamiltonian

Let I = [−l/2, l/2] or I = R and m > 0. Let

Hs(I, dx) be the Sobolev space with the norm:

‖ϕ‖Hs(I,dx) = ‖(m2 − ∆)s/2ϕ‖L2(I,dx).

Let H = H1/2(I, dx). Let µ be the Gaussian measure

whose covariance operator is (m2 − ∆)−1/2 on L2(I, dx).

Let us consider a Hilbert space W :

(1) When I = [−l/2, l/2], W = H−ε(I, dx), where ε is

any positive number.
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(2) When I = R,

W =
{

w ∈ S ′(R) |

‖w‖2
W =

∫
R

|(1 + |x|2 − ∆)−1w(x)|2dx < ∞
}

.

Then (W, H, µ) is an abstract Wiener space in the sense of

Gross. Define a self-adjoint operator A on H by

Ah = (m2 − ∆)1/4h,

D(A) = H1 ⊂ H.
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Definition 1 (Free Hamiltonian)

Let EA be the Dirichlet form defined by

EA(f, f) =

∫
W

‖ADf(w)‖2
Hdµ(w) f ∈ D(EA),

where

D(EA) =
{

f | Df(w) ∈ D(A) and∫
W

‖ADf(w)‖2
Hdµ(w) < ∞

}
,

D : H-derivative,

−L : the non-negative generator of EA.
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Definition 2 Let P (x) =
∑2M

k=0 akx
k with a2M > 0.

Let g ∈ C∞
0 (I) with g(x) ≥ 0 for all x and define

V (h) =

∫
I

P (h(x))g(x)dx h ∈ H

U(h) =
1

4
‖Ah‖2

H + V (h) for h ∈ D(A).

Remark 3 V is well-defined on H and we can rewrite

U(h) =
1

4

∫
I

(
h′(x)2 + m2h(x)2) dx

+

∫
I

P (h(x))g(x)dx h ∈ H1.
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Definition 4 (1) Let λ > 0. For the polynomial

P = P (x) =
∑2M

k=0 akx
k with a2M > 0, define∫

I

: P

(
w(x)
√

λ

)
: g(x)dx

=
2M∑
k=0

ak

∫
I

:

(
w(x)
√

λ

)k

: g(x)dx.

We write

: V

(
w

√
λ

)
: =

∫
I

: P

(
w(x)
√

λ

)
: g(x)dx
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and

Vλ(w) = λ : V

(
w

√
λ

)
: .

(2) It is known that (−L + Vλ, FC∞
A (W )) is essentially

self-adjoint, where FC∞
A (W ) denotes the set of smooth

cylindrical functions.

We use the same notaion −L + Vλ for the self-adjoint

extension.

It is known that −L + Vλ is bounded from below and the

lowest eigenvalue E1(λ) is simple.
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Some known results

• (Hoegh-Krohn and Simon 1972)

σess(−L + Vλ) ∩ [E1(λ), E1(λ) + m) = ∅.

• (Simon 1972) Example of spatially cut-off

P (φ)2-Hamiltonian for which there exist an eigenvalue

which is in a continuous spectrum.

• (Dereziński and Gérard, 2000) −L + Vλ does not have

singular continuous spectrum.

• (A.Arai, 1996) Calculation of limλ→∞ tr et(L−Vλ)/λ for

certain P (φ)-type models (not including P (φ)2-model)
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Schrödinger operators on RN

Assume

(i) U ∈ C∞(RN), U(x) ≥ 0 for all x ∈ RN and

lim inf |x|→∞ U(x) > 0.

(ii) {x | U(x) = 0} = {x1, . . . , xn}.

(iii) Qi = 1
2D2U(xi) > 0 for all i.

Then the lowest eigenvalue E1(λ) of −∆ + λU(·/
√

λ) is

simple and

lim
λ→∞

E1(λ) = min
1≤i≤n

tr
√

Qi.
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In addition to (i), (ii), (iii), we assume the symmetry of U :

(iv) U(x) = U(−x),

(v) {x | U(x) = 0} = {−x0, x0} (x0 6= 0).

Then we have (due to Harrell, Jona-Lasinio, Martinelli and

Scoppola, Simon, Helffer and Sjöstrand,... )

lim
λ→∞

log(E2(λ) − E1(λ))

λ
= −dAg

U (−x0, x0),

where E2(λ) is the second eigenvalue and dAg
U (−x0, x0) is

the Agmon distance between −x0 and x0 such that
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dAg
U (−x0, x0) = inf

{∫ T

−T

√
U(x(t))|ẋ(t)|dt∣∣∣ x is a smooth curve on RN

with x(−T ) = −x0, x(T ) = x0

}
.

The definition is independent of T > 0.

The Agmon distance dAg
U (−x0, x0) is equal to the following

action integral which is introduced by

Carmona and Simon (1981). The minimizing path of the

following variational problem is called an instanton.
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dCS
U (−x0, x0) = inf

{∫ T

−T

(
1

4
|x′(t)|2 + U(x(t))

)
dt∣∣∣ x is a smooth curve on RN with

x(−T ) = −x0, x(T ) = x0, T > 0
}

.

The elementary inequality ab ≤ a2

2 + b2

2 implies∫ T

−T

√
U(x(t))|x′(t)|dt ≤

∫ T

−T

(
1

4
|x′(t)|2 + U(x(t))

)
dt

and dAg
U (−x0, x0) ≤ dCS

U (−x0, x0).
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−L + Vλ as an ∞-dimensional Schrödinger operator

−L + Vλ is informally unitarily equivalent to the

∞-dimensional Schrödinger operator on

L2(L2(I, dx), dw):

−∆L2(I) + λ : U(w/
√

λ) : −
1

2
tr(m2 − ∆)1/2,

where

: U(w) : =
1

4

∫
I

w′(x)2dx

+

∫
I

(
m2

4
w(x)2+ : P (w(x)) : g(x)

)
dx.
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In fact, P (φ)2-Hamiltonian is related with the quantization

of the classical field (nonlinear Klein-Gordon equation):

∂2w

∂t2
(t, x) = −2(∇U)(w(t, x)), (t, x) ∈ R × I

U(w) =
1

4

∫
I

(
w′(x)2 + m2w(x)2) dx

+

∫
I

P (w(x))g(x)dx

2(∇U)(w(t, x)) = −
∂2w

∂x2
(t, x) + m2w(t, x)

+2P ′(w(t, x))g(x).
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Main Result 1

Assumption 5

(A1) U(h) ≥ 0 for all h ∈ H1 and

Z = {h ∈ H1 | U(h) = 0} = {h1, . . . , hn}

is a finite set.

(A2) The Hessian D2U(hi) (1 ≤ i ≤ n) is strictly

positive. The derivative D stands for the H-derivative.
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Remark 6

D2U(hi) =
1

2
A2 + D2V (hi)

is an unbounded operator on H .

inf σ(D2U(hi)) > 0 ⇐⇒ inf σ(m2 − ∆ + 4vi) > 0

where

vi(x) =
1

2
P ′′(hi(x))g(x).
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Theorem 7 Assume (A1) and (A2) hold.

Let E1(λ) = inf σ(−L + Vλ). Then

lim
λ→∞

E1(λ) = min
1≤i≤n

Ei,

where

Ei = inf σ(−L + Qvi
),

Qvi
=

∫
I

: w(x)2 : vi(x)dx,

vi(x) =
1

2
P ′′(hi(x))g(x).
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Main Result 2 (Tunneling estimate)

Let

E2(λ) = inf {σ(−L + Vλ) \ {E1(λ)}} .

We prove that E2(λ) − E1(λ) is exponentially small when

λ → ∞ under a certain assumption on P .

To state our estimate, we introduce infinite dimensional

analogue of Agmon distance in quantum mechanics.
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Let us fix T > 0 and take h, k ∈ H(= H1/2(I)).

Let

H1
T,h,k(I)

=
{

u = u(t, x) ((t, x) ∈ (−T, T ) × I)
∣∣∣

u ∈ H1((−T, T ) × I),

u(−T, ·) = h, u(T, ·) = k in the sense of trace
}

Note H1
T,h,k(I) 6= ∅.
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Let U be a non-negative potential function which we

introduced. Here we do not assume (A1), (A2).

For any u ∈ H1
T,h,k(I), the following properties hold:

(i) u(t, ·) ∈ H1(I) for almost every t and

t(∈ [−T, T ]) 7→ U(u(t, ·)) is a Lebesgue measurable

function,

(ii) t(∈ (−T, T )) → u(t, ·) ∈ L2(I) is an absolutely

continuous function and its derivative is in

L2((−T, T ) → L2(I)),

(iii)

∫ T

−T

√
U(u(t, ·))‖∂tu(t, ·)‖L2(I)dt < ∞.
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The fact (iii) follows from the following argument. Let

u ∈ H1((−T, T ) × I) and define

IT,P (u)

=
1

4

∫∫
(−T,T )×I

(∣∣∣∣∂u

∂t
(t, x)

∣∣∣∣2 +

∣∣∣∣∂u

∂x
(t, x)

∣∣∣∣2
)

dtdx

+

∫∫
(−T,T )×I

(
m2

4
u(t, x)2 + P (u(t, x))g(x)

)
dtdx.

By Sobolev’s theorem, IT,P (u) < ∞ for any

u ∈ H1((−T, T ) × I).
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Hence∫ T

−T

√
U(u(t, ·))‖∂tu(t, )‖L2

≤
∫ T

−T

U(u(t, ·))dt +
1

4

∫ T

−T

‖∂tu(t, ·)‖2
L2dt

= IT,P (u) < ∞.

Now we define an infinite dimensional analogue of Agmon

distance.
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Definition 8 Let 0 < T < ∞. We define the Agmon

distance between h, k ∈ H(= H1/2(I)) by

dAg
U (h, k) = inf

{∫ T

−T

√
U(u(t, ·))‖∂tu(t, ·)‖L2dt

∣∣∣∣∣
u ∈ H1

T,h,k(I)

}
.

The definition of dAg
U does not depend on T .

To prove tunneling estimates, we need another quantity dW
U .
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Definition 9 Let u be a non-negative bounded continuous

function on W . Let H̄ be the all mappings

c : [−1, 1] → L2(I, dx) such that

(i) c is an absolutely continuous path on L2 and∫ 1

−1
‖c′(t)‖2

L2dt < ∞.

(ii) c(t) ∈ H for almost every t ∈ [−1, 1] and

c(·) ∈ L2((−1, 1) → H)
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For w1, w2 ∈ W , define

ρW
u (w1, w2)

= inf

{∫ 1

−1

√
u(w1 + c(t))‖c′(t)‖L2dt

∣∣∣∣∣ c ∈ H̄

c(−1) = 0 and c(1) = w2 − w1

}
.

• If h ∈ H , then ρW
u (w, w + h) < ∞ for any w ∈ W .

• H1
1,h,k(I) ⊂ H̄ .
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Definition 10 Let FW
U be the set of non-negative

bounded globally Lipschitz continuous functions u on W

which satisfy the following conditions.

(1) 0 ≤ u(h) ≤ U(h) for all h ∈ H1,

{h ∈ H1 | U(h) − u(h) = 0} = Z,

D2 (U − u) (hi) > 0, for all hi ∈ Z,

where Z is the zero point set of U .

(2) There exists ε > 0 such that

u(w) = ε‖w − hi‖2
W in a n.b.d. of hi, 1 ≤ i ≤ n.
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Let h, k ∈ H and we write

Bε(h) = {w ∈ W | ‖w − h‖W ≤ ε}.

Definition 11 For u ∈ FW
U , set

ρW
u

(h, k) = lim
ε→0

inf
w∈Bε(h),η∈Bε(k)

ρW
u (w, η)

and define

dW
U (h, k) = sup

u∈FW
U

ρW
u

(h, k).

Lemma 12

dW
U (h, k) ≤ dAg

U (h, k) < ∞ for all h, k ∈ H.
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Assumption 13 (Double-well potential function)

Let P = P (x) be the polynomial function which defines U .

We consider the following assumption.

(A3) For all x, P (x) = P (−x) and Z = {h0, −h0},

where h0 6= 0.

The following is our second main theorem.
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Theorem 14 Assume that U satisfies (A1),(A2),(A3).

(1) dW
U (h0, −h0) > 0 and

lim sup
λ→∞

log (E2(λ) − E1(λ))

λ
≤ −dW

U (h0, −h0).

(2) Let I = [−l/2, l/2]. Then

dW
U (−h0, h0) = dAg

U (−h0, h0).
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Properties of Agmon distance

(1) Properties of Agmon distance

Proposition 15

(1) Assume U is non-negative. Then dAg
U is a continuous

distance function on H .

(2) Let U(h) = 1
4‖Ah‖2

H (that is P = 0). Then

dAg
U (0, h) =

1

4
‖h‖2

H for any h ∈ H.

(3) Let I = [−l/2, l/2] and assume (A1), (A2). Then

dAg
U (h, k) = dW

U (h, k) for any h, k ∈ H1.
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(2) Instanton

Let us consider a non-linear ellptic boundary value problem

∂2u

∂t2
(t, x)+

∂2u

∂x2
(t, x) = m2u(t, x)+2P ′(u(t, x))g(x)

lim
t→−∞

u(t, x) = −h0(x), lim
t→∞

u(t, x) = h0(x).

(t, x) ∈ R × I

The solution is a candidate of minimizers (instanton) whose

action integral attain the value:

inf
T>0,u∈H1

T,−h0,h0
(I)

IT,P (u),
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where

IT,P (u)

=
1

4

∫∫
(−T,T )×I

(∣∣∣∣∂u

∂t
(t, x)

∣∣∣∣2 +

∣∣∣∣∂u

∂x
(t, x)

∣∣∣∣2
)

dtdx

+

∫∫
(−T,T )×I

(
m2

4
u(t, x)2 + P (u(t, x))g(x)

)
dtdx.

It is very likely that the minimum action integral of the

instanton is equal to the Agmon distance dAg
U (−h0, h0).

I show such a simple example.
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(3) Example

Let us consider the case I = [−l/2, l/2] and g = 1. Let

x0(∈ R) 6= 0 and a > 0.

We consider the case where

U(h) =
1

4

∫
I

h′(x)2dx + a

∫
I

(
h(x)2 − x2

0

)2
dx.

This can be realized by a suitable choice of P .

Note Z = {x0, −x0}.

These are zero points also of the potential function

Q(x) = a(x2 − x2
0)

2 x ∈ R.
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Let

dAg
1−dim(−x0, x0) = inf

{∫ T

−T

√
Q(x(t))|x′(t)|dt

∣∣∣
x(−T ) = −x0, x(T ) = x0

}
.

This is the Agmon distance which corresponds to

1-dimensional Schrödinger operator − d2

dx2 + Q(x) and

dAg
1−dim(−x0, x0) =

∫ x0

−x0

√
Q(x)dx =

5
√

ax3
0

3
.

We can prove the following.
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Proposition 16 Assume 2ax2
0l

2 ≤ π2.

(1) dAg
U (−x0, x0) = l dAg

1−dim(−x0, x0).

(2) Let u0(t) = x0 tanh
(
2
√

ax0t
)
.

Then u0(t) is the solution to

u′′(t) = 2Q′(u(t)) for all t ∈ R,

lim
t→−∞

u(t) = −x0, lim
t→∞

u(t) = x0
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and

I∞,P (u0) =

(
1

4

∫ ∞

−∞
u′

0(t)
2dt +

∫ ∞

−∞
Q(u0(t))dt

)
l,

= dAg
1−dim(−x0, x0)l

= dAg
U (−h0, h0).

That is,

• u0 is the instanton for both operators: 1-dimensional

Schrödinger operator −
d2

dx2
+ λQ(·/

√
λ) and −L + Vλ.

• The Agmon distance dAg
U (−h0, h0) is equal to the action

integral of the instanton in this case.
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Open problems

• dW
U (−h0, h0) = dAg

U (−h0, h0) in the case of I = R ?

• Instanton solutions for general cases ?

• lim
λ→∞

log (E2(λ) − E1(λ))

λ
= −dAg

U (h0, −h0). ?
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