A SUPPORT THEOREM FOR STOCHASTIC WAVES IN DIMENSION THREE

Marta Sanz-Solé, University of Barcelona, Spain http://www.mat.ub.es/~sanz

Stochastic Analysis and Stochastic PDEs
Warwick, 16-20 April, 2012

Introduction

Objective

To prove a characterization of the topological support of the law of the solution of a stochastic wave equation in spatial dimension $d=3$.

Definition For a random vector $X \rightarrow \mathbb{M}$, the topological support is the smallest closed $F \subset \mathbb{M}$ such that $\left(P \circ X^{-1}\right)(F)>0$.

Objective

To prove a characterization of the topological support of the law of the solution of a stochastic wave equation in spatial dimension $d=3$.

Definition For a random vector $X \rightarrow \mathbb{M}$, the topological support is the smallest closed $F \subset \mathbb{M}$ such that $\left(P \circ X^{-1}\right)(F)>0$.

- What type of solution? Random field solution
- What topology? Hölder
- What method? Approximations

Objective

To prove a characterization of the topological support of the law of the solution of a stochastic wave equation in spatial dimension $d=3$.

Definition For a random vector $X \rightarrow \mathbb{M}$, the topological support is the smallest closed $F \subset \mathbb{M}$ such that $\left(P \circ X^{-1}\right)(F)>0$.

- What type of solution? Random field solution
- What topology? Hölder
- What method? Approximations

The description of the support is an important ingredient to study irreducibility of the corresponding semigroups, and therefore of the uniqueness of invariant measure.

Main result

Approximation in probability and in Hölder norm of a stochastic wave equation by smoothing the driving noise.
(Wong-Zakai's type Theorem).
References

- For the method: Aida-Kusuoka-Stroock, 1993; Millet-S.-S., 1994; Bally-Millet-S.-S., 1995; Gyöngy-Nualart-S.-S, 1997; Millet-S.-S, 2000...
- For the background on the wave equation: Dalang 1999; Dalang-S.-S, 2009; Dalang-Quer-Sardanyons, 2011; ...

Plan of the work

- Vanishing initial conditions (joint work with F. Delgado)
- Non null initial conditions (work in progress with F. Delgado)

Why we draw such a distinction?
This question is related to

- stationarity of the solution,
- choice of the stochastic integral in the formulation of (1).

Discussion on The Model

Stochastic wave equation in spatial dimension $d=3$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\quad\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right) u(t, x)=\sigma(u(t, x)) \dot{M}(t, x)+b(u(t, x)), \\
u(0, x)=u_{0}(x), \quad \frac{\partial}{\partial t} u(0, x)=v_{0}(x),
\end{array}\right. \\
& t \in[0, T], x \in \mathbb{R}^{3} .
\end{aligned}
$$

Interpretation in mild form

$$
\begin{align*}
& u(t, x)=\left[G(t) * v_{0}\right](x)+\frac{\partial}{\partial t}\left(\left[G(t) * u_{0}\right](x)\right) \\
&+\int_{0}^{t} \int_{\mathbb{R}^{3}} G(t-s, x-y) \sigma(u(s, y)) M(d s, d y) \\
&+\int_{0}^{t}[G(t-s, \cdot) * b(u(s, \cdot))](x) d s, \tag{1}\\
& G(t)=\frac{1}{4 \pi t} \sigma_{t}(d x)
\end{align*}
$$

The noise
$\left\{M(\varphi), \varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{4}\right)\right\}$ Gaussian process

- $E(M(\varphi))=0$,
- $E(M(\varphi) M(\psi))=\int_{0}^{t} d s \int_{\mathbb{R}^{3}} \mu(d \xi) \mathcal{F} \varphi(s) \overline{\mathcal{F} \psi(s)}(\xi)$,
μ non-negative tempered symmetric measure on \mathbb{R}^{3}.
In non-rigorous terms

$$
E(\dot{M}(t, x) \dot{M}(s, y))=\delta(t-s) f(x-y)
$$

$f=\mathcal{F} \mu$.
M as a cylindrical Wiener process
\mathcal{H} is the completion of the Schwartz space $\mathcal{S}\left(\mathbb{R}^{3}\right)$ of test functions with the semi-inner product

$$
\langle\varphi, \psi\rangle_{\mathcal{H}}=\int_{\mathbb{R}^{3}} \mu(d \xi) \mathcal{F} \varphi(\xi) \overline{\mathcal{F} \psi(\xi)}
$$

The process $B_{t}(\varphi)=M\left(1_{[0, t]} \varphi\right)$ is a cylindrical Wiener process: Gaussian, zero mean and

$$
E\left(M_{t}(\varphi) M_{s}(\psi)=\min (s, t)\langle\varphi, \psi\rangle_{\mathcal{H}}\right.
$$

In particular, for any $\operatorname{CONS}\left(e_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{S}\left(\mathbb{R}^{3}\right)$,

$$
\left(W_{t}^{j}=B_{t}\left(e_{j}\right), t \in[0, T]\right)_{j \in \mathbb{N}}
$$

defines a sequence of independent standard Brownian motions.

Dalang's integral as an i.d. Itô integral
Theorem (Dalang-Quer-Sardanyons, 2011)
Let $g \in \mathcal{P}_{0}$ (integrands admissible for the Dalang's integral).
Then $g \in L^{2}(\Omega \times[0, T] ; \mathcal{H})$ and

$$
\int_{0}^{t} \int_{\mathbb{R}^{3}} g(s, y) M(d s, d y)=\sum_{j \in \mathbb{N}} \int_{0}^{t}\left\langle g(s, \cdot), e_{j}\right\rangle_{\mathcal{H}} W^{j}(d s)
$$

Example
Let $\left\{Z(t, x),(t, x) \in[0, T] \times \mathbb{R}^{3}\right\}$ be predictable, with spatially homogeneous covariance and

$$
\sup _{(t, x) \in[0, T] \times \mathbb{R}^{3}} E\left(|Z(t, x)|^{2}\right)<\infty .
$$

Then

$$
\left\{g(t, x):=G(t, d x) Z(t, x),(t, x) \in[0, T] \times \mathbb{R}^{3}\right\} \in \mathcal{P}_{0}
$$

The stochastic wave equation

$$
\begin{align*}
u(t, x) & =\left[G(t) * v_{0}\right](x)+\frac{\partial}{\partial t}\left(\left[G(t) * u_{0}\right](x)\right) \\
& +\sum_{j \in \mathbb{N}} \int_{0}^{t}\left\langle G(t-s, x-\cdot) \sigma(u(s, \cdot)), e_{j}\right\rangle_{\mathcal{H}} W_{j}(d s) \\
& +\int_{0}^{t} G(t-s, \cdot) * b(u(s, \cdot))(x) d s, \tag{2}\\
t \in[0, T], x & \in \mathbb{R}^{3} .
\end{align*}
$$

We are interested in random field solutions $\left\{u(t, x),(t, x) \in[0, T] \times \mathbb{R}^{3}\right\}$.

Background: Dalang, EJP 1999

Hypotheses:

- u_{0}, v_{0} vanish,
- $\sigma, b: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous,
- $\left.\Gamma(d x)=|x|^{-\beta} d x, \beta \in\right] 0,2[$.

Theorem There exists a unique random field solution to (2).
This is an adapted process $\left\{u(t, x),(t, x) \in[0, T] \times \mathbb{R}^{3}\right\}$ satisfying
(2) for any $(t, x) \in[0, T] \times \mathbb{R}^{3}$.

The solution is L^{2}-continuous and bounded in L^{p} :

$$
\sup _{(t, x) \in[0, T] \times \mathbb{R}^{3}} E\left(|u(t, x)|^{p}\right)<\infty .
$$

Support Theorem

Sample path properties of the wave equation

Notation

- For $t_{0} \in[0, T], K \subset \mathbb{R}^{3}$ compact, $\left.\rho \in\right] 0,1[$,

$$
\begin{aligned}
\|g\|_{\rho, t_{0}, K}:= & \sup _{(t, x) \in\left[t_{0}, T\right] \times K}|g(t, x)| \\
& +\sup _{\substack{(t, x),(\bar{t}, \overline{)}) \in\left[t_{0}, T\right] \times K \\
t \neq \bar{t}, x \neq \bar{x}}} \frac{|g(t, x)-g(\bar{t}, \bar{x})|}{(|t-\bar{t}|+|x-\bar{x}|)^{\rho}},
\end{aligned}
$$

- $\mathcal{C}^{\rho}\left(\left[t_{0}, T\right] \times K\right)$ is the space of real functions g such that $\|g\|_{\rho, t_{0}, K}<\infty$.
Theorem (Dalang-S.-S., 2009)
Almost surely, the sample paths of the random field solution of (2) belong to the space $\mathcal{C}^{\rho}\left(\left[t_{0}, T\right] \times K\right)$ with $\left.\rho \in\right] 0, \frac{2-\beta}{2}[$.

Support theorem (null initial conditions)

For $t \in] 0, T]$, set $\mathcal{H}_{t}:=L^{2}([0, t] ; \mathcal{H})$. Let

$$
\begin{aligned}
\Phi^{h}(t, x) & =\left\langle G(t-\cdot, x-\cdot) \sigma\left(\Phi^{h}\right), h\right\rangle_{\mathcal{H}_{t}} \\
& +\int_{0}^{t} d s\left[G(t-s, \cdot) * b\left(\Phi^{h}(s, \cdot)\right)\right](x)
\end{aligned}
$$

$h \in \mathcal{H}_{T}$,
Theorem (Delgado-S.-S., 2011)
Let $u=\left\{u(t, x),(t, x) \in\left[t_{0}, T\right] \times K\right\}, t_{0}>0$, be the random field solution to (2). Fix $\rho \in] 0, \frac{2-\beta}{2}[$. Then the topological support of the law of u in the space $\mathcal{C}^{\rho}\left(\left[t_{0}, T\right] \times K\right)$ is the closure in $\mathcal{C}^{\rho}\left(\left[t_{0}, T\right] \times K\right)$ of the set of functions $\left\{\Phi^{h}, h \in \mathcal{H}_{T}\right\}$.

A method to prove the support theorem

Part I

Assume that there exist:

- $\xi_{1}: \mathcal{H}_{T} \rightarrow \mathcal{C}^{\rho}\left(\left[t_{0}, T\right] \times K\right)$,
- $w^{n}: \Omega \rightarrow \mathcal{H}_{T}$,
such that for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{\left\|u-\xi_{1}\left(w^{n}\right)\right\|_{\rho, t_{0}, K}>\epsilon\right\}=0 .
$$

Then $\operatorname{supp}\left(\mathbb{P} \circ u^{-1}\right) \subset \overline{\xi_{1}\left(\mathcal{H}_{T}\right)}$.
Remarks

- This follows from Portmanteau's theorem.
- The closure refers to the Hölder norm $\|\cdot\|_{\rho, t_{0}, K}$.
$-\xi_{1}\left(w^{n}\right):=\Phi^{w^{n}}$.

Part II

Assume that:

- there exists a mapping $\xi_{2}: \mathcal{H}_{T} \rightarrow \mathcal{C}^{\rho}\left(\left[t_{0}, T\right] \times K\right)$,
- for any $h \in \mathcal{H}_{T}$, there exists a sequence $T_{n}^{h}: \Omega \rightarrow \Omega$ such that $\mathbb{P} \circ\left(T_{n}^{h}\right)^{-1} \ll \mathbb{P}$,
- the following convergence holds

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{\left\|u\left(T_{n}^{h}\right)-\xi_{2}(h)\right\|_{\rho, t_{0}, K}>\epsilon\right\}=0
$$

Then $\operatorname{supp}\left(\mathbb{P} \circ u^{-1}\right) \supset \overline{\xi_{2}\left(\mathcal{H}_{T}\right)}$.
This follows from Girsanov's theorem.

Part II

Assume that:

- there exists a mapping $\xi_{2}: \mathcal{H}_{T} \rightarrow \mathcal{C}^{\rho}\left(\left[t_{0}, T\right] \times K\right)$,
- for any $h \in \mathcal{H}_{T}$, there exists a sequence $T_{n}^{h}: \Omega \rightarrow \Omega$ such that $\mathbb{P} \circ\left(T_{n}^{h}\right)^{-1} \ll \mathbb{P}$,
- the following convergence holds

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{\left\|u\left(T_{n}^{h}\right)-\xi_{2}(h)\right\|_{\rho, t_{0}, K}>\epsilon\right\}=0
$$

Then $\operatorname{supp}\left(\mathbb{P} \circ u^{-1}\right) \supset \overline{\xi_{2}\left(\mathcal{H}_{T}\right)}$.
This follows from Girsanov's theorem.
Next: Choices for $w^{n}, \xi_{1}, \xi_{2}, T_{n}^{h}$.

Choice for w^{n}
Let $\Delta_{i}=\left[\frac{i T}{2^{n}}, \frac{(i+1) T}{2^{n}}[\right.$. For $1 \leq j \leq n$, let

$$
\dot{W}_{j}^{n}(t)= \begin{cases}\sum_{i=0}^{2^{n}-1} 2^{n \theta_{1}} T^{-1} W_{j}\left(\Delta_{i}\right) 1_{\Delta_{i+1}}(t), & t \in\left[2^{-n} T, T\right], \\ 0, & t \in\left[0,2^{-n} T[\right.\end{cases}
$$

$\left.\theta_{1} \in\right] 0, \infty[$.
For $j>n$, put $\dot{W}_{j}^{n}=0$. Set

$$
w^{n}(t, x)=\sum_{j \in \mathbb{N}} \dot{W}_{j}^{n}(t) e_{j}(x)
$$

Remark:
$M(d s)=\sum_{j \in \mathbb{N}} W_{j}(d s) \sim w^{n}(s) d s$.

Choice for ξ_{1}, ξ_{2}
$\xi_{1}, \xi_{2}: L^{2}([0, T] ; \mathcal{H}) \rightarrow \mathcal{C}^{\rho}\left(\left[t_{0}, T\right] \times K\right)$
$\xi_{1}(h)=\xi_{2}(h)=\Phi^{h}$.
Choice for T_{n}^{h}
$T_{n}^{h}(\omega)=\omega-w^{n}+h$.
For the rigorous setting: abstract Wiener space associated with $\left\{W^{j}, j \in \mathbb{N}\right\}$.

Approximation result

$$
\begin{aligned}
& X(t, x)=\int_{0}^{t} \int_{\mathbb{R}^{3}} G(t-s, x-y)(A+B)(X(s, y)) M(d s, d y) \\
&+\langle G(t-\cdot, x-*) D(X(\cdot, *)), h\rangle_{\mathcal{H}_{t}} \\
&+\int_{0}^{t} \int_{\mathbb{R}^{3}} G(t-s, x-y) b(X(s, y)) d s d y \\
& X_{n}(t, x)=\int_{0}^{t} \int_{\mathbb{R}^{3}} G(t-s, x-y) A\left(X_{n}(s, y)\right) M(d s, d y) \\
&+\left\langle G(t-\cdot, x-*) B\left(X_{n}(\cdot, *)\right), w^{n}\right\rangle_{\mathcal{H}_{t}} \\
&+\left\langle G(t-\cdot, x-*) D\left(X_{n}(\cdot, *)\right), h\right\rangle_{\mathcal{H}_{t}} \\
&+\int_{0}^{t} \int_{\mathbb{R}^{3}} G(t-s, x-y) b\left(X_{n}(s, y)\right) d s d y
\end{aligned}
$$

With an appropriate choice of the coefficients A, B, D, b :

1. $A=D=0, B:=\sigma$;
2. $A=-B=D=\sigma$,
the two convergences follow from the next
Theorem
The coefficients are Lipschitz. Suppose also that

$$
\theta_{1} \in\left[0, \frac{6-\beta}{4}[\right.
$$

Fix $t_{0}>0$ and a compact set $K \subset \mathbb{R}^{3}$. Then for any $\left.\rho \in\right] 0, \frac{2-\beta}{2}[$, $\lambda>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\|X_{n}-X\right\|_{\rho, t_{0}, K}>\lambda\right)=0
$$

Local $L^{p}(\Omega)$ convergence
Prove that for a sequence $L_{n}(T) \uparrow \Omega$,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\left\|X_{n}-X\right\|_{\rho, t_{0}, K}^{p} 1_{L_{n}(T)}\right)=0
$$

(Similar idea as in Millet- S.-S (2000) for 2-d wave equation).
Choice of the localization

$$
L_{n}(t)=\left\{\sup _{1 \leq j \leq n} \sup _{0 \leq i \leq\left[2^{n} t T^{-1}-1\right]^{+}} 2^{n \theta_{1}}\left|W_{j}\left(\Delta_{i}\right)\right| \leq \alpha 2^{n \theta_{2} n^{\frac{1}{2}}}\right\}
$$

Property

$$
\left\|w^{n} 1_{L_{n}\left(t^{\prime}\right)} 1_{\left[t, t^{\prime}\right]}\right\|_{\mathcal{H}_{T}} \leq C n 2^{n \theta_{2}}\left|t^{\prime}-t\right|^{\frac{1}{2}}
$$

Lemma For $\alpha>(2 \ln 2)^{\frac{1}{2}}$ and $\theta_{2}+\theta_{1}+\frac{1}{2} \geq 0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(L_{n}(T)^{c}\right)=0
$$

Ingredients

For any $\left.\theta_{1} \in\right] 0, \infty\left[, \theta_{2} \in\right] 0, \frac{4-\beta}{4}[$,

- Local $L^{p}(\Omega)$ estimates of increments

$$
\begin{aligned}
& \sup _{n \geq 1}\left\|\left[X_{n}(t, x)-X_{n}(\bar{t}, \bar{x})\right] 1_{L_{n}(\bar{t})}\right\|_{p} \leq C(|\bar{t}-t|+|\bar{x}-x|)^{\rho} \\
& \rho \in] 0, \frac{2-\beta}{2}[
\end{aligned}
$$

- Pointwise convergence

$$
\lim _{n \rightarrow \infty}\left\|\left(X_{n}(t, x)-X(t, x)\right) 1_{L_{n}(t)}\right\|_{p}=0, p \in[1, \infty)
$$

To obtain the convergence in probability, $\theta_{2}-\theta_{1}+\frac{1}{2} \geq 0$, thus

$$
\left.\theta_{1} \in\right] 0, \frac{6-\beta}{4}[
$$

A few technical details

Increments in space

Notation

$$
\varphi_{n, p}(t, x, \bar{x})=\mathbb{E}\left(\left|X_{n}(t, x)-X_{n}(t, \bar{x})\right|^{p} 1_{L_{n}(t)}\right)
$$

$t \in\left[t_{0}, T\right], x, \bar{x} \in K, p \in[1, \infty[$.
Proposition (a simplified version)

$$
\begin{array}{r}
\varphi_{n, p}(t, x, \bar{x}) \leq C\left[f_{n}+|x-\bar{x}|^{\frac{\alpha_{2} p}{2}}+\int_{0}^{t} d s\left(\varphi_{n, p}(s, x, \bar{x})\right)\right. \\
\left.+|x-\bar{x}|^{\alpha_{1} \frac{p}{2}} \int_{0}^{t} d s\left[\varphi_{n, p}(s, x, \bar{x})\right]^{1 / 2}\right]
\end{array}
$$

with $\lim _{n \rightarrow \infty} f_{n}=0, \alpha_{1} \in[0,(2-\beta) \wedge 1)\left[, \alpha_{2} \in\right] 0,(2-\beta)[$.

Lemma (Gronwall's type) u, b and k are nonnegative continuous functions in $J=[\alpha, \beta] ; \bar{p} \geq 0, \bar{p} \neq 1, a>0$. Suppose that

$$
u(t) \leq a+\int_{\alpha}^{t} b(s) u(s) d s+\int_{\alpha}^{t} k(s) u^{\bar{p}}(s) d s, \quad t \in J
$$

Then

$$
\begin{aligned}
u(t) & \leq \exp \left(\int_{\alpha}^{\beta} b(s) d s\right) \\
& {\left[a^{\bar{q}}+\bar{q} \int_{\alpha}^{\beta} k(s) \exp \left(-\bar{q} \int_{\alpha}^{s} b(\tau) d \tau\right) d s\right]^{\frac{1}{\bar{q}}}, }
\end{aligned}
$$

for $t \in\left[\alpha, \beta_{1}\right)$, where $\bar{q}=1-\bar{p}$ and β_{1} is choosen so that the expression beween [...] is positive in the subinterval $\left[\alpha, \beta_{1}\right)$ $\left(\beta_{1}=\beta\right.$ if $\left.\bar{q}>0\right)$.
D. Bainov, P. Simenov: Integral Inequalities and Applications.

Where $(\cdot)^{\frac{1}{2}}$ does come from?

$$
\mathbb{E}\left(\left|X_{n}(t, x)-X_{n}(t, \bar{x})\right|^{p} 1_{L_{n}(t)}\right) \leq C \sum_{i=1}^{4} R_{n}^{i}(t, x, \bar{x})
$$

$$
R_{n}^{1}(t, x, \bar{x})=
$$

$$
\mathbb{E}\left(\left|\int_{0}^{t} \int_{\mathbb{R}^{3}}[G(t-s, x-y)-G(t-s, \bar{x}-y)] Z_{n}(s, y) M(d s, d y)\right|^{p}\right)
$$

$$
Z_{n}(s, y)=A\left(X_{n}(s, y)\right) 1_{L_{n}(s)}
$$

Apply Burkholder's inequality and Plancherel's identity:

$$
\begin{aligned}
& R_{n}^{1}(t, x, \bar{x})=\mathbb{E}\left(\mid \int_{0}^{t} \int_{\mathbb{R}^{3}}[G(t-s, x-y)-G(t-s, \bar{x}-y)]\right. \\
& \left.\times\left. Z_{n}(s, y) M(d s, d y)\right|^{p}\right) \\
& \leq C \mathbb{E}\left(\left|\int_{0}^{t} d s\left\|[G(t-s, x-*)-G(t-s, \bar{x}-*)] Z_{n}(s, *)\right\|_{\mathcal{H}}^{2}\right|\right)^{p / 2} \\
& \stackrel{(*)}{=} C \mathbb{E}\left(\int_{0}^{t} d s \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}}[G(t-s, x-d u)-G(t-s, \bar{x}-d u)] f(u-v)\right. \\
& \left.\quad \times[G(t-s, x-d v))-G(t-s, \bar{x}-d v)] Z_{n}(s, u) Z_{n}(s, v)\right)^{p / 2} \\
& \quad=\int_{0}^{t} d s \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}}\left[f \Delta Z_{n} \Delta Z_{n}+Z_{n} \Delta Z_{n} \Delta f+Z_{n} Z_{n} \Delta^{2} f\right] \\
& \left.(*) f(x)=|x|^{-\beta}, \beta \in\right] 0,2[.
\end{aligned}
$$

$C \varphi_{n, p}(t, x, \bar{x}) \leq f_{n} \quad$ (correction stochastic integrals)

$$
\begin{aligned}
& +|x-\bar{x}|^{\frac{\alpha_{2} p}{2}}\left(Z_{n} Z_{n} \Delta^{2} f\right) \\
& +\int_{0}^{t} d s\left(\varphi_{n, p}(s, x, \bar{x})\right) \quad\left(f \Delta Z_{n} \Delta Z_{n}\right) \\
& +|x-\bar{x}|^{\alpha_{1} \frac{p}{2}} \int_{0}^{t} d s\left[\varphi_{n, p}(s, x, \bar{x})\right]^{1 / 2} \cdot\left(Z_{n} \Delta Z_{n} \Delta f\right)
\end{aligned}
$$

Stationarity

Comparison with $d=2$

- Different approach to $G(\bar{t}-s, x-d y)-G(t-s, \bar{x}-d y)$ (method from Dalang-S.-S., 2009).
- The approximation of

$$
\sum_{j \geq 1} \int \cdots W_{j}(d s) \text { by } \sum_{j \geq 1} \int \cdots W_{j}^{n}(s) d s
$$

is much more difficult.

- smoother approximations of the noise (parameter θ_{1}),
- combination of the two processes: approximation and localization.

References

[1] V. Bally, A. Millet, M. Sanz-Solé, Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Ann.Probab., 23, 178-222, (1995).
[2] R.C. Dalang, M. Sanz-Solé, Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three. Memoirs of the American Mathematical Society. No. 931, Vol. 199, (2009).
[3] R.C. Dalang, L. Quer-Sardanyons. Stochastic integrals for spde's: A comparison. Expositiones Mathematicae 29, 67-109, (2011).
[4] A. Millet, M. Sanz-Solé, The support of an hyperbolic stochastic partial differential equation. Probab. Theory Related Fields, 98, 361-387, (1994).
[5] A. Millet, M. Sanz-Solé, Approximation and support theorem for a wave equation in two space dimensions. Bernoulli 6, 5, 887-915, (2000).

Many Thanks!

