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Outline of Talk

@ Mehler semigroups arise as transition semigroups of linear
SPDEs with additive Lévy noise.
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Outline of Talk

@ Mehler semigroups arise as transition semigroups of linear
SPDEs with additive Lévy noise.

@ Szymon Peszat has shown that these semigroups can be
expressed functorially using second quantisation.

@ Peszat’s approach is based on chaotic decomposition formulae
due to Last and Penrose.

@ We pursue an alternative strategy using vectors related to
exponential martingales.
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Reproducing Kernel Hilbert Space (RKHS)

E is a real separable Banach space, E* is its dual,

(-,-) is pairing E x E* — R.
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Reproducing Kernel Hilbert Space (RKHS)
E is a real separable Banach space, E* is its dual,
(-,-) is pairing E x E* — R.
TeL(E*E)is
@ symmetricif for all a,b € E*, (Ta, b) = (Tb, a),

If T is positive and symmetric, [-, -] is an inner product on Im(T), where

[Ta, Tb] = (Ta, b).
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Reproducing Kernel Hilbert Space (RKHS)

E is a real separable Banach space, E* is its dual,

(-,-) is pairing E x E* — R.

T e L(E* E)is
@ symmetricif for all a,b € E*, (Ta, b) = (Tb, a),
@ positiveif forallae E*, (Ta,a) > 0.

If T is positive and symmetric, [-, -] is an inner product on Im(T), where

[Ta, Tb] = (Ta, b).

RKHS Hr is closure of Im(T) in associated norm.

Inclusion 7 : Im(T) — E extends to a continuous injection
LT HT — E.
T =170.7.
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Infinite Divisibility in Banach Spaces

p a Borel measure on E. Reversed measure pi(E) = u(—E). u
symmetricif i = p.
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Infinite Divisibility in Banach Spaces

p a Borel measure on E. Reversed measure pi(E) = u(—E). u
symmetricif i = p.

1 a (Borel) probabililty measure on E lts Fourier transform/
characteristic function is the mapping i1 : E* — C defined for a € E* by:

fi(a) = /E &8 k).
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Infinite Divisibility in Banach Spaces

p a Borel measure on E. Reversed measure pi(E) = u(—E). u
symmetricif i = p.

1 a (Borel) probabililty measure on E lts Fourier transform/
characteristic function is the mapping i1 : E* — C defined for a € E* by:

fi(a) = /E &8 k).

A measure v € M(E) is a symmetric Lévy measure if it is symmetric
and satisfies

(i) »({0}) =0,
(i) The mapping from E* to R given by

a— exp {/E[cos(<x, a)) — 1]u(dx)}

is the characteristic function of a probability measure on E.
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v e M(E)is a Lévy measure if v + ¥ is a symmetric Lévy measure.
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v e M(E)is a Lévy measure if v + ¥ is a symmetric Lévy measure.
If v is a Lévy measure on E, the mapping from E* to C given by

a— exp { /E (€% _ 1 _i(x,a)1g (x)]z/(dx)}

is the characteristic function of a probability measure on E.
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v e M(E)is a Lévy measure if v + ¥ is a symmetric Lévy measure.
If v is a Lévy measure on E, the mapping from E* to C given by

a— exp { /E (€% _ 1 _i(x,a)1g (x)]z/(dx)}

is the characteristic function of a probability measure on E.

We say that a probability measure i on E is infinitely divisible if for all
n € N, p has a convolution nth root p.

Dave Applebaum (Sheffield UK) Second Quantised Representation of Mehler ¢ April 2012 5/34



v e M(E)is a Lévy measure if v + ¥ is a symmetric Lévy measure.
If v is a Lévy measure on E, the mapping from E* to C given by

a— exp { /E (€% _ 1 _i(x,a)1g (x)]y(dx)}

is the characteristic function of a probability measure on E.

We say that a probability measure i on E is infinitely divisible if for all
n € N, p has a convolution nth root p.

Equivalently for all n € N there exists a probability measure i, on E
such that zi(a) = (zn(a))" for all a € E*.
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Theorem (Lévy-Khintchine)

A probability measure . € My (E) is infinitely divisible if and only if
there exists xy € E, a positive symmetric operator R € L(E*, E) and a
Lévy measure v on E such that for all a € E*,

fi(a) = e"@,

where

&) = ix.a) - 5(Raa)

+ / (€W 1 ily, a)1s,(y))r(dy).
E

Dave Applebaum (Sheffield UK) Second Quantised Representation of Mehler ¢ April 2012 6/34



Theorem (Lévy-Khintchine)

A probability measure . € My (E) is infinitely divisible if and only if
there exists xy € E, a positive symmetric operator R € L(E*, E) and a
Lévy measure v on E such that for all a € E*,

fi(a) = e"@,
where

&) = ix.a) - 5(Raa)

+ / (€W 1 ily, a)1s,(y))r(dy).
E

v

The triple (xo, R, v) is called the characteristics of the measure v and
is known as the characteristic exponent.

Dave Applebaum (Sheffield UK) Second Quantised Representation of Mehler ¢ April 2012 6/34



Covariance Operators

A probability measure p on E has uniformly weak second order
moments if

sup [ [(x,a)?u(dx) < co.
lall<t £
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Covariance Operators

A probability measure p on E has uniformly weak second order
moments if

sup [ [(x,a)?u(dx) < co.
lall<t £

In this case, there exists a covariance operator Q € L(E*, E) which is
positive and symmetric:

(@a.t) = [[x.a)xbiuta) — ( [xamtan) ( [ixbua).
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Covariance Operators

A probability measure p on E has uniformly weak second order
moments if

sup [ [(x,a)[?p(dx) < oo.
lall<t £

In this case, there exists a covariance operator Q € L(E*, E) which is
positive and symmetric:

(@a.t) = [[x.a)xbiuta) — ( [xamtan) ( [ixbua).

Associated RKHS is Hg.

If 1 is infinitely divisible with characteristics (xp, R, ~) and has uniformly
weak second order moments:

Qa= Ra+ / (X, 8)x v(dX).
E
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Mehler Semigroups

Let (ut, t > 0) be a family of probability measures on E with 1o = dg

and (S(t),t > 0) be a Cyp-semigroup on E. Define T; : By(E) — Bp(E)
by

Tef(x) = /E F(S(t)x + y)ur(dy).
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Mehler Semigroups

Let (ut, t > 0) be a family of probability measures on E with 1o = dg
and (S(t),t > 0) be a Cy-semigroup on E. Define T; : By(E) — By(E)
by

Tef(x) = /E F(S(t)x + y)ur(dy).

(T, t > 0) is a semigroup, i.e. Tiys = T Tsif and only if (u, t > 0) is a
Skew-convolution semigroup, i.e.

fttu = pu* S(U) e
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Mehler Semigroups

Let (ut, t > 0) be a family of probability measures on E with 1o = dg
and (S(t),t > 0) be a Cy-semigroup on E. Define T; : By(E) — By(E)
by

Tif(x) = /E H(S(t)x + y)uldly).

(T, t > 0) is a semigroup, i.e. Tiys = T Tsif and only if (u, t > 0) is a
Skew-convolution semigroup, i.e.

fttu = pu* S(U) e

(where S(u)ut := pe o S(u)~1))

Note that T; : Cp(E) — Cp(E) but it is not (in general) strongly
continuous.

Dave Applebaum (Sheffield UK) Second Quantised Representation of Mehler ¢ April 2012 8/34



From now on, we assume that the skew-convolution semigroup
(ut, t > 0) is F-differentiable, i.e. a € E*,t — [i:(a) is differentiable.
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From now on, we assume that the skew-convolution semigroup
(ut, t > 0) is F-differentiable, i.e. a € E*,t — [i:(a) is differentiable.

Define ¢(a) .= — i(a)

Then .
fir(a) = e™@ = exp {/o f(S(u)*a)du} :
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Define ¢(a) .= — i(a)

Then .
fir(a) = e™@ = exp {/o f(S(u)*a)du} :
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From now on, we assume that the skew-convolution semigroup
(ut, t > 0) is F-differentiable, i.e. a € E*,t — [i:(a) is differentiable.

Define ¢(a) .= — i(a)

Then .
fir(a) = e™@ = exp {/o f(S(u)*a)du} :

From this it follows that p; is infinitely divisible for all t > 0.

Furthermore ¢ is the characteristic exponent of an infinitely divisible
probability measure p with characteristics (b, R, v) (say) and the
characteristics of y; are (b, R:, vt) where:
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xt/ bdr+/ /S y(15(S(r)y) — 18(y))v(dy)dr,
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xt/ bdr+/ /S y(15(S(r)y) — 18(y))v(dy)dr,

- / ' S(nRS(r))dr
0
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xt/ bdr+/ /S y(15(S(r)y) — 18(y))v(dy)dr,

- / ' S(nRS(r))dr
0

t
v(A) = /0 v(S(r)~1A)dr.
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xt/ bdr+/ /S y(15(S(r)y) — 18(y))v(dy)dr,

- / ' S(r)RS(r)")dr
0
t
() = [ st Ay

see Bogachev, Réckner, Schmuland, PTRF 105, 193 (1996);
Furhman,Rdckner, Pot. Anal. 12, 1 (2000)
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If p has covariance Q then u; has covariance

Q - /0 ' s(nas(rydr

t
— R+ /0 /E (S(r)y, a)S(r)yv(dy)
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If p has covariance Q then u; has covariance
t
Q - / S(r)QS(r)*dr
= R+ / / (S(r)y,a)S(r)yv(dy)

from which it follows that

Qris = Q: + S(H)QsS(1)*.
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If p has covariance Q then u; has covariance

t
Q - / S(r)QS(r)*dr
= R+ / / (S(r)y,a)S(r)yv(dy)
from which it follows that
Qirs = Qr + S(1)QsS(1)*.

Let H; be RKHS of Q;. Then

S(r)H: € Hewr and [|S(0)|| 2(Hy Hey ) <1
see J. van Neerven, JFA 155, 495 (1998)
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Contraction Properties

Theorem

If (T, t > 0) is a Mehler semigroup then T; is a contraction from
L2(E, ity y) to L2(E, uy) for all u > 0.

Proof. For each f € L?(E, uy),

1Tl = [IT00Ruu()
2
()X + y)ue(dy)| pu(dx)

< /E /E 1(S()x + y)Pue(dy ()
_ / ()P (e + S(H)pa) ()

_ / 7Ot (%) = 111220,
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If (T, t > 0) is a Mehler semigroup then T; is a contraction from
L2(E, ity y) to L2(E, uy) for all u > 0.

Proof. For each f € L?(E, uy),

Tl = / | T () Pau(c)
2
(O)x + y)pe(dy)| pu(dx)

< /E /E 1(S()x + y)Pue(dy ()
_ / ()P (e + S(t)pa) ()

_ / OOt (%) = 1[0,

Dave Applebaum (Sheffield UK) Second Quantised Representation of Mehler ¢ April 2012 12/34



Lévy Driven OU Processes

Let A be the infinitesimal generator of the semigroup (S(t),t > 0).
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Lévy Driven OU Processes

Let A be the infinitesimal generator of the semigroup (S(t),t > 0).
Let (X(t),t > 0) be an E-valued Lévy process.
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Lévy Driven OU Processes

Let A be the infinitesimal generator of the semigroup (S(t),t > 0).

Let (X(t),t > 0) be an E-valued Lévy process. Consider the linear
SPDE with additive noise:

ay(t) = AY(t) + dX(t) ; Y(0)= Yy
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Lévy Driven OU Processes

Let A be the infinitesimal generator of the semigroup (S(t),t > 0).

Let (X(t),t > 0) be an E-valued Lévy process. Consider the linear
SPDE with additive noise:

ay(t)=AY(t)+dX(t) ; Y(0)= Yo
Unique solution is generalised Ornstein-Uhlenbeck process:

Y(t) = S(t)Yp + /Ot S(t — u)dX(u).
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Lévy Driven OU Processes

Let A be the infinitesimal generator of the semigroup (S(t),t > 0).

Let (X(t),t > 0) be an E-valued Lévy process. Consider the linear
SPDE with additive noise:

ay(t)=AY(t)+dX(t) ; Y(0)= Yo
Unique solution is generalised Ornstein-Uhlenbeck process:
t
Y(t)=S(t)Yo +/ S(t— u)dX(u).
0

Transition semigroup T:f(x) = E(f(Y(t))| Yo = x) is a Mehler
semigroup.
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Lévy Driven OU Processes

Let A be the infinitesimal generator of the semigroup (S(t),t > 0).

Let (X(t),t > 0) be an E-valued Lévy process. Consider the linear
SPDE with additive noise:

dY(t) = AY(t) +dX(t) ; Y(0)=Yp
Unique solution is generalised Ornstein-Uhlenbeck process:
Y(t)=S(t) Yy + /Ot S(t— u)dX(u).
Tran§ition semigroup T:f(x) = E(f(Y(t))|Yo = x) is a Mehler

semigroup. Skew convolution semigroup ¢ is law of
J38(t - uydXx(u fo u)dX(u)
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Lévy Driven OU Processes

Let A be the infinitesimal generator of the semigroup (S(t),t > 0).

Let (X(t),t > 0) be an E-valued Lévy process. Consider the linear
SPDE with additive noise:

ay(t)=AY(t)+dX(t) ; Y(0)= Yo
Unique solution is generalised Ornstein-Uhlenbeck process:
t
Y(t)=S(t)Yo +/ S(t— u)dX(u).
0

Transition semigroup T:f(x) = E(f(Y(t))| Yo = x) is a Mehler
semigroup. Skew convolution semigroup ¢ is law of

J38(t - uydXx(u fo u)dX(u) and is F-differentiable with ¢ the
characteristic exponent of X(t), i.e. E(e/X(D:-a) = ¢t(a) for all

ac E*t>0.
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Second Quantisation

“First quantisation is a mystery, second quantisation is a functor.”
Ed. Nelson

H a complex Hilbert space. I'(H) is symmetric Fock space over H.

oo
r(H) = P H"
n=0
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Second Quantisation

“First quantisation is a mystery, second quantisation is a functor.”
Ed. Nelson

H a complex Hilbert space. I'(H) is symmetric Fock space over H.

r(H) = P H"
n=0
HO = ¢, H" = H, H is n fold symmetric tensor product

Exponential vectors {e(f), f € H} are linearly independent and total
where

e(f) = <1 f, f%f %) (e(f), e(g)) = e(9).
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Second Quantisation

“First quantisation is a mystery, second quantisation is a functor.”
Ed. Nelson

H a complex Hilbert space. I'(H) is symmetric Fock space over H.

r(H) = P H"
n=0
HO = ¢, H" = H, H is n fold symmetric tensor product

Exponential vectors {e(f), f € H} are linearly independent and total
where

e(f) = (17’(7%7.”,%7'”) (e(f), e(g)>_efg)

n-particle vector " = : e(af)

B

a=0
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Second quantisation of contractions: If C is a contraction in H then
I'(C) is a contraction in I'(H) where

r(C)e(f) = e(C¥).
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Second quantisation of contractions: If C is a contraction in H then
I'(C) is a contraction in I'(H) where

r(C)e(f) = e(C¥).

Gaussian Spaces p a Gaussian measure on E (i.e. infinitely divisible
with characteristics (0, R, 0)).
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Second quantisation of contractions: If C is a contraction in H then
I'(C) is a contraction in I'(H) where

r(C)e(f) = e(C¥).

Gaussian Spaces p a Gaussian measure on E (i.e. infinitely divisible
with characteristics (0, R, 0)).

Isometric embedding ® : Hg — L2(E, 1) given by continuous extension

of
®(Ra)(-) = (-,a), foracE"
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Second quantisation of contractions: If C is a contraction in H then
I'(C) is a contraction in I'(H) where

r(C)e(f) = e(C¥).

Gaussian Spaces p a Gaussian measure on E (i.e. infinitely divisible
with characteristics (0, R, 0)).

Isometric embedding ® : Hg — L2(E, 1) given by continuous extension
of
®(Ra)(-) = (-,a), foracE"

For h € Hg, define ¢, = ®(h) and K}, € L?

—~

E, i) by

Iz}

r\>\—~

Kh(x>=exp{d> (x) -
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Second quantisation of contractions: If C is a contraction in H then
I'(C) is a contraction in I'(H) where

r(C)e(f) = e(C¥).

Gaussian Spaces p a Gaussian measure on E (i.e. infinitely divisible
with characteristics (0, R, 0)).

Isometric embedding ® : Hg — L2(E, 1) given by continuous extension
of
®(Ra)(-) = (-,a), foracE"

For h € Hg, define ¢, = ®(h) and K}, € L?

—~

E, i) by

Iz}

Canonical isomorphism between I'(Hg) and L2(E, ;1) given by
e(h) — Kp.

r\>\—~

Kh(x>=exp{d> (x) -
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Gaussian Mehler Semigroups

Assume each p; Gaussian, covariance R;, RKHS H;.

Since S(t) is a contraction from H, to Hy: = S(t)* is a contraction
from Hy: to Hy.

Recall that T; is a contraction from L2(E, ju¢, ) to L2(E, py).
T(t) =T(S(1)").

J van Neerven, JFA 155, 495 (1998)

A. Chojnowska-Michalik and B. Goldys, J.Math. Kyoto Univ. 36, 481
(1996)
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Non-Gaussian Mehler Semigroups

Assume y infinitely divisible with fi(a) = (@ for a ¢ E*.
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Non-Gaussian Mehler Semigroups

Assume 1. infinitely divisible with fi(a) = €7(3) for a € E*. We need
analogues of exponential vectors. For each a € E* define
Ka € L%(E7 :U’) by

Ka(X) — ei(X,&)—n(a) .
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Non-Gaussian Mehler Semigroups

Assume 1. infinitely divisible with fi(a) = €7(3) for a € E*. We need
analogues of exponential vectors. For each a € E* define
Ka € L%(E7 M) by

Ka(X) — ei(X,&)—n(a).

Theorem
The set {Ky,a € E*} is total in L2(E, ).

Proof. Let 1 € L2(E, ;1) be such that for all
ac E*, [ Ka(x)y(x)u(dx) = 0.
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Non-Gaussian Mehler Semigroups

Assume 1. infinitely divisible with fi(a) = €7(3) for a € E*. We need
analogues of exponential vectors. For each a € E* define
Ka € L%(E7 M) by

Ka(X) — ei(X,&)—n(a).

The set {Ky,a € E*} is total in L2(E, ). \

Proof. Let 1 € L2(E, ;1) be such that for all
ae E*, [ Ka(x)¥(x)u(dx) = 0. Then [ €@y, (dx) = 0, where
iy (Ax) == 1p(x)p(dx) is a complex measure.
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Non-Gaussian Mehler Semigroups

Assume 1. infinitely divisible with fi(a) = €7(3) for a € E*. We need
analogues of exponential vectors. For each a € E* define
Ka € L%(E7 M) by

Ka(X) — ei(X,&)—n(a).

The set {Ky,a € E*} is total in L2(E, ). \

Proof. Let 1 € L2(E, ;1) be such that for all

ae E*, [ Ka(x)¥(x)u(dx) = 0. Then [ €@y, (dx) = 0, where
iy (Ax) == 1p(x)p(dx) is a complex measure. It follows by injectivity of
the Fourier transform that 1., = 0 and hence v = 0 (a.e.) as was
required.

O
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Theorem
The set {Ka, a € E*} is linearly independent in L2(E, p).

Proof. Let ay,...a, € E* be distinctand ¢y,...,¢c, € Cforsome ne N
and assume that "7 , ¢iKy, = 0.
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The set {Ka, a € E*} is linearly independent in L2(E, p).

Proof. Let ay,...a, € E* be distinctand ¢y,...,¢c, € Cforsome ne N
and assume that "7 , ¢iKy, = 0.

Define & := e "@)¢; for 1 < i < nand replace x by tx where t ¢ R .
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The set {Ka, a € E*} is linearly independent in L2(E, p).

Proof. Let ay,...a, € E* be distinctand ¢y,...,¢c, € Cforsome ne N
and assume that "7 , ¢iKy, = 0.

Define & := e "(@)¢; for 1 < i < nand replace x by tx where t € R .
Then we have S, Getxa =0forall t € R. Let t = 0 to see that
21:1 Cl -

Now differentiate r times with respectto t (where 1 <r <n-—1)and
then put t = 0. This yields >"7_, &i(x, a;)" = 0.

Dave Applebaum (Sheffield UK) Second Quantised Representation of Mehler ¢ April 2012 18/34



We have a system of n linear equations in ¢;,...¢, and it has a
non-zero solution if and only if

1 1 1
(x,a1)  (x,a@) - (X.an)

<X, a1>nf1 (X, a2>nf1 . (X, an>nf1
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1 1 1
(x,a1)  (x,a@) - (X.an)

<X, a1>nf1 (X, a2>nf1 . (X, an>nf1

This ia a Vandermonde determinant and so the equation simplifies to

1 (x.a)—(x.a)=o0.

1<ij<n
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1 1 1
(x,a1)  (x,a@) - (X.an)

<X, a1>nf1 (X, a2>nf1 . (X, an>nf1

This ia a Vandermonde determinant and so the equation simplifies to

1 (x.a)—(x.a)=o0.

1<ij<n

Hence there exists k, / with 1 < k,/ < n such that (x, ax — a;) = 0 for
all x € E.
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We have a system of n linear equations in ¢;,...¢, and it has a
non-zero solution if and only if

1 1 1
(x,a1)  (x,a@) - (X.an)

(x,a1>”*1 <X,32>n71 (x,an)’H

This ia a Vandermonde determinant and so the equation simplifies to

1 (x.a)—(x.a)=o0.

1<ij<n

Hence there exists k, / with 1 < k,/ < n such that (x, ax — a;) = 0 for
all x € E. It follows that ax = a; and this is a contradiction.

Dave Applebaum (Sheffield UK) Second Quantised Representation of Mehler ¢ April 2012 19/34



We have a system of n linear equations in ¢;,...¢, and it has a
non-zero solution if and only if

1 1 1
(x,a1)  (x,a@) - (X.an)

(x,a1>”*1 <X,32>n71 (x,an)’H

This ia a Vandermonde determinant and so the equation simplifies to

1 (x.a)—(x.a)=o0.

1<ij<n

Hence there exists k, / with 1 < k,/ < n such that (x, ax — a;) = 0 for

all x € E. It follows that a, = a; and this is a contradiction. So we must
have61 :52:-“:5,7:0.
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We have a system of n linear equations in ¢;,...¢, and it has a
non-zero solution if and only if

1 1 - 1
(x,a1) (x,a2) -+ (X,an)
=0.
(x, a; =1 (x, a.2>”*1 (x, az;,)”*1

This ia a Vandermonde determinant and so the equation simplifies to

[T (xa)—(x.a))=o0.

1<ij<n

Hence there exists k, / with 1 < k,/ < n such that (x, ax — a;) = 0 for
all x € E. It follows that a, = a; and this is a contradiction. So we must
have & =& =---=¢,=0. Since e @ £ 0 forall aec E*, we
deduce thatci = ¢ = --- = ¢, = 0, as was required. O
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non-Gaussian Second Quantisation

Let T € L(E™*). We define its second quantisation T'(T) to be the
densely defined linear operator with domain £ = lin span{Ky,a € E*}
defined by linear extension of the prescription
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non-Gaussian Second Quantisation

Let T € L(E™*). We define its second quantisation T'(T) to be the
densely defined linear operator with domain £ = lin span{Ky,a € E*}
defined by linear extension of the prescription

MN(T)Ks = Kra
The following properties are straightforward to verify:

@ [(T)is closeable with & C I(T)* and I'(T)* = (T*),

In the case where p = 11, we write K; 5 instead of K.
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[(T)Ka = Kra.
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The Main Result

Theorem

Let (ut,t > 0) be an F-differentiable skew convolution semigroup. For
allt,u>0

Tt = r(S(t)}k—l—u—w)'

Proof. Forallae E*,x € E

TiKirua(X) = /E Kiu.a(S(E)x + y)ui(dy)

_ e—77t+u(a)ei<s(t)x’a>/ei<y’a>ﬂt(dy)
E

_ onl@) gin(@) gitS(xa).
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However

t+u
(@) - neu@) = - / £(S(r) a)ar

- /5 ' S(t)a)ar

= —nu(S(t) a).
From this we see that
TiKiiua(x) = e x:S07a-m(S()7a)
= KustyalX).
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However

t+u
(@) - neu@) = - / £(S(r) a)ar

- /5 ' S(t) a)ar

= —nu(S(t) a).
From this we see that
TiKirua(x) = eSO a-m(Stra)
= Kus(t)-alX),
and the required result follows. O
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Some comments:
We did not assume that p; has second moments and made no use of a
RKHS.
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Some comments:
We did not assume that p; has second moments and made no use of a
RKHS. So our second quantisation

I : L(E*) — closeable lin.ops on L2(E, 1) preserving £.

If we assume that u; has second moments for all t then S(f)* is a
contraction from H;y, to H,.
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Some comments:
We did not assume that p; has second moments and made no use of a
RKHS. So our second quantisation

I : L(E*) — closeable lin.ops on L2(E, 1) preserving £.

If we assume that u; has second moments for all t then S(f)* is a
contraction from H;y, to H,.

T; = [(S(t)*) is a contraction from L2(E, ju¢, ) to L2(E, uy).
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Invariant Measures

A is an invariant measure for the Mehler semigroup (T;, t > 0) if and
only if forall t > 0
A = ur*x S(HA.
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Invariant Measures

A is an invariant measure for the Mehler semigroup (T;, t > 0) if and
only if forall t > 0

A = ur*x S(HA.
If \ exists it is infinitely divisible (operator self-decomposable.)
e.g. if us = weak-lim,_, ut exists it is an invariant measure.
If E is a Hilbert space and we are in the Ornstein-Uhlenbeck case:

A.Chojnowska-Michalik Stochastics, 21 251 (1987)

e.g. Assume (S;, t > 0) is exponentially stablei.e. ||S(t)|| < Me= for
M>1,)x>0.
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A is an invariant measure for the Mehler semigroup (T;, t > 0) if and
only if forall t > 0

A = ur*x S(HA.
If \ exists it is infinitely divisible (operator self-decomposable.)
e.g. if us = weak-lim,_, ut exists it is an invariant measure.
If E is a Hilbert space and we are in the Ornstein-Uhlenbeck case:

A.Chojnowska-Michalik Stochastics, 21 251 (1987)
e.g. Assume (S;, t > 0) is exponentially stablei.e. ||S(t)|| < Me= for

M > 1, X > 0. Then necessary and sufficient conditions for unique
invariant measure are

| [aiswie ataat <,
0 E
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t
lim / / S(r)y(15(S(r)y) — 15(y))v(dy)dr exists.
0 JE

t—o00
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t
lim / / S(r)y(15(S(r)y) — 15(y))v(dy)dr exists.
0 JE

t—o00

Further if [° [ ||S(t)y|?v(dy)dt < oo, then po has covariance
operator

Q. - /O S(r)QS(r)*dr

= At [ [(S0)y.a80Hym(ey)
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t
lim /0 /E S(r)y(15(S(r)y) — 15(y))v(dy)dr exists.

t—o00

Further if [° [ ||S(t)y|?v(dy)dt < oo, then po has covariance
operator

Qx = [ sasiyar
— Roo+/() /E<S(r)y,a>8(r)yl/(d}’)

We get RKHS H,, with forall t > 0
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t—o00

Further if [° [ ||S(t)y|?v(dy)dt < oo, then po has covariance
operator

Q. - /O S(r)QS(r)*dr

= At [ [(S0)y.a80Hym(ey)

We get RKHS H,, with forall t > 0

Also T; is a contraction in L2(E, i) and T; = T(S(t)*).
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The Chaos Approach in the non-Gaussian case.

Based on work by
S.Peszat, JFA 260, 3457 (2011)

(Q, F, P) is a probability space. Let 1 be a Poisson random measure
defined on a measurable space (E, B) with intensity measure \. Let
Z.(E) be the non-negative integer valued measures on (E, B).
Regard I as a random variable on Q taking values in Z.(E) by

N(w)(E) = N(E,w)

Let P, be the law of I and for F € L?(P,), ¢ € Z.,(E) define the
“Malliavin derivative”:

DyF(§) = F(& +dy) — F(&)
Define 77 : L*(Pr) — L§ymm(E", \") by

(T"F)(y1,- -, yn) =E(Dy, _,,F(M)).
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Chaos expansion

E(F(N)G(M)) = E(F(N) +Z (T"F, T"G) 12(gn a0y

from which it follows that

F(N) = Z%ln(T”F),

n=0
where I, is usual multiple 1t integral w.r.t. compensator 1 := M — \.
So here L2(P;) = I(L2(E, \)).
see G.Last, M.Penrose, PTRF 150, 663 (2011)

Peszat: If E is a Hilbert space, R € L(E), define pg’) € L(L2(E™, ")
by

pDf(1,. ., ¥n) = f(Ry1, - .., RYn).
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Second quantisation: [g(R) : L?(P,) — L?(P;),

R)F = Z*’n (T"F)).
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Second quantisation: [g(R) : L?(P,) — L?(P;),

R)F = Z*’n (T"F)).

Ty = To(S(1)")
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Connecting The Two Approaches in the non-Gaussian

Case
Forallt>0let S;:=[0,t) x E.
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Forallt>0let S;:=[0,t) x E.

Let M be a Poisson random measure defined on [0, cc) x E so that I;
has intensity measure ;.

The natural filtration of M;(-) := (¢, -) is denoted (F;, t > 0).
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Case

Forallt>0let S;:=[0,t) x E.
Let M be a Poisson random measure defined on [0, cc) x E so that I;
has intensity measure ;.

The natural filtration of M;(-) := (¢, -) is denoted (F;, t > 0).
For t >0, f € L?(S;, \¢) define the process (X;(t),t > 0) by
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Connecting The Two Approaches in the non-Gaussian

Case

Forallt>0let S;:=[0,t) x E.

Let M be a Poisson random measure defined on [0, cc) x E so that I;

has intensity measure ;.

The natural filtration of M;(-) := (¢, -) is denoted (F;, t > 0).

For t >0, f € L?(S;, \¢) define the process (X;(t),t > 0) by

t)_// s, x)M1(ds, dx).

E(IXr(0)2) = [1f1[Z2(5, 0, < 0©-
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Connecting The Two Approaches in the non-Gaussian

Case

Forallt>0let S;:=[0,t) x E.

Let M be a Poisson random measure defined on [0, cc) x E so that I;
has intensity measure ;.

The natural filtration of M;(-) := (¢, -) is denoted (F;, t > 0).

For t >0, f € L?(S;, \¢) define the process (X;(t),t > 0) by

t)—// s, x)(1(ds, dx).

E(IXr(0)2) = [1f1[Z2(5, 0, < 0©-
E(e le(f)) ()

where

ne(t) = [ (€75 —1 — if(s, x))A(ds, dx).
St
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Define the process (Ms(t),t > 0) by

M(t) = exp{iX(t) — ns(t)}.
Then (M(t), t > 0) is a square-integrable martingale with

M (t) = /S (67 _ 1)My(s—)Fi(ds, ),

and for all t > 0,

E(|M;(1)[?) = exp {/S 1e(5X) _ 1 2\(ds, dx)} (1.1)
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Forallt > 0,

f 2
E(M (1)) < & Zen,

Proof. Using the well known inequality 1 — cos(y) < y; fory e R
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Forallt > 0,

f 2
E(M (1)) < & Zen,

Proof. Using the well known inequality 1 — cos(y) < y; fory e R

E(|M:;()?) = exp{2/s(1 —cos(f(s,x))))\(ds,dx)}

exp{/t/ f(s, x)?\(ds, dx)}

o ME2(s, g

IA
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Now let (Y¢(t),t > 0) be the Doléans-Dade exponential which is the
unique solution of the stochastic differential equation

dYi(t) = Yi(t—)dXs(1),

with initial condition Y;(0) =1 (a.s.)
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Now let (Y¢(t),t > 0) be the Doléans-Dade exponential which is the
unique solution of the stochastic differential equation

aYi(t) = Ye(t—)dXs(1),
with initial condition Y;(0) =1 (a.s.)
Vo) =5 L1y and B Vi())? = € s
f()—Zmn( )and E(|Y¢(t)|)* = e :
n=0
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Now let (Y¢(t),t > 0) be the Doléans-Dade exponential which is the
unique solution of the stochastic differential equation

dYi(t) = Yi(t—)dXs(1),

with initial condition Y;(0) =1 (a.s.)
Yi(t) = i (") and E( Y,(1)))2 = & Mezson
= L™ f = :
n=0

Let IC(t) be the linear span of {M;(t), f € L2(St, \t).
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Now let (Y¢(t),t > 0) be the Doléans-Dade exponential which is the
unique solution of the stochastic differential equation

dYi(t) = Yi(t—)dXs(1),

with initial condition Y;(0) =1 (a.s.)
Yi(t) = i (") and E( Y,(1)))2 = & Mezson
= L™ f = :
n=0

Let IC(t) be the linear span of {M;(t), f € L2(St, \t).
Let £(t) be the linear span of { Y¢(t), f € L2(St, \y).

Both sets are total in L2(Q, F3, P).
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Now let (Y¢(t),t > 0) be the Doléans-Dade exponential which is the
unique solution of the stochastic differential equation

dYi(t) = Yi(t—)dXs(1),

with initial condition Y;(0) =1 (a.s.)
Yi(t) = i (") and E( Y,(1)))2 = & Mezson
= L™ f = :
n=0

Let IC(t) be the linear span of {M;(t), f € L2(St, \t).
Let £(t) be the linear span of { Y¢(t), f € L2(St, \y).

Both sets are total in L2(Q, F3, P).
The map C : K(t) — L(t) which takes each M(t) to Y¢(t) extends to
an invertible linear operator on L2(Q, F;, P) which we continue to

denote by C.
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Now let (Y¢(t),t > 0) be the Doléans-Dade exponential which is the
unique solution of the stochastic differential equation

dYi(t) = Yi(t—)dXs(1),

with initial condition Y;(0) =1 (a.s.)
Yi(t) = i (") and E( Y,(1)))2 = & Mezson
= L™ f = :
n=0

Let KC(t) be the linear span of {M;(t), f € L2(St, \t).
Let £(t) be the linear span of { Y¢(t), f € L2(St, \y).

Both sets are total in L2(Q, F3, P).

The map C : K(t) — L(t) which takes each M(t) to Y¢(t) extends to
an invertible linear operator on L2(Q, F;, P) which we continue to
denote by C.

Note that C is a contraction by above lemma.
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Now assume that ;; has uniformly finite weak second order moments
and is and for each a € E*, t > 0 define

fa € L3(St,\) by fa(s,x) = (X, @)1}94(s) foreach 0 < s < t,x € E.
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Then we have My(t) = M; 5 where

Mha(x) = oxp {i [ (x.ai(t. ) ~ ) .
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Then we have My(t) = M; 5 where
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Dave Applebaum (Sheffield UK) Second Quantised Representation of Mehler ¢ April 2012



Now assume that ;; has uniformly finite weak second order moments
and is and for each a € E*, t > 0 define

fa € L3(St,\) by fa(s,x) = (X, @)1}94(s) foreach 0 < s < t,x € E.

Then we have My(t) = M; 5 where

Mha(x) = oxp {i [ (x.ai(t. ) ~ ) .

n(x) = /E (€% — 1~ i(x, a))\i(0K).

Then M; 4 is precisely the image of K; 5 in L?(Q, Ft, P) under the
natural embedding of L?(E, y;) into that space. From now on we will
identify these vectors.

Dave Applebaum (Sheffield UK) Second Quantised Representation of Mehler ¢ April 2012 33/34



Now assume that ;; has uniformly finite weak second order moments
and is and for each a € E*, t > 0 define

fa € L3(St,\) by fa(s,x) = (X, @)1}94(s) foreach 0 < s < t,x € E.

Then we have My(t) = M; 5 where

Mha(x) = oxp {i [ (x.ai(t. ) ~ ) .

n(x) = /E (€% — 1~ i(x, a))\i(0K).

Then M; 4 is precisely the image of K; 5 in L?(Q, Ft, P) under the
natural embedding of L?(E, y;) into that space. From now on we will
identify these vectors.

For each t > 0, we write the Doléans-Dade exponential Yz(t) when
f = f, as above.
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Foreach S € L(E*)

r(S)=C 'ro(S")C,

Proof. Foreachaec E*,t > 0,

F(S)C'Yy(t) = T(S)Kia

and the result follows. O
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