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Orientation

• Space-time finite difference scheme for second order linear
SPDE of parabolic type

• Rate of convergence known, for example see I. Gyöngy and
A. Millet (2009)

• Give sufficient conditions for accelerating the rate of
convergence with respect to the spatial approximation

• Extend results of I. Gyöngy and N. Krylov (2010)
• In general, cannot also accelerate in time: A. M. Davie and

J. G. Gaines (2000)
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The setting

Given
• integers d ≥ 1, d ≥ 1 and real-valued T ≥ 0
• (Ω,ℱ,P) probability space equipped with filtration (ℱ(t)) ≥
• (w ) sequence of independent ℱ(t)-Wiener processes
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The equation

We consider the Cauchy problem for

du(t, x) =(ℒu(t, x) + f(t, x))dt

+ (ℳ u(t, x) + g (t, x))dw (t) (Eq)

onΩ× 0, T ×𝐑 with initial condition u = u(0, x)
• ℒ(t) ∶= a (t)D D , a = a
• ℳ (t) ∶= b (t)D

for α,β ∈ {0,… ,d}.
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Temporal discretization

For τ ∈ (0, 1) we define the time-grid

T ∶= t = iτ; i ∈ {0, 1,… ,n}, τn = T

and write u in place of u(t ) and in particular define

ξ ∶= Δw (t ) = w (t ) −w (t )
for ρ ∈ {1,… ,d }.
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Implicit Euler scheme

Together with (Eq) we consider

u = u + ℒ u + f τ

+ ℳ u + g ξ (Eq )

for i ∈ {1,… ,n} and (ω, x) ∈ Ω×𝐑 with initial condition. The
solution u will be the leading term in our asymptotic expansion.
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Spatial discretization

For h ∈ 𝐑\{0} and finite subset Λ ⊂ 𝐑 containing the origin define
the space-grid

G ∶= λ h+⋯+ λ h; λ ,… , λ ∈ Λ∪ (−Λ)
and spatial differences

δ ϕ(x) ∶= ϕ(x + hλ) −ϕ(x)h
for λ ∈ Λ.
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Space-time difference scheme

Together with (Eq) and (Eq ) we consider for each fixed τ

u = u + L u + f τ

+ M u +g ξ
(Eq )

for i ∈ {1,… ,n} and (ω, x) ∈ Ω×G with initial condition where
• L ∶= 𝔞 δ δ , 𝔞 = 𝔞
• M ∶= 𝔟 δ

for λ,μ ∈ Λ.
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Assumptions

Assumption (consistency)
For i ∈ {0,… ,n} 𝔞 = a ,
∑ 𝔞 λ +∑ 𝔞 μ = a +a ,
∑ 𝔞 λ μ = a , 𝔟 = b , and

∑ 𝔟 λ = b for all α,β ∈ {1,… ,d} and ρ ∈ {1,… ,d }.

Assumption (parabolicity)
There exists κ > 0 such that
∑ (2a − b b )z z ≥ κ|z| and

∑ (2𝔞 − 𝔟 b )z z ≥ κ∑ |z| .
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Assumptions

Assumption (regularity initial condition, free terms)
The u ∈ L (Ω,ℱ ,W ), the f and g are predictable
processes inW andW . Moreover
EE∫ (‖f(t)‖ + ‖g(t)‖ )dt + EE‖u ‖ < ∞.

Assumption (regularity coefficients)
The a and 𝔞 and their derivatives arem times continuously
differentiable in x and bounded in magnitude. The b and 𝔟 and
their derivatives arem+1 times continuously differentiable in x and
bounded in magnitude.
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Expansion results

Theorem
If the assumptions hold withm> k+ 1+ d/2 for k ≥ 0 then

u (x) = u (x) + h
j! u (x) + R (x) (A)

holds almost surely for i ∈ {1,… ,n} and x ∈ G where

EEmax
≤

sup |R (x)| ≤ Nh 𝒦

for𝒦 ∶= EE‖u ‖ + EEτ∑ (‖f ‖ + ‖g ‖ ) < ∞ and a
constantN independent of τ and h.
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Acceleration results

Fix an integer k ≥ 0 and let

ū ∶= β u

where u solves, with 2 h in place of h, the space-time
scheme (Eq ) with initial condition. Here β is given by
(β ,β ,… ,β ) ∶= (1, 0,… , 0)V where V is the inverse of the
Vandermonde matrix with entries V ∶= 2 for
i, j ∈ {1,… , k + 1}.
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Acceleration results

Theorem
Under the assumptions of the theorem,

EEmax
≤

sup |ū (x) − u (x)| ≤ N|h| 𝒦

for a constantN that is independent of τ and h.
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