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Orientation

» Space-time finite difference scheme for second order linear
SPDE of parabolic type

+ Rate of convergence known, for example see |. Gydngy and
A. Millet (2009)

+ Give sufficient conditions for accelerating the rate of
convergence with respect to the spatial approximation

+ Extend results of I. Gyéngy and N. Krylov (2010)

* In general, cannot also accelerate in time: A. M. Davie and
J. G. Gaines (2000)
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The setting

Given
* integersd > 1, dy > 1 andreal-valued T > 0
* (9,3, P) probability space equipped with filtration (F(t))>¢

. (wp)g‘zo sequence of independent JF(t)-Wiener processes
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The equation

We consider the Cauchy problem for
du(t,x) =(Lu(t,x) + f(t,x))dt
< (Eq)
+ > (MPuft,x) + g°(t,x))dwP(t)
p=1

on Q x [0,T] x R? with initial condition 1y = (0, x)
» L(t):=a*P(t)DaDp, a*P =abe
(
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du(t,x) =(Lu(t,x) + f(t,x))dt

< (Eq)
+ > (MPuft,x) + g°(t,x))dwP(t)
p=1

on Q x [0,T] x R? with initial condition 1y = (0, x)
= a*P(t)DyDp, a*P =abx

t) :=b*P(t)D«
for o, B € {0,...,d}.
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Temporal discretization

For T € (0, 1) we define the time-grid

Te={ti=i11€{0,1,..,n},n =T}
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Temporal discretization

For T € (0, 1) we define the time-grid
To:={t;=itie{0,1,..,n},m =T}

and write u; in place of u(t;) and in particular define
EF 1= AWP(ti_1) = WP(t;) —wP(t;_y)

forp e{1,...,d;}.
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Implicit Euler scheme

Together with (Eq) we consider

uf:uf_1+(L~uT+f~)
Z ( 1 +91 1) E.p (£4-)

forie{l,..,n}and (w,x) € Q x R? with initial condition.
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Implicit Euler scheme

Together with (Eq) we consider

uf:uf_1+(L~uT+f~)
Z ( 1 +91 1> E.p (£4-)

forie{l,..,n}and (w,x) € Q x R? with initial condition. The
solution u™ will be the leading term in our asymptotic expansion.
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Spatial discretization

For h € R\{0} and finite subset A C R containing the origin define
the space-grid

Gh. = {A]h‘i‘ o +}\‘ph;}\1)""}\p S /\U (_/\)}
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Spatial discretization

For h € R\{0} and finite subset A C R containing the origin define
the space-grid

Gy = {7\1h+ AR AL, LAy EAU (—/\)}
and spatial differences

6]’1,7\(1)(7() — d)(x + hi\l) _ (b(X)

for A € A.
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Space-time difference scheme

Together with (Eq) and (Eq..) we consider for each fixed T
h o oh h t,h
uplt =ud |+ (Li udt + fi> T

d; (Eqh)
h T
+) (Mi—pluf’_]} + 9{)_1> £F
p=1

forie{1,...,n}and (w,x) € Q x Gy, with initial condition where
o L{ = MO A8, @M =ath
h A
° Mi e = bi péh’)\
for \,p e A.
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Space-time difference scheme

Together with (Eq) and (Eq..) we consider for each fixed T
h o oh h t,h
uplt =ud |+ (Li udt + fi) T

d, (EqM)
h T
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Assumptions

Assumption (consistency)
Fori€{0,..,n} af%=ad0,

A0y & O o0 — 40 O
2 Aeng WA D Len, 8 T =af? +af¥,

Ay & _ xB wO0p _ 1 0p
Y amen, 4TA uP =af® b;” =b;", and

Y aen, b}PAS = b® forall o, B € {1,...,d}and p € {1, ...

Assumption (parabolicity)

There exists k > 0 such that
Y g p(2a%F —b*PHPP)zzp

>
AP 1P
Z?\,uE/\O (2a** —b""b )zpzy 2 KZ?\E/\O z|”.
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Assumptions

Assumption (regularity initial condition, free terms)
The uy € LZ(Q, Fo, W3 o ), the f and g are predictable

processes in W3 and W}n H. Moreover
T 2 2 2
E [, (IIf()lm +11g(t)ms1) dt + Elugllimir < oo.

Assumption (regularity coefficients)

The a*P and a*P and their derivatives are m times continuously
differentiable in x and bounded in magnitude. The b* and b and
their derivatives are m + 1 times continuously differentiable in x and
bounded in magnitude.
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Expansion results

Theorem
If the assumptions hold with m >k + 1+ d/2 for k > 0 then

h < WoL
uPM(x) =uf(x Zf, x) + RP"™ () ()

holds almost surely fori € {1,...,n} and x € Gy, where

Emax sup [RFM(x) < NR2H g2,

1<T]. XEGh

2 2 2 2
for K = Elluolms1 + ETY o (Ifillm + lgillii1) < 0o and a
constant N independent of T and h.
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Acceleration results

Fix an integer k > 0 and let

k

aoh = Z B_u’t,zijh
: )

j=0
where un2 'h solves, with 2 hin place of h, the space-time
scheme (Eq,‘?) with initial condition. Here [3 is given by

(BoyB1y -y Bi) == (1,0,... ,O)V_1 where V™! is the inverse of the
Vandermonde matrix with entries V9 = 277101 ¢4,
L5l k+1)
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Acceleration results

Theorem
Under the assumptions of the theorem,
E max sup Iu (x)—uT( )| < N|h| 2kt 1) JCi1

i<n x€Gr,

for a constant N that is independent of T and h.
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