Tunneling for spatially cut-off $P(\phi)_2$ - Hamiltonian

Shigeki Aida Tohoku University

April 16, 2012

Introduction

(Spatially cut-off) $P(\phi)_2$ -Hamiltonian $-L + V_\lambda$ is an ∞ -dimensional Schrödinger operator defined on $L^2(\mathcal{S}'(I),\mu)$, where I=[-l/2,l/2] or $I=\mathbb{R}$ and $\lambda=rac{1}{\hbar}.$

I explain my recent results:

- Determination of the semi-classical limit of $E_1(\lambda)$ as $\lambda o \infty$
- An estimate on the asymptotic behavior of the gap of spectrum $E_2(\lambda)-E_1(\lambda)$ as $\lambda o \infty.$

Plan of Talk

- 1. $P(\phi)_2$ -Hamiltonian
- 2. Results for Schrödinger operator $-\Delta + \lambda U(\cdot/\lambda)$
- 3. Main Result 1 : $\lim_{\lambda \to \infty} E_1(\lambda)$
- 4. Main Result 2 :

$$egin{aligned} \limsup_{\lambda o \infty} rac{\log{(E_2(\lambda) - E_1(\lambda))}}{\lambda} &\leq -d_U^W(-h_0,h_0) \ & \ & (= -d_U^{Ag}(-h_0,h_0) ext{ if } I = [-l/2,l/2]) \end{aligned}$$

5. Properties of Agmon distance d_U^{Ag} .

$P(\phi)_2$ -Hamiltonian

Let I = [-l/2, l/2] or $I = \mathbb{R}$ and m > 0. Let $H^s(I, dx)$ be the Sobolev space with the norm:

$$\|arphi\|_{H^s(I,dx)}=\|(m^2-\Delta)^{s/2}arphi\|_{L^2(I,dx)}.$$

Let $H = H^{1/2}(I, dx)$. Let μ be the Gaussian measure whose covariance operator is $(m^2 - \Delta)^{-1/2}$ on $L^2(I, dx)$. Let us consider a Hilbert space W:

(1) When I = [-l/2, l/2], $W = H^{-\varepsilon}(I, dx)$, where ε is any positive number.

$$egin{aligned} &(2) ext{ When } I=\mathbb{R}, \ &W &= \Big\{w\in \mathcal{S}'(\mathbb{R}) \mid \ &\|w\|_W^2 = \int_{\mathbb{R}} |(1+|x|^2-\Delta)^{-1}w(x)|^2 dx <\infty \Big\}. \end{aligned}$$

Then (W, H, μ) is an abstract Wiener space in the sense of Gross. Define a self-adjoint operator A on H by

$$egin{array}{rcl} Ah&=&(m^2-\Delta)^{1/4}h,\ {
m D}(A)&=&H^1\subset H. \end{array}$$

Definition 1 (Free Hamiltonian)

Let \mathcal{E}_A be the Dirichlet form defined by

$$\mathcal{E}_A(f,f) = \int_W \|ADf(w)\|_H^2 d\mu(w) \quad f \in \mathrm{D}(\mathcal{E}_A),$$

where

$$\mathrm{D}(\mathcal{E}_A) = \Big\{ f \mid Df(w) \in \mathrm{D}(A) \text{ and} \ \int_W \|ADf(w)\|_H^2 d\mu(w) < \infty \Big\},$$

D : H-derivative,

-L : the non-negative generator of \mathcal{E}_A .

Definition 2 Let $P(x) = \sum_{k=0}^{2M} a_k x^k$ with $a_{2M} > 0$. Let $g \in C_0^\infty(I)$ with $g(x) \ge 0$ for all x and define

$$egin{array}{rll} V(h)&=&\int_I P(h(x))g(x)dx \hspace{0.2cm}h\in H \ U(h)&=&rac{1}{4}\|Ah\|_H^2+V(h) \hspace{0.2cm} ext{for} \hspace{0.2cm}h\in \mathrm{D}(A). \end{array}$$

Remark 3 V is well-defined on H and we can rewrite

$$egin{array}{rll} U(h) &=& rac{1}{4} \int_{I} \left(h'(x)^2 + m^2 h(x)^2
ight) dx \ &+ \int_{I} P(h(x)) g(x) dx & h \in H^1. \end{array}$$

Definition 4 (1) Let $\lambda > 0$. For the polynomial $P = P(x) = \sum_{k=0}^{2M} a_k x^k$ with $a_{2M} > 0$, define

$$egin{split} \int_I: P\left(rac{w(x)}{\sqrt{\lambda}}
ight): g(x) dx \ &= \sum_{k=0}^{2M} a_k \int_I: \left(rac{w(x)}{\sqrt{\lambda}}
ight)^k: g(x) dx. \end{split}$$

We write

$$V\left(rac{w}{\sqrt{\lambda}}
ight):\ =\ \int_{I}:P\left(rac{w(x)}{\sqrt{\lambda}}
ight):g(x)dx$$

and

$$V_\lambda(w) = \lambda : V\left(rac{w}{\sqrt{\lambda}}
ight):.$$

(2) It is known that $(-L + V_{\lambda}, \mathfrak{F}C^{\infty}_{A}(W))$ is essentially self-adjoint, where $\mathfrak{F}C^{\infty}_{A}(W)$ denotes the set of smooth cylindrical functions.

We use the same notaion $-L + V_{\lambda}$ for the self-adjoint extension.

It is known that $-L + V_{\lambda}$ is bounded from below and the lowest eigenvalue $E_1(\lambda)$ is simple.

Some known results

- (Hoegh-Krohn and Simon 1972) $\sigma_{ess}(-L+V_\lambda)\cap [E_1(\lambda),E_1(\lambda)+m)= \emptyset.$
- (Simon 1972) Example of spatially cut-off $P(\phi)_2$ -Hamiltonian for which there exist an eigenvalue which is in a continuous spectrum.
- (Dereziński and Gérard, 2000) $-L + V_{\lambda}$ does not have singular continuous spectrum.
- (A.Arai, 1996) Calculation of $\lim_{\lambda\to\infty} \operatorname{tr} e^{t(L-V_{\lambda})/\lambda}$ for certain $P(\phi)$ -type models (not including $P(\phi)_2$ -model)

Schrödinger operators on \mathbb{R}^N

Assume

(i) $U \in C^{\infty}(\mathbb{R}^N)$, $U(x) \ge 0$ for all $x \in \mathbb{R}^N$ and $\liminf_{|x| \to \infty} U(x) > 0$.

(ii)
$$\{x \mid U(x) = 0\} = \{x_1, \dots, x_n\}.$$

(iii)
$$Q_i = rac{1}{2}D^2U(x_i) > 0$$
 for all i .

Then the lowest eigenvalue $E_1(\lambda)$ of $-\Delta + \lambda U(\cdot/\sqrt{\lambda})$ is simple and

$$\lim_{\lambda o\infty} E_1(\lambda) = \min_{1\leq i\leq n} {
m tr} \sqrt{Q_i}.$$

In addition to (i), (ii), (iii), we assume the symmetry of U:

(iv)
$$U(x) = U(-x)$$
,

(v)
$$\{x \mid U(x) = 0\} = \{-x_0, x_0\}$$
 $(x_0 \neq 0)$.

Then we have (due to Harrell, Jona-Lasinio, Martinelli and Scoppola, Simon, Helffer and Sjöstrand,...)

$$\lim_{\lambda o\infty}rac{\log(E_2(\lambda)-E_1(\lambda))}{\lambda}=-d_U^{Ag}(-x_0,x_0),$$

where $E_2(\lambda)$ is the second eigenvalue and $d_U^{Ag}(-x_0,x_0)$ is the Agmon distance between $-x_0$ and x_0 such that

$$egin{aligned} d^{Ag}_U(-x_0,x_0) &= & \infiggl\{ \int_{-T}^T \sqrt{U(x(t))} |\dot{x}(t)| dt \ &igg| \, x ext{ is a smooth curve on } \mathbb{R}^N \ & ext{ with } x(-T) = -x_0, \, x(T) = x_0 iggr\}. \end{aligned}$$

The definition is independent of T>0.

The Agmon distance $d_U^{Ag}(-x_0, x_0)$ is equal to the following action integral which is introduced by Carmona and Simon (1981). The minimizing path of the following variational problem is called an instanton.

$$egin{aligned} &d^{CS}_U(-x_0,x_0) = \infiggl\{ \int_{-T}^T \left(rac{1}{4} |x'(t)|^2 + U(x(t))
ight) dt \ &iggl| x ext{ is a smooth curve on } \mathbb{R}^N ext{ with} \ &x(-T) = -x_0, \, x(T) = x_0, \, T > 0 iggr\}. \end{aligned}$$

The elementary inequality $ab \leq rac{a^2}{2} + rac{b^2}{2}$ implies

$$\int_{-T}^{T} \sqrt{U(x(t))} |x'(t)| dt \leq \int_{-T}^{T} \left(\frac{1}{4} |x'(t)|^2 + U(x(t)) \right) dt$$

and $d_U^{Ag}(-x_0, x_0) \leq d_U^{CS}(-x_0, x_0).$

$-L + V_{\lambda}$ as an ∞ -dimensional Schrödinger operator

 $-L+V_\lambda$ is informally unitarily equivalent to the ∞ -dimensional Schrödinger operator on $L^2(L^2(I,dx),dw)$:

$$-\Delta_{L^2(I)}+\lambda: U(w/\sqrt{\lambda}):-rac{1}{2}\mathrm{tr}(m^2-\Delta)^{1/2},$$

where

$$egin{aligned} &: U(w): \ &= \ rac{1}{4} \int_{I} w'(x)^2 dx \ &+ \int_{I} \left(rac{m^2}{4} w(x)^2 + : P(w(x)): g(x)
ight) dx. \end{aligned}$$

In fact, $P(\phi)_2$ -Hamiltonian is related with the quantization of the classical field (nonlinear Klein-Gordon equation):

$$egin{aligned} &rac{\partial^2 w}{\partial t^2}(t,x)\ =\ -2(
abla U)(w(t,x)),(t,x)\in \mathbb{R} imes H\ &U(w)\ =\ rac{1}{4}\int_I \left(w'(x)^2+m^2w(x)^2
ight)dx\ &+\int_I P(w(x))g(x)dx\ &2(
abla U)(w(t,x))\ =\ -rac{\partial^2 w}{\partial x^2}(t,x)+m^2w(t,x)\ &+2P'(w(t,x))g(x). \end{aligned}$$

Main Result 1

Assumption 5

(A1) $U(h) \geq 0$ for all $h \in H^1$ and $\mathcal{Z} = \{h \in H^1 \mid U(h) = 0\} = \{h_1, \dots, h_n\}$

is a finite set.

(A2) The Hessian $D^2U(h_i)$ $(1 \le i \le n)$ is strictly positive. The derivative D stands for the H-derivative.

Remark 6

$$D^2U(h_i)=rac{1}{2}A^2+D^2V(h_i)$$

is an unbounded operator on H.

 $\inf \sigma(D^2 U(h_i)) > 0 \Longleftrightarrow \inf \sigma(m^2 - \Delta + 4v_i) > 0$

where

$$v_i(x)=rac{1}{2}P^{\prime\prime}(h_i(x))g(x).$$

Theorem 7 Assume (A1) and (A2) hold. Let $E_1(\lambda) = \inf \sigma(-L + V_\lambda)$. Then $\lim_{\lambda \to \infty} E_1(\lambda) = \min_{1 \le i \le n} E_i,$

where

$$egin{aligned} E_i &= \inf \sigma(-L+Q_{v_i}), \ Q_{v_i} &= & \int_I : w(x)^2 : v_i(x) dx, \ v_i(x) &= & rac{1}{2} P''(h_i(x)) g(x). \end{aligned}$$

Main Result 2 (Tunneling estimate)

Let

$$E_2(\lambda) = \inf \left\{ \sigma(-L+V_\lambda) \setminus \left\{ E_1(\lambda)
ight\}
ight\}.$$

We prove that $E_2(\lambda) - E_1(\lambda)$ is exponentially small when $\lambda \to \infty$ under a certain assumption on P.

To state our estimate, we introduce infinite dimensional analogue of Agmon distance in quantum mechanics. Let us fix T>0 and take $h,k\in H(=H^{1/2}(I)).$ Let

$$egin{aligned} &H^1_{T,h,k}(I)\ &=\left\{u=u(t,x)\;((t,x)\in(-T,T) imes I)\;\Big|\ &u\in H^1((-T,T) imes I),\ &u(-T,\cdot)=h,\,u(T,\cdot)=k ext{ in the sense of trace}
ight\} \end{aligned}$$

Note $H^1_{T,h,k}(I)
eq \emptyset$.

Let U be a non-negative potential function which we introduced. Here we do not assume **(A1)**, **(A2)**. For any $u \in H^1_{T,h,k}(I)$, the following properties hold: (i) $u(t, \cdot) \in H^1(I)$ for almost every t and $t(\in [-T,T]) \mapsto U(u(t, \cdot))$ is a Lebesgue measurable

function,

(ii)
$$t(\in (-T,T)) \rightarrow u(t,\cdot) \in L^2(I)$$
 is an absolutely
continuous function and its derivative is in
 $L^2((-T,T) \rightarrow L^2(I)),$
(iii) $\int_{-T}^T \sqrt{U(u(t,\cdot))} \|\partial_t u(t,\cdot)\|_{L^2(I)} dt < \infty.$

The fact (iii) follows from the following argument. Let $u \in H^1((-T,T) imes I)$ and define

 $I_{T,P}(u)$

$$egin{aligned} &=rac{1}{4} \iint_{(-T,T) imes I} \left(\left|rac{\partial u}{\partial t}(t,x)
ight|^2 + \left|rac{\partial u}{\partial x}(t,x)
ight|^2
ight) dt dx \ &+ \iint_{(-T,T) imes I} \left(rac{m^2}{4} u(t,x)^2 + P(u(t,x))g(x)
ight) dt dx. \end{aligned}$$

By Sobolev's theorem, $I_{T,P}(u) < \infty$ for any $u \in H^1((-T,T) imes I).$

Hence

$$egin{split} &\int_{-T}^T \sqrt{U(u(t,\cdot))} \| \partial_t u(t,) \|_{L^2} \ &\leq \int_{-T}^T U(u(t,\cdot)) dt + rac{1}{4} \int_{-T}^T \| \partial_t u(t,\cdot) \|_{L^2}^2 dt \ &= I_{T,P}(u) < \infty. \end{split}$$

Now we define an infinite dimensional analogue of Agmon distance.

Definition 8 Let $0 < T < \infty$. We define the Agmon distance between $h, k \in H(=H^{1/2}(I))$ by

$$egin{aligned} & d^{Ag}_U(h,k) \;=\; \infiggl\{ \int_{-T}^T \sqrt{U(u(t,\cdot))} \| \partial_t u(t,\cdot) \|_{L^2} dt \ & u \in H^1_{T,h,k}(I) iggr\}. \end{aligned}$$

The definition of d_U^{Ag} does not depend on T.

To prove tunneling estimates, we need another quantity d_{U}^{W} .

Definition 9 Let u be a non-negative bounded continuous function on W. Let \overline{H} be the all mappings $c: [-1,1] \to L^2(I,dx)$ such that

(i) c is an absolutely continuous path on L^2 and

$$\int_{-1}^1 \|c'(t)\|_{L^2}^2 dt < \infty.$$

(ii) $c(t) \in H$ for almost every $t \in [-1, 1]$ and $c(\cdot) \in L^2((-1, 1) \to H)$

For $w_1, w_2 \in W$, define

$$egin{aligned} &
ho_u^W(w_1,w_2)\ &= \infigg\{\int_{-1}^1 \sqrt{u(w_1+c(t))}\|c'(t)\|_{L^2}dt\ \Big|\ c\inar{H}\ &c(-1)=0 ext{ and } c(1)=w_2-w_1igg\}. \end{aligned}$$

• If $h \in H$, then $ho_u^W(w,w+h) < \infty$ for any $w \in W$. • $H^1_{1,h,k}(I) \subset \bar{H}$. **Definition 10** Let \mathcal{F}_{U}^{W} be the set of non-negative bounded globally Lipschitz continuous functions u on Wwhich satisfy the following conditions.

(1)
$$0 \leq u(h) \leq U(h)$$
 for all $h \in H^1$,
 $\{h \in H^1 \mid U(h) - u(h) = 0\} = \mathcal{Z},$
 $D^2 (U - u) (h_i) > 0,$ for all $h_i \in \mathcal{Z},$
where \mathcal{Z} is the zero point set of U .
(2) There exists $\varepsilon > 0$ such that

 $\|u(w)=arepsilon\|w-h_i\|_W^2$ in a n.b.d. of h_i , $1\leq i\leq n$.

Let $h, k \in H$ and we write $B_{\varepsilon}(h) = \{w \in W \mid ||w - h||_{W} \leq \varepsilon\}.$ Definition 11 For $u \in \mathcal{F}_{U}^{W}$, set

$$\underline{
ho}_{u}^{W}(h,k) \;=\; \lim_{arepsilon
ightarrow 0} \; \inf_{w \in B_{arepsilon}(h), \eta \in B_{arepsilon}(k)}
ho_{u}^{W}(w,\eta)$$

and define

$$d^W_U(h,k) ~=~ \sup_{u\in \mathcal{F}^W_U} arrho^W_u(h,k).$$

Lemma 12

$$d_U^W(h,k) \leq d_U^{Ag}(h,k) < \infty$$
 for all $h,k \in H.$

Assumption 13 (Double-well potential function) Let P = P(x) be the polynomial function which defines U. We consider the following assumption. (A3) For all x, P(x) = P(-x) and $\mathcal{Z} = \{h_0, -h_0\}$, where $h_0 \neq 0$.

The following is our second main theorem.

Theorem 14 Assume that U satisfies (A1), (A2), (A3).

$$egin{aligned} (1) & d_U^W(h_0,-h_0) > 0 ext{ and} \ & \lim\sup_{\lambda o \infty} rac{\log\left(E_2(\lambda)-E_1(\lambda)
ight)}{\lambda} \leq -d_U^W(h_0,-h_0). \end{aligned}$$

$$(2) \; Let \; I = [-l/2, l/2]. \; ext{Then} \ d^W_U(-h_0, h_0) = d^{Ag}_U(-h_0, h_0).$$

Properties of Agmon distance

(1) Properties of Agmon distance

Proposition 15

(1) Assume U is non-negative. Then d_U^{Ag} is a continuous distance function on H.

(3) Let I=[-l/2,l/2] and assume (A1), (A2). Then $d_U^{Ag}(h,k)=d_U^W(h,k)$ for any $h,k\in H^1.$

(2) Instanton

Let us consider a non-linear ellptic boundary value problem

$$egin{aligned} &rac{\partial^2 u}{\partial t^2}(t,x) + rac{\partial^2 u}{\partial x^2}(t,x) = m^2 u(t,x) + 2P'(u(t,x))g(x) \ &\lim_{t o -\infty} u(t,x) = -h_0(x), \quad \lim_{t o \infty} u(t,x) = h_0(x). \ &(t,x) \in \mathbb{R} imes I \end{aligned}$$

The solution is a candidate of minimizers (instanton) whose action integral attain the value:

$$\inf_{T>0,u\in H^1_{T,-h_0,h_0}(I)}I_{T,P}(u),$$

where

$$egin{aligned} &I_{T,P}(u)\ &=rac{1}{4} \iint_{(-T,T) imes I} \left(\left|rac{\partial u}{\partial t}(t,x)
ight|^2 + \left|rac{\partial u}{\partial x}(t,x)
ight|^2
ight) dtdx\ &+ \iint_{(-T,T) imes I} \left(rac{m^2}{4} u(t,x)^2 + P(u(t,x))g(x)
ight) dtdx. \end{aligned}$$

It is very likely that the minimum action integral of the instanton is equal to the Agmon distance $d_U^{Ag}(-h_0, h_0)$. I show such a simple example. (3) Example

Let us consider the case I = [-l/2, l/2] and g = 1. Let $x_0 (\in \mathbb{R}) \neq 0$ and a > 0.

We consider the case where

$$U(h) = rac{1}{4} \int_I h'(x)^2 dx + a \int_I \left(h(x)^2 - x_0^2
ight)^2 dx.$$

This can be realized by a suitable choice of P.

Note $\mathcal{Z} = \{x_0, -x_0\}.$

These are zero points also of the potential function

$$Q(x)=a(x^2-x_0^2)^2 \quad x\in \mathbb{R}.$$

Let

$$egin{aligned} &d^{Ag}_{1-dim}(-x_0,x_0) \; = \; \inf \Bigl\{ \int_{-T}^T \sqrt{Q(x(t))} |x'(t)| dt \; \Big| \ &x(-T) = -x_0, \;\; x(T) = x_0 \Bigr\}. \end{aligned}$$

This is the Agmon distance which corresponds to 1-dimensional Schrödinger operator $-\frac{d^2}{dx^2} + Q(x)$ and

$$d_{1-dim}^{Ag}(-x_0,x_0) = \int_{-x_0}^{x_0} \sqrt{Q(x)} dx = rac{5\sqrt{a}x_0^3}{3}.$$

We can prove the following.

Proposition 16 Assume $2ax_0^2l^2 \leq \pi^2$.

$$(1) \ \ d_U^{Ag}(-x_0,x_0) = l \ d_{1-dim}^{Ag}(-x_0,x_0).$$

$$egin{aligned} (2) \ \textit{Let} \ u_0(t) &= x_0 anh \left(2\sqrt{a}x_0 t
ight). \end{aligned}$$
 Then $u_0(t)$ is the solution to $u''(t) \ &= \ 2Q'(u(t)) \qquad ext{for all } t \in \mathbb{R}, \end{aligned}$

 $\lim_{t o -\infty} u(t) = -x_0, \qquad \lim_{t o \infty} u(t) = x_0$

and

$$egin{aligned} I_{\infty,P}(u_0) &= \left(rac{1}{4}\int_{-\infty}^\infty u_0'(t)^2 dt + \int_{-\infty}^\infty Q(u_0(t)) dt
ight) l, \ &= d_{1-dim}^{Ag}(-x_0,x_0) l \ &= d_U^{Ag}(-h_0,h_0). \end{aligned}$$

That is,

• u_0 is the instanton for both operators: 1-dimensional Schrödinger operator $-\frac{d^2}{dx^2} + \lambda Q(\cdot/\sqrt{\lambda})$ and $-L + V_{\lambda}$. • The Agmon distance $d_U^{Ag}(-h_0, h_0)$ is equal to the action integral of the instanton in this case.

Open problems

•
$$d_U^W(-h_0,h_0) = d_U^{Ag}(-h_0,h_0)$$
 in the case of $I = \mathbb{R}$?

• Instanton solutions for general cases ?

$$ullet \lim_{\lambda o\infty} rac{\log\left(E_2(\lambda)-E_1(\lambda)
ight)}{\lambda} = -d_U^{Ag}(h_0,-h_0). ?$$

References

• S. Agmon, Lectures on Exponential decay of solutions of second order elliptic equations. Bounds on eigenfunctions of *N*-body Schrödinger operators, Mathematical Notes, Princeton Univ. Press, Princeton, N.J., 1982.

• S. Aida, Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space : II. $P(\phi)_2$ -model on a finite volume, J. Funct. Anal. 256 (2009), no. 10, 3342-3367.

• S. Aida, Tunneling for spatially cut-off $P(\phi)_2$ -Hamiltonians, (http://arxiv.org/abs/1104.0486).

• A. Arai, Trace formulas, a Golden-Thompson inequality and classical limit in boson Fock space, J. Funct. Anal. **136**, (1996), 510–547.

• R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in *N*-body quantum systems, V. Lower bounds and path integrals, Comm. Math. Phys. **80** (1981), 59–98.

• J. Dereziński and C. Gérard, Spectral scattering theory of spatially cut-off $P(\phi)_2$ Hamiltonians, Commun. Math. Phys. **213**, 39–125, (2000).

• B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit. I. Comm. Partial Diffrential Equation **9** (1984), no.4, 337–408.

• B. Helffer and J. Sjöstrand, Puits multiples en limite semi-classique. II. Interaction mol'eculaire. Symétries. Pertuabation. Ann. Inst. H. Poincaré Phys. Théor. **42**, no. 2 (1985), 127–212.

• B. Simon, Continuum embedded eigenvalues in a spatially cutoff $P(\phi)_2$ field theory, Proc. Amer. Math. Soc. **35** (1972), 223–226.

• B. Simon, Semiclassical Analysis of Low Lying Eigenvalues I. Nondegenerate Minima: Asymptotic Expansions, Ann. Inst. Henri Poincaré, Section A, Vol. XXXVIII, no. 4, (1983), 295–308.

• B. Simon, Semiclassical analysis of low lying eigenvalues, II. Tunneling, Annals of Math. **120**, (1984), 89–118.

• B. Simon and R. Hoegh-Krohn, Hypercontractive Semigroups and Two Dimensional Self-Coupled Bose Fields, J. Funct. Anal., Vol. 9, (1972), 121–180.