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Introduction

(Spatially cut-off) P(¢)2-Hamiltonian —L + V), is an
oo-dimensional Schrodinger operator defined on

L*(S8'(I), n), where I = [—1/2,1/2] or I = R and

1
A= —.
h

| explain my recent results:

® Determination of the semi-classical limit of Eq(A) as

A — OO

e An estimate on the asymptotic behavior of the gap of
spectrum FEo(A) — E1(\) as A — oo.
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Plan of Talk

1. P(¢)2-Hamiltonian

2. Results for Schrodinger operator —A + AU (- /)
3. Main Result 1 : limy_, o F1 ()

4. Main Result 2 :

log (E2(A) — E41(A
A— 00

(= —dz‘}g(—ho,ho) if I =[—1/2,1/2])

. . A
5. Properties of Agmon distance dy,”.
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P(¢)2-Hamiltonian

let I = [—1/2,1/2] or I = R and m > 0. Let
H?*(I,dx) be the Sobolev space with the norm:

ol e (r,a2) = |1(m* — A) 2]l 12(1,da)-
Let H = H'Y?(I,dx). Let u be the Gaussian measure

whose covariance operator is (m? — A)~'/2 on L2(I, dx).
Let us consider a Hilbert space W':
(1) When I = [—1/2,1/2], W = H¢(I,dx), where € is

any positive number.



(2) When I = R,
W = {w c S'(R) |
wld, = [ 10+ 1al* - &) w(@)Pde < o},

Then (W, H, ) is an abstract Wiener space in the sense of
Gross. Define a self-adjoint operator A on H by

Ah = (m?— A)Y/*h,
D(A) = H' C H.



Definition 1 (Free Hamiltonian)

Let €4 be the Dirichlet form defined by

E(f, ) = /W |ADf(w)|%,du(w) § € D(Ea),
where

D(£4) = {f | Df(w) € D(A) and

| IADF () du(w) < oo,

D : H-derivative,

— L : the non-negative generator of € 4.
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Definition 2 Let P(x) = > 22 apz® with aspr > 0.

Let g € C3°(I) with g(x) > O for all x and define
V(h) = /IP(h(w))g(:r;)da: he H
Uh) = iHAthH—l—V(h) for h € D(A).
Remark 3 V' is well-defined on H and we can rewrite
U(h) = i/—’(h'(m)2 + m?h(x)?) dx

—I—/IP(h(:B))g(m)dac h e H.
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Definition 4 (1) Let A > 0. For the polynomial
P = P(x) = 2M0 arx® with asps > 0, define

[ (5) o

_Zak/ (w(w)> . g(x)da.

We write

V()= [or () o



and

VA(w):A:V<%>:.

(2) It is known that (—L 4 Vi, §C% (W)) is essentially
self-adjoint, where FC\ (W) denotes the set of smooth

cylindrical functions.

We use the same notaion — L + V) for the self-adjoint

extension.

It is known that — L -+ V) is bounded from below and the

lowest eigenvalue E1(\) is simple.



Some known results

e (Hoegh-Krohn and Simon 1972)
Oess(—L + Vi) N [Ey(N), E1(A) + m) = 0.

e (Simon 1972) Example of spatially cut-off
P (¢)2-Hamiltonian for which there exist an eigenvalue

which is in a continuous spectrum.

o (Derezinski and Gérard, 2000) — L + V), does not have

singular continuous spectrum.

o (A.Arai, 1996) Calculation of limy_, s tr eF=V2)/A for

certain P(¢)-type models (not including P(¢)2-model)
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Schrodinger operators on RYY

Assume

(i) U € C®@RYN), U(x) > 0 for all z € RY and
lim inf ;. U(x) > 0.
(i) {x|U(x) =0} ={x1,...,20}
(i) Q; = 3D*U(x;) > 0 for all .
Then the lowest eigenvalue E;(A) of —A + AU (-/VA) is

simple and

lim E;(A\) = min try/Q;.

A— 00 1<i<n
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In addition to (i), (ii), (iii), we assume the symmetry of U':
(iv) U(z) = U(-=),
(v) {z |U(z) =0} = {—=mo,xo} (0 7 0).

Then we have (due to Harrell, Jona-Lasinio, Martinelli and

Scoppola, Simon, Helffer and Sjostrand,... )

log(E2(A) — E1(N))
A— 00 A N

A
_dUg(_w()? 330)9

where E5(A) is the second eigenvalue and dég(—azo, Tg) IS

the Agmon distance between —xy and xg such that
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T
di9(—xg, xg) = inf{/ VU (z(t))|2(¢)|dt
—T
‘ x is a smooth curve on RY
with ¢(—=T) = —xg, «(T) = wo}.

The definition is independent of T' > 0.

The Agmon distance d{}g(—mo, xgo) is equal to the following
action integral which is introduced by
Carmona and Simon (1981). The minimizing path of the

following variational problem is called an instanton.
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T

dgs(—w(), 330) — mf{/

—T

1

(Ll ®F + U®) ) d
‘ x is a smooth curve on RYY with

x(—T) = —xg, €¢(T) = 9, T > 0 }

b2
2

Implies

The elementary inequality ab < a;

/ i VOG®)l'(t)ldt < [

7T

T

(L ®F + U@) ) at
and di? (—xo, o) < dS5(—xq, x0).
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— L + V), as an oo-dimensional Schrodinger operator

L + V) is informally unitarily equivalent to the

oo-dimensional Schrodinger operator on
L?(L*(I,dx),dw):

1
—Apr) + A U(w/VA) : —Etr(?n2 — A)/Z

where

:U(w) : = i/lw'(a:)zda:

+ [ (Mwer: Pa) - g(@) ) da.
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In fact, P(¢)2-Hamiltonian is related with the quantization

of the classical field (nonlinear Klein-Gordon equation):

‘Zj (t,2) = —2(VU)(w(t,z)),(t,z) €R X I
Uw) = 5 [ (@ @?+miu()) de
+ [ Plw)g@)de
2(VU)(w(t,2)) = — o o(t2) + miw(t, 2

+2P'(w(t, ))g(x)-
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Main Result 1

Assumption 5

(A1) U(h) > 0 for all h € H' and
Z={he H" |UM)=0}={hi,...,h,}

Is a finite set,

(A2) The Hessian D*U (h;) (1 < i < m) is strictly

positive. The derivative D stands for the H-derivative.
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Remark 6
D?*U (h;) = %Az + D*V (h;)
Is an unbounded operator on H.
inf o(D*U(h;)) > 0 < info(m? — A + 4v;) > 0
where

vi() = P (hi())g (@)
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Theorem 7 Assume (A1) and (A2) hold.
Let E1(A) = info(—L + V)). Then

A— 00 1<21<n

where

Ei:inO'( L | Qvi),

Qv, = /:w(az)2 : v;(x)dx,

I

w(@) = P (hi(@)g().
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Main Result 2 (Tunneling estimate)

Let
E3(A) = inf {o(—L + Vo)) \ {E1(N)}}.

We prove that E5(A) — E;() is exponentially small when

A — oo under a certain assumption on P.

To state our estimate, we introduce infinite dimensional

analogue of Agmon distance in quantum mechanics.
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Let us fix T > 0 and take h, k € H(= H'Y2(I)).

Let

Hy, ), 1. (T)
- {u — u(t,z) ((t, ) € (=T, T) x I) ‘
u € H'((-T,T) x I),
u(—=T,-) = h, u(T,-) = k in the sense of trace}

Note Hy ), (1) # 0.
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Let U be a non-negative potential function which we
introduced. Here we do not assume (A1), (A2).

For any u € H}’h’k(I), the following properties hold:
(i) w(t,-) € H'(I) for almost every t and
t(e [-T,T]) — U(u(t,-)) is a Lebesgue measurable

function,

(i) t(e (=T,T)) — u(t,-) € L*(I) is an absolutely
continuous function and its derivative is in
L*((-T,T) — L*(Q)),

i) [ VOGN0t )zt < oo
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The fact (iii) follows from the following argument. Let
u € H'((=T,T) x I) and define

IT P(’U,)

ou 2 ou 2
/ / M) + |2, 2)| | dda
T,T)x1 \ | Ot ox

L ("ult,2)? + Plalt2)g(a) ) deda,

By Sobolev's theorem, It p(u) < oo for any
ue H ((-T,T) x I).
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Hence

/_ VO Dotz

T 1 T
< / U(u(t,-))dt + = / 10u(t, -)|12-dt
—T 4 T

— IT,P(’U,) < ox.

Now we define an infinite dimensional analogue of Agmon

distance.
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Definition 8 Let 0 < T < oo. We define the Agmon
distance between h,k € H(= H'/2(I)) by

di?(h,k) = inf{ / VUt )| =t

u € Hy, . (1) ¢

/

The definition of dé—g does not depend on T'.

. . . W
To prove tunneling estimates, we need another quantity d;; .
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Definition 9 Let u be a non-negative bounded continuous
function on W. Let H be the all mappings
c:[—1,1] — L*(I,dxz) such that

(i) c is an absolutely continuous path on L? and

1
[ le@lBadt < .

—1

(i) c(t) € H for almost everyt € [—1,1] and
c(-) € L*((—1,1) — H)
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For w1, ws € W, define

sz (wlv w2)

(1
— inf< / Vu(ws + c(t)||d@)||2dt | c € H
J-1

c(—1) =0andc(l) = ws — w; .

/

o If h € H, then pzv(w,w—l—h) < oo for any w € W.
° I—Ill,h,k(I) C H.
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Definition 10 Let F}} be the set of non-negative
bounded globally Lipschitz continuous functions uw on W

which satisfy the following conditions.

(1) 0 < wu(h) <U((h) forallh € H',
{he H' |U(h) —u(h) =0} = Z,
D?* (U — u) (h;) >0, forallh; € Z,

where Z is the zero point set of U.

(2) There exists € > 0 such that

u(w) = el|lw — hy||5,, inanbd ofh;,1<1i<n.
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Let h, kK € H and we write
B.(h) = {w € W | |lw — h|lw < ¢}

Definition 11 Foru € F}Y, set

%% . : 1%
h.k) = 1 f
p, (h,k) lim o dnf P (w, n)
and define
djj (h,k) = sup p”(h,k).
ueFY
Lemma 12

d¥ (h,k) < di?(h,k) < oo  forallh,k € H.
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Assumption 13 (Double-well potential function)

Let P = P(x) be the polynomial function which defines U .

We consider the following assumption.

(A3) For all x, P(x) = P(—x) and Z = {hy, —hy},
where hg #£ 0.

The following is our second main theorem.
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Theorem 14  Assume that U satisfies (Al),(A2),(A3).

(1) dy(ho, —h()) > 0 and
log (E2(A) — E1(>\))

lim sup —dy) (ho, —ho).
A— OO A
(2) Let I = [—1/2,1/2]. Then

dY (—ho, ho) = di? (—ha, ho).
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Properties of Agmon distance
(1) Properties of Agmon distance
Proposition 15

(1) Assume U is non-negative. Then dé—g is a continuous
distance function on H.

(2) Let U(h) = %||Ah||% (that is P = 0). Then
1
di?(0,h) = Zuhu; for any h € H.

(3) Let I = [—1/2,1/2] and assume (A1), (A2). Then
do?(h,k) = dY (h,k) forany h,k € H".
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(2) Instanton

Let us consider a non-linear ellptic boundary value problem

0*u 0 ,
8t2 (t x)- O (t’ r) = m-u(t, z)+2P (u(t, z))g(x)

lim wu(t,x) = —hg(x), tlirglo u(t,x) = ho(x).

t——o0

(t,xz) e R X I

The solution is a candidate of minimizers (instanton) whose

action integral attain the value:

inf It p(u),
T>O’uEH%’a_hO’hO (I)
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where

IT p(’LL)

ou 2 ou 2
// —(t,x)| A (t,x)| | dtdx
(—T,T)xI \ | Ot ox

It is very likely that the minimum action integral of the
instanton is equal to the Agmon distance d{}g(—ho, hg).

| show such a simple example.
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(3) Example

Let us consider the case I = [—1/2,1/2] and g = 1. Let
xo(€ R) # 0 and a > 0.

We consider the case where

U(h) = i/Ih’(wfda: + a/ (h(z)? — 22)” da.

I

This can be realized by a suitable choice of P.
Note Z = {ZE(), —:130}.
These are zero points also of the potential function

Q(xz) = a(z® —xz))? = € R.
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Let
4 (w0, w0) = wt{ [ /QE@ (D)t

2(—T) = —xy, z(T) = :130}.

This I1s the Agmon distance which corresponds to

1-dimensional Schrodinger operator d‘iz - Q(x) and

5vax;
3

dffdim(_wmmﬂ) — O \/Q(il?)d:c =

We can prove the following.
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Proposition 16 Assume Zawglz < 72,

(1) dp?(—xo, mo) = Ldy? 4, (—To, To)-

(2) Let up(t) = xo tanh (2v/axot) .
Then uq(t) is the solution to

u’(t) = 2Q" (u(t)) for all t € R,

tlim u(t) = —xo, tlim u(t) = x¢

37



and

1 o0 oo
L) = (5 [ e+ [~ Quua(tat)t
— dfgdim(_wﬂvwo)l
= d2?(—hg, ho).
That is,

® U Is the instanton for both operators: 1-dimensional
d2

Schrodinger operator o FAQ(-/VA) and —L + Vjy.
T

® The Agmon distance dég(—ho, hg) is equal to the action
integral of the instanton in this case.
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Open problems
o d¥V (—hg, ho) = di;?(—hg, hg) in the case of T = R ?

e Instanton solutions for general cases ?

| Es(A\) — E{(A
‘>\lim Og( 2( )A 1( )) :—dég(ho, —h())o?
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