
EPSRC Symposium Workshop - Stochastic Analysis and
Stochastic PDEs

University of Warwick

April 20, 2012

On finite difference approximations
for degenerate filtering

István Gyöngy
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1. Introduction: schemes for degenerate PDEs

dut(x) = (Lut(x) + ft(x)) dt, (t, x) ∈ [0, T ]× Rd =: HT

u0(x) = ψ(x), x ∈ Rd,

where L = aαβDαDβ, α, β ∈ {0,1, ..., d}, Di = ∂
∂xi

for

i 6= 0, D0 = I. Assume

aijzizj ≥ 0 z = (z1, z2, ..., zd) ∈ Rd.

For fixed h 6= 0 replace L by Lh =
∑
λ,µ∈Λ ā

λµδh,λδh,µ,

where Λ is a finite set of vectors, and

δh,λϕ(x) =
ϕ(x+ hλ)− ϕ(x)

h
, for λ 6= 0,

δh,λ = Identity for λ = 0
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Approximate the Cauchy problem by

duht (x) = (Lhuht (x) + ft(x)) dt, (t, x) ∈ [0, T ]× Gh,

uht (x) = ψ(x), x ∈ Gh,

Gh = {hλ1 + hλ2 + ...+ hλn : λi ∈ Λ ∪ (−Λ)}

Tasks:

(1) Estimate sup(t,x)∈[0,T ]×Gh |u
h
t (x)− ut(x)|

(2) Investigate Richardson extrapolation, i.e., if

uh = u+
k∑
i=1

hi

i!
u(i) + hk+1rhk

with u(1),...,u(k) independent of h,

sup[0,T ]×Gh |r
h| ≤ K with constant K independent of h.
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(1) and (2) have been studied thoroughly in the litera-
ture in the strongly parabolic case, i.,e, when∑

i,j=1,d

aijzizj ≥ κ|z|2 with a constant κ > 0

There are only a few papers in the degenerate case.
The difficulty is to estimate the (discrete) gradient of uh

independently of h. Gradient estimates and hence rate
of convergence estimates for finite difference schemes
(in space and time) are obtained in

H. Dong-N.V. Krylov, On the rate of convergence of
finite-difference approximations for degenerate linear parabolic
equations with C1 and C2 coefficients, (2005).

First order and higher order derivative estimates for
finite difference schemes in the space variables and re-
sults on Richardson extrapolation are obtained in
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N.V. Krylov-I.G, First derivative estimates for finite dif-
ference schemes, (2009)

N.V. Krylov-I.G, Higher order derivative estimates for
finite-difference schemes, (2009)

N.V. Krylov-I.G, Accelerated finite difference schemes
for second order degenerate elliptic and parabolic prob-
lems in the whole space, (2011).

In all the above papers the finite difference schemes are
monotone schemes and the maximum principle plays a
crucial role. A different approach is used to get results
on Richardson extrapolation for non-monotone finite
difference schemes of stochastic PDEs (under uniform
stochastic parabolicity condition) in
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N.V. Krylov-I.G, Accelerated finite difference schemes
for stochastic parabolic partial differential equations in
the whole space (2010).

The results of this paper are extended to fully dis-
cretized schemes in

E. Hall, Accelerated spatial approximations for time dis-
cretized stochastic partial differential equations, (2012).

Results on Richardson extrapolation for degenerate SPDEs
are obtained in

I.G. Accelerated finite difference schemes for degener-
ate stochastic parabolic partial differential equations in
the whole space, (2011).
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2. Nonlinear Filtering, Zakai equation

Z = (X,Y ) signal-observation

dXt = h(Zt) dt+ σ(Zt) dWt + b(Zt) dVt,

dYt = H(Zt) dt+dVt, X0 = ξ ∈ Rd, Y0 = η ∈ Rd2,

(W,V ) is a d1+d2-dimensional Wiener process

independent of (ξ, η).
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• Compute the best estimate of ϕ(Xt) given Yt = (Ys)s∈[0,t]

E(ϕ(Xt)|Yt) =
∫
Rd
ϕ(x)P (t, dx) =

∫
Rd
ϕ(x) p(t, x) dx,

where

P (t, dx) := P (Xt ∈ dx|Yt), p(t, x) := P (t, dx)/dx.
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Theorem 2.1 Assume

• P (ξ ∈ dx|η)/dx ∈W1
2 (Rd)

• |Dk
x(σ, b, h,H)| ≤ K for k ≤ 4

Then pt exists and can be computed as

pt(x) =
ut(x)∫
ut(x) dx

,
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where u is the solution of the Zakai equation

dut(x) = Lut(x) dt+Mrut(x) dY rt ,

u0(x) = p0(x) = P (ξ ∈ dx|η)/dx.

Here L = L∗, Mr = Mr∗ are the adjoint of

L := a
ij
t (x)DiDj+hit(x)Di, Mr := Hr

t (x)+birt (x)Di

at(x) := 1
2(σtσ

∗
t (x)+btb

∗
t(x), ht(x) := h(x, Yt)

σt(x) := σ(x, Yt), Ht(x) := H(x, Yt).
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3. Parabolic SPDEs

dut = (Ltut + ft) dt+ (Mρ
tut + g

ρ
t ) dwρt , (1)

for (t, x) ∈ [0, T ]× Rd =: HT ,

u0(x) = ψ(x), x ∈ Rd, (2)

where wr are independent Ft-Wiener processes,

Lt = a
αβ
t DαDβ, Mρ

t = b
αρ
t Dα, α, β ∈ {0,1, ..., d}

a
αβ
t = a

αβ
t (ω, x) ∈ R, bαt = (bαρt (ω, x))∞ρ=1 ∈ l2,

ft = ft(x, ω) ∈ R, gt = (gρt (ω, x)) ∈ l2,

ψ = ψ(ω, x) ∈ R.
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The theory of (1)-(2) and their numerical analysis are
well-developed under the condition of
Strong Stochastic Parabolicity:
There is a constant λ > 0 such that

d∑
i,j=1

(2aij − biρbjρ)zizj ≥ λ|z|2 (3)

for all (ω, t, x) ∈ Ω×HT and z ∈ Rd.

In general the Zakai equation in nonlinear filtering sat-
isfies (3) only with λ = 0:

Assumption P. (Stochastic parabolicity) For all (ω, t, x) ∈
Ω×HT and z ∈ Rd

d∑
i,j=1

(2aij − biρbjρ)zizj ≥ 0.
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In the case of the Zakai equation:

2aij − biρbjρ = σikσkj

(2aij − biρbjρ)zizj = σikσkjzizj =
∑
k

|σikzi|2 ≥ 0.

We will use the following result on solvability of (1)-(2)

in Hm, for integers m ≥ 0, where Hm denotes the usual

Hilbert-Sobolev space of functions on Rd with norm |·|m,

defined by

|φ|2m =
∑
|γ|≤m

∫
|Dγϕ(x)|2 dx.
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Assumption R. (i) aij and their derivatives in x up to

order max(m,2); a0α, a0α, bα and their derivatives in x

up to order m are P ⊗ B(Rd)-measurable functions and

in magnitude bounded by a constant K.

(ii) ψ ∈ Hm is F0-measurable, f is an Hm-valued, gρ are

Hm+1
2 -valued predictable processes, such that

K2
m :=

∫ T

0
(|ft|2m +

∑
ρ
|gρt |

2
m+1) dt+ |u0|2m <∞.

Remark 1. If Assumption R(ii) holds with m > d/2

then we have a continuous function of x which equals to

u0 dx-a.e., and we have continuous functions of x which

coincide with ft and gt dx-a.e. Thus when Assumption

R holds with m > d/2, we always assume that ψ, ft and

gt are continuous in x for all t.
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Definition. An H1-valued weakly continuous process

u = (ut)t∈[0,T ] is a solution to (1)-(2) if almost surely

for all ϕ ∈ C∞0 (Rd)

(ut, ϕ) = (u0, ϕ)+
∫ t

0
(−aijs Djus, Diϕ)+(aαsDαus, ϕ)+(fs, ϕ) ds

+
∫ t

0
(bαρs Dαus + gρs , ϕ) dwρs , t ∈ [0, T ],

where aj := −Diaij + a0j + aj0 and a0 := a00.
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Theorem 3.1. Let Assumptions P-R hold with m ≥ 1.

Then (1)-(2) has a unique solution u. Moreover, u is

Hm-valued weakly continuous process, it is a continuous

process with values in Hm−1, and for q > 0

E sup
t≤T
‖ut‖qm ≤ NEKqm, with N = N(m, d, q,K).

Remark 2. We will assume that m−1 > d/2. Then by

Sobolev embedding the solution ut(x) is a continuous

function of (t, x).
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4. Finite difference schemes

For α = i ∈ {1, ..., d} and h ∈ R \ {0} define

δhαu(x) =
1

2h
(u(x+ hei)− u(x− hei)),

and for α = 0 let δhα be the unit operator.

We approximate u by solving

duht = (Lht u
h
t + ft) dt+ (Mh,ρ

t uht + g
ρ
t ) dwρt , (4)

uh0 = ψ, (5)

for t ∈ [0, T ], x ∈ Gh := |h|Zd, where

Lht = a
αβ
t δhαδ

h
β M

h,ρ
t = b

αρ
t δhα.
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Let l2(Gh) be the set of real-valued functions φ on (Gh)
such that |φ|2

l2(Gh) := |h|d
∑
x∈Gh |φ(x)|2 <∞.

Remark. Equation (4) is a system of SDEs for {ut(x) :
x ∈ Gh}. Therefore if, for instance, (a.s.)

uh0 ∈ l2(Gh),
∫ T

0
|ft|2l2(Gh) +

∑
ρ
|gρt |

2
l2(Gh) dt <∞,

and Assumption 2 (i) holds, then equation (4) has a
unique l2(Gh)-valued continuous solution.

If r > d/2 then Sobolev’s embedding of Hr into Cb
implies Hr ⊂ l2(Gh). Therefore if

K2
r = ‖ψ‖2r +

∫ T

0
‖fs‖2r +

∑
ρ
‖gρs‖2r ds <∞ (a.s.),

for some r > d/2, then (4)-(5) has a unique l2(Gh)-
valued continuous solution (uht )t∈[0,T ].
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We want to estimate uh independently of h. Take an

integer l ≥ 0.

Assumption 1.(i) There is an Rd×d1-valued function

σ = σikt (x) on Ω×HT such that

ãij := 2aij − biρbjρ = σikσjk, i, j = 1, ..., d; k = 1, ..., d1

(ii) σ is l + 1 times continuously differentiable in x,

|Djσ| ≤ K j = 1, ..., l + 1.
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Assumption 2.(i) aα0, a0α are l-times, bα are l + 1-

times continuously differentiable in x, for α = 0,1, ..., d,

|Djaα,0|+ |Dja0,α| ≤ K, |Dkbα|l2 ≤ K,

for j = 0, ..., l and k = 1, ..., l + 1.

(ii) ψ ∈ Hl, f is an Hl-valued predictable process, and

gr are Hl+1-valued predictable processes,

K2
l = |ψ|2l +

∫ T

0
|ft|2l + |gt|2l+1 dt <∞

Theorem 4.1. Let Assumptions 1-2 hold with l > d/2.

Then for q > 0

E sup
t∈[0,T ]

sup
x∈Gh

|uht (x)|q ≤ NEKql

with constant N = N(T, d, q,K).
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Theorem 4.2. Let l > d/2. Let Assumption 1 hold

with l > d/2 and let Assumption R hold with m > 4 + l.

Assume EKqm <∞ for some q > 0. Then

E sup
t∈[0,T ]

sup
x∈Gh

|uht (x)− ut(x)|q ≤ Nh2qEKqm

with N = N(T, l,m, d, q,K).

Theorem 4.3. Let l > d/2. Let Assumptions 1 hold

with l > d/2 and let Assumption R hold with m > 4 +

d/2. Then for each ε > 0 there is a finite r. v. ξε such

that almost surely

sup
t∈[0,T ]

sup
x∈Gh

|uht (x)− ut(x)| ≤ ξεh2−ε

for all h > 0.
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5. Accelerated finite difference schemes

Let k ≥ 0 be a fixed integer.

Aim: existence of u(j)
t (x), (t, x) ∈ HT , j = 0, ..., k, inde-

pendent of h, s.t. u(0) is the solution of (1)-(2), and

for each h 6= 0 almost surely

uht (x) =
k∑

j=0

hj

j!
u

(j)
t (x) + hk+1rht (x), x ∈ Gh, t ∈ [0, T ],

(6)

where Rh is an l2(Gh)-valued continuous process, s. t.

E sup
t∈[0,T ]

sup
x∈Gh

|rht (x)|q ≤ NEKqm (7)

for some q > 0 with a constant N independent of h.
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Theorem 5.1. Let l > d/2. Let Assumption 1 hold

with l > d/2, let Assumption R hold with

m > 2k + 3 + l (8)

for some integer k ≥ 0 and let EKqm <∞ for some q > 0.

Then

(i) expansion (6) and estimate (7) hold with a constant

N = N(T, d,m, q, k,K),

(ii) u(j) = 0 for odd j,

(iii) if k is odd then instead of (8) we need only

m > 2k + 2 + l.
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Define

ũh =
k̃∑

j=0

λju
2−jh , (9)

where

(λ0, λ1, ..., λk̃) := (1,0,0, ...,0)V −1, k̃ = [k2],

and V −1 is the inverse of

V ij := 4−(i−1)(j−1), i, j = 1, ..., k̃ + 1.

Theorem 5.2. Under the conditions of Theorem 3.1

E sup
t≤T

sup
x∈Gh

|ũht (x)− ut(x)|q ≤ N |h|q(k+1)EKqm, (10)

with N = N(T, d,m, k, q,K).
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Theorem 5.3. Let l > d/2. Let Assumption 1 hold

with l > d/2, let Assumption R hold with m ≥ 2k+ 3 + l

if k is even, and with m ≥ 2k + 2 + l if k is odd. Then

for every ε > 0 there is ηε such that almost surely

sup
t≤T

sup
x∈Gh

|ũht (x)− ut(x)| ≤ ηε|h|k+1−ε (11)

for all h > 0.

Example 1. Assume d = 2 and the conditions of The-

orem 5 with l = 2,m = 10. Then

ũh := 4
3u

h/2 − 1
3u

h

satisfies

E sup
t≤T

sup
x∈Gh

|ut(x)− ũht (x)|q ≤ Nh4q.

26



Results for the Zakai equation

Assumption 1 is a very unpleasant condition to satisfy.

Even if ã = ã(x), x ∈ Rd is a smooth function with

values in the set of nonnegative matrices, its square

root is only Lipschitz continuous in general. In the

case of the Zakai equation, however, we have

ãij = 2aij − birbjr = 21
2(σσ∗+ bb∗)ij − (bb∗)ij = σikσjk.

Thus to satisfy Assumption 1 it is sufficient to require

that σ has bounded derivatives in x up to a sufficiently

high order.
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Hence one can get the following results for the Zakai
equation.

Theorem 5.4. Assume that the derivatives in x of H,
σ, b and h up to order m > 4 + d/2 are bounded by a
constant K and that E|p0|

q
m <∞ for some q > 0. Then

E sup
t∈[0,T ]

sup
x∈Gh

|uht (x)− ut(x)|q ≤ Nh2qE|p0|qm

with N = N(T, d, d1, q,K).

Define ũh =
∑k̃
j=0 λju

2−jh , where

(λ0, λ1, ..., λk̃) := (1,0,0, ...,0)V −1, k̃ = [k2],

and V −1 is the inverse of

V ij := 4−(i−1)(j−1), i, j = 1, ..., k̃ + 1.
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Theorem 5.5. Let k ≥ 0. Assume that the derivatives
in x of (H,σ, b, h) up to order m ≥ 2k + 3 + d/2 if k is
even and up to order m ≥ 2k + 2 + d/2 if k is odd are
bounded in magnitude by K. Let E|p0|

q
m <∞ for some

q > 0. Then

E sup
t≤T

sup
x∈Gh

|ũht (x)− ut(x)|q ≤ N |h|q(k+1)E|p0|qm

with N = N(d, k,m, q,K).

Theorem 5.6. Let k ≥ 0. Assume that the derivatives
in x of (H,σ, b, h) up to order m ≥ 2k + 3 + d/2 if k is
even, and up to order m ≥ 2k + 2 + d/2 if k is odd, are
bounded in magnitude by K. Let p0 ∈ Hm (a.s.). Then
for every ε > 0 there is ηε such that almost surely

sup
t≤T

sup
x∈Gh

|ũht (x)− ut(x)| ≤ ηε|h|k+1−ε for all h > 0.
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Example 2.

dut(x) = aD2ut(x) dt+ bDut(x) dwt, t > 0, x ∈ R

u0(x) = cosx, x ∈ R,

Let a = b = 2.Then 2a− b2/2 = 0, i.e., this is a degen-

erate parabolic SPDE. The unique bounded solution is

ut(x) = cos(x+ 2wt).

The finite difference equation is the following:

duht (x) =
uht (x+ 2h)− 2uht (x) + uht (x− 2h)

2h2
dt

+
uht (x+ h)− uht (x− h)

h
dwt.
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Its unique bounded solution with initial u0(x) = cosx is

uht (x) = cos(x+ 2φhwt),

where

φh =
sinh

h
.

For t = 1, h = 0.1, and wt = 1 we have

u1(0) = −0.4161468365,

uh1(0) = −0.4131150562, u
h/2
1 (0) = −0.415389039,

ũh1(0) = 4
3u

h/2
1 (0)− 1

3u
h
1(0) = −0.4161470333.

Such level of accuracy by uh̃1(0) is achieved with h̃ =

0.0008, which is more than 60 times smaller than h/2.
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