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Write-up published as “A Lecture on the Averaging Process” (with Dan
Lanoue) in recent Probability Surveys. Intended as illustration of how one
might teach this subject in a graduate course.

Background meeting model with rates (νij).

Model: averaging process.
Each agent initially has some amount of money;
whenever agents meet they share their money equally.
Xi (t) is the amount of money agent i has at time t.

Formally, the states are the real numbers R; initially Xi (0) = xi , and the
update rule, when agents i and j meet at t, is

(Xi (t+),Xj(t+)) = ( 1
2 (Xi (t−) + Xj(t−)), 12 (Xi (t−) + Xj(t−))).



Your immediate reaction to this model should be (cf. General Principle
1) “obviously the individual values Xi (t) converge to the average of
initial values, so what is there to say?”.

Exercise: write a one-sentence outline proof that a post-first-year-grad
student could easily turn into a complete proof.

Curiously, while this process has been used as an ingredient in more
elaborate models, the only place it appears by itself is in some “gossip
algorithms” literature which derives a version of the “global bound” later
– see paper for citations.



We will show

If the initial configuration is a probability distribution (i.e. unit
money split unevenly between individuals) then the vector of
expectations in the averaging process evolves precisely as the
probability distribution of the associated (continuous-time) Markov
chain with that initial distribution (Lemma 1).

There is an explicit bound on the closeness of the time-t
configuration to the limit constant configuration (Proposition 1).

Complementary to this global bound there is a “universal” (i.e. not
depending on the meeting rates) bound for an appropriately defined
local roughness of the time-t configuration (Propostion 2).

There is a duality relationship with coupled Markov chains (Lemma
3).

Two open problems.

The analysis I will give parallels analysis of the well-known voter model
– will compare and contrast later.



Basic properties of the averaging process

Write I = {i , j . . .} for the set of agents and n ≥ 2 for the number of
agents. Recall that the array of non-negative meeting rates ν{i,j} for
unordered pairs {i , j} is assumed to be irreducible. We can rewrite the
array as the symmetric matrix N = (νij) in which

νij = ν{i,j}, j 6= i ; νii = −
∑
j 6=i

νij . (1)

Then N is the generator of the Markov chain with transition rates νij ;
call this the associated Markov chain. The chain is reversible with
uniform stationary distribution.

Throughout, we write X(t) = (Xi (t), i ∈ I ) for the averaging process run
from some non-random initial configuration x(0). Of course the sum is
conserved:

∑
i Xi (t) =

∑
i xi (0).



Relation with the associated Markov chain

Write 1i for the initial configuration (1(j=i), j ∈ I ), that is agent i has
unit money and other agents have none, and write pij(t) for the
transition probabilities of the associated Markov chain.

Lemma

For the averaging process with initial configuration 1i we have
EXj(t) = pij(t/2). More generally, from any deterministic initial
configuration x(0), the expectations x(t) := EX(t) evolve exactly as the
dynamical system

d

dt
x(t) = 1

2x(t)N .

The time-t distribution p(t) of the associated Markov chain evolves as
d

dt
p(t) = p(t)N . So if x(0) is a probability distribution over agents, then

the expectation of the averaging process evolves as the distribution of the
associated Markov chain started with distribution x(0) and slowed down
by factor 1/2. But keep in mind that the averaging process has more
structure than this associated chain.



Proof. The key point is that we can rephrase the dynamics of the
averaging process as

when two agents meet, each gives half their money to the other.
In informal language, this implies that the motion of a random penny -
which at a meeting of its owner agent is given to the other agent with
probability 1/2 – is as the associated Markov chain at half speed, that is
with transition rates νij/2.
To say this in symbols, we augment a random partition X = (Xi ) of unit
money over agents i by also recording the position U of the “random
penny”, required to satisfy

P(U = i | X) = Xi .

Given a configuration x and an edge e, write xe for the configuration of
the averaging process after a meeting of the agents comprising edge e.
So we can define the augmented averaging process to have transitions

(x, u)→ (xe , u) rate νe , if u 6∈ e
(x, u)→ (xe , u) rate νe/2, if u ∈ e
(x, u)→ (xe , u′) rate νe/2, if u ∈ e = (u, u′).



This defines a process (X(t),U(t)) consistent with the averaging process
and (intuitively at least – see below) satisfying

P(U(t) = i | X(t)) = Xi (t). (2)

The latter implies EXi (t) = P(U(t) = i), and clearly U(t) evolves as the
associated Markov chain slowed down by factor 1/2. This establishes the
first assertion of the lemma. The case of a general initial configuration
follows via the following linearity property of the averaging process.
Writing X(y, t) for the averaging process with initial configuration y, one
can couple these processes as y varies by using the same realization of
the underlying meeting process. Then clearly

y→ X(y, t) is linear.



How one writes down a careful proof of (2) depends on one’s taste for
details. We can explicitly construct U(t) in terms of “keep or give”
events at each meeting, and pass to the embedded jump chain of the
meeting process, in which time m is the time of the m’th meeting and
Fm its natural filtration. Then on the event that the m’th meeting
involves i and j ,

P(U(m) = i | Fm) = 1
2P(U(m−1) = i | Fm−1)+ 1

2P(U(m−1) = j | Fm−1)

Xi (m) = 1
2Xi (m − 1) + 1

2Xj(m − 1)

and so inductively we have

P(U(m) = i | Fm) = Xi (m)

as required.



For a configuration x, write x for the “equalized” configuration in which
each agent has the average n−1

∑
i xi . Lemma 1, and convergence in

distribution of the associated Markov chain to its (uniform) stationary
distribution, immediately imply EX(t)→ x(0) as t →∞.

Amongst several ways one might proceed to argue that X(t) itself
converges to x(0), the next leads to a natural explicit quantitative bound.



A function f : I → R has (with respect to the uniform distribution)
average f , variance var f and L2 norm ‖f ‖2 defined by

f := n−1
∑
i

fi

‖f ‖22 := n−1
∑
i

f 2
i

var f := ‖f ‖22 − (f )2.

The L2 norm will be used in several different ways. For a possible time-t
configuration x(t) of the averaging process, the quantity ‖x(t)‖2 is a
number, and so the quantity ||X(t)||2 appearing in the proposition below
is a random variable.

Proposition (Global convergence theorem)

From an initial configuration x(0) = (xi ) with average zero, the time-t
configuration X(t) of the averaging process satisfies

E||X(t)||2 ≤ ||x(0)||2 exp(−λt/4), 0 ≤ t <∞ (3)

where λ is the spectral gap of the associated MC.



Before starting the proof let us recall some background facts about
reversible chains, here specialized to the case of uniform stationary
distribution (that is, νij = νji ) and in the continuous-time setting. See
Chapter 3 of Aldous-Fill for the theory surrounding (4) and Lemma 2.
The associated Markov chain, with generator N at (1), has Dirichlet form

E(f , f ) := 1
2n−1

∑
i

∑
j 6=i

(fi − fj)
2νij = n−1

∑
{i,j}

(fi − fj)
2νij

where
∑
{i,j} indicates summation over unordered pairs. The spectral

gap of the chain, defined as the gap between eigenvalue 0 and the second
eigenvalue of N , is characterized as

λ = inf
f

{
E(f , f )

var(f )
: var(f ) 6= 0

}
. (4)

Writing π for the uniform distribution on I , one can define a distance
from uniformity for probability measures ρ to be the L2 norm of the
function i → ρi−πi

πi
, and we write this distance in the equivalent form

d2(ρ, π) =

(
−1 + n

∑
i

ρ2i

)1/2

.



Recall result from Markov chain theory.

Lemma (L2 contraction lemma)

The time-t distributions ρ(t) of the associated Markov chain satisfy

d2(ρ(t), π) ≤ e−λtd2(ρ(0), π)

where λ is the spectral gap of the associated MC.

This is optimal, in the sense that the rate of convergence really is
Θ(e−λt) as t →∞.

We don’t actually use this lemma, but our global convergence theorem
for the averaging process is clearly analogous.



Notation for FMIE process dynamics. We will write

E(dZ (t) | F(t)) = [≤] Y (t)dt

to mean

Z (t)− Z (0)−
∫ t

0

Y (s)ds is a martingale [supermartingale],

– the former “differential” notation seems much more intuitive than the
integral notation. In the context of a FMIE process we typically want to
choose a functional Φ and study the process Φ(X(t)), and write

E(dΦ(X(t)) | X(t) = x) = φ(x)dt (5)

so that E(dΦ(X(t)) | F(t)) = φ(X(t))dt. We can immediately write
down the expression for φ in terms of Φ and the dynamics of the
particular process; for the averaging process,

φ(x) =
∑
{i,j}

νij(Φ(xij)− Φ(x)) (6)

where xij is the configuration obtained from x after agents i and j meet
and average. This is just saying that agents i , j meet during [t, t + dt]
with chance νijdt and such a meeting changes Φ(X(t)) by the amount
Φ(xij)− Φ(x).



Proof of Proposition 1. A configuration x changes when some pair
{xi , xj} is replaced by the pair { xi+xj

2 ,
xi+xj
2 }, which preserves the average

and reduces ||x||22 by exactly
(xj−xi )2

2n . So, writing Q(t) := ||X(t)||22,

E(dQ(t) | X(t) = x) = −
∑
{i,j}

νij · n−1(xj − xi )
2/2 dt

= −E(x, x)/2 dt (7)

≤ −λ||x||22/2 dt.

The first equality is by the dynamics of the averaging process, the middle
equality is just the definition of E for the associated MC, and the final
inequality is the extremal characterization

λ = inf{E(g , g)/||g ||22 : g = 0, var(g) 6= 0}.

So we have shown

E(dQ(t) | F(t)) ≤ −λQ(t) dt/2.



The rest is routine. Take expectation:

d

dt
EQ(t) ≤ −λEQ(t)/2

and then solve to get

EQ(t) ≤ EQ(0) exp(−λt/2)

in other words

E||X(t)||22 ≤ ||x(0)||22 exp(−λt/2), 0 ≤ t <∞.

Finally take the square root.



A local smoothness property

Thinking heuristically of the agents who agent i most frequently meets as
the “local” agents for i , it is natural to guess that the configuration of
the averaging process might become “locally smooth” faster than the
“global smoothness” rate implied by Proposition 1. In this context we
may regard the Dirichlet form

E(f , f ) := 1
2n−1

∑
i

∑
j 6=i

(fi − fj)
2νij = n−1

∑
{i,j}

(fi − fj)
2νij

as measuring the “local smoothness”, more accurately the local
roughness, of a function f , relative to the local structure of the particular
meeting process. The next result implicitly bounds EE(X(t),X(t)) at
finite times by giving an explicit bound for the integral over 0 ≤ t <∞.
Note that, from the fact that the spectral gap is strictly positive, we can
see directly that EE(X(t),X(t))→ 0 exponentially fast as t →∞;
Proposition 2 is a complementary non-asymptotic result.



Proposition

For the averaging process with arbitrary initial configuration x(0),

E
∫ ∞
0

E(X(t),X(t)) dt = 2 var x(0).

This looks slightly magical because the bound does not depend on the
particular rate matrix N , but of course the definition of E involves N .
Can regard as instance of “General principle 3”.

Proof. By linearity we may assume x(0) = 0. As in the proof of
Proposition 1 consider Q(t) := ||X(t)||22. Using (7)

d

dt
EQ(t) = −EE(X(t),X(t))/2

and hence

E
∫ ∞
0

E(X(t),X(t)) dt = 2(Q(0)− Q(∞)) = 2||x(0)||22 (8)

because Q(∞) = 0 by Proposition 1.



General Principle 4: Duality

Notions of duality are one of the interesting and useful tools in classical
IPS, and equally so in the social dynamics models we are studying. The
duality between the voter model and coalescing chains (recalled later) is
the simplest and most striking example. The relationship we develop here
for the averaging model is less simple but perhaps more representative of
the general style of duality relationships.



The technique we use is to extend the “random penny” (augmented
process) argument used in Lemma 1. Now there are two pennies, and at
any meeting there are independent decisions to hold or pass each penny.
The positions (Z1(t),Z2(t)) of the two pennies behave as the following
MC on product space, which is a particular coupling of two copies of the
(half-speed) associated MC. Here i , j , k denote distinct agents.

(i , j)→ (i , k) : rate 1
2νjk

(i , j)→ (k , j) : rate 1
2νik

(i , j)→ (i , i) : rate 1
4νij

(i , j)→ (j , j) : rate 1
4νij

(i , j)→ (j , i) : rate 1
4νij

(i , i)→ (i , j) : rate 1
4νij

(i , i)→ (j , i) : rate 1
4νij

(i , i)→ (j , j) : rate 1
4νij .



For comparison, for two independent chains the transitions (i , j)→ (j , i)
and (i , i)→ (j , j) are impossible (because of the continuous time setting)
and in the other transitions above, all the 1/4 terms become 1/2.
Intuitively, in the coupling the pennies move independently except for
moves involving an edge between them, in which case the asynchronous
dynamics are partly replaced by synchronous ones.

Repeating the argument around (2) – an exercise for the dedicated
student – gives the following result. Write Xa(t) = (Xa

i (t)) for the
averaging process started from configuration 1a.



Lemma (The duality relation)

For each choice of a, b, i , j , not requiring distinctness, and for each t,

E(X a
i (t)X b

j (t)) = P(Z a,b
1 (t) = i ,Z a,b

2 (t) = j)

where (Z a,b
1 (t),Z a,b

2 (t)) denotes the coupled process started from (a, b).

By linearity the duality relation implies the following – apply∑
a

∑
b

xa(0)xb(0) to both sides.

Corollary (Cross-products in the averaging model)

For the averaging model X(t) started from a configuration x(0) which is
a probability distribution over agents, and for each t,

E(Xi (t)Xj(t)) = P(Z1(t) = i ,Z2(t) = j)

where (Z1(t),Z2(t)) denotes the coupled process started from random
agents (Z1(0),Z2(0)) chosen independently from x(0).



Open Problem. One can define the averaging process on the integers –
that is, νi,i+1 = 1,−∞ < i <∞ – started from the configuration with
unit total mass, all at the origin. By Lemma 1 we have

EXj(t) = pj(t)

where the right side is the time-t distribution of a continuous-time simple
symmetric random walk, which of course we understand very well.

But what can you say about the second-order behavior of this averaging
process? That is, how does var(Xj(t)) behave and what is the

distributional limit of (Xj(t)− pj(t))/
√

var(Xj(t)) ? Note that duality
gives an expression for the variance in terms of the coupled random
walks, but the issue is to find an exact formula, or to somehow analyze
asymptotics without an exact formula.



Quantifying convergence via entropy
Parallel to Lemma 2 are quantifications of reversible Markov chain
convergence in terms of the log-Sobolev constant of the chain, defined
(cf. (4)) as

α = inf
f

{
E(f , f )

L(f )
: L(f ) 6= 0

}
. (9)

where
L(f ) = n−1

∑
i

f 2
i log(f 2

i /‖f ‖22).

See Montenegro and Tetali (2006) for an overview, and Diaconis and
Saloff-Coste (1996) for more details of the theory, which we do not need
here. One problem posed in the Spring 2011 course was to seek a parallel
of Proposition 1 in which one quantifies closeness of X(t) to uniformity
via entropy, anticipating a bound in terms of the log-Sobolev constant of
the associated Markov chain in place of the spectral gap. Here is one
solution to that problem.



For a configuration x which is a probability distribution write

Ent(x) := −
∑
i

xi log xi

for the entropy of the configuration. Consider the averaging process
where the initial configuration is a probability distribution. By concavity
of the function −x log x it is clear that in the averaging process
Ent(X(t)) can only increase, and hence Ent(X(t)) ↑ log n a.s. (recall
log n is the entropy of the uniform distribution). So we want to bound
E(log n − Ent(X(t))). For this purpose note that, for a configuration x
which is a probability distribution,

nL(
√

x) = log n − Ent(x). (10)



Proposition

For the averaging process whose initial configuration is a probability
distribution x(0),

E(log n − Ent(X(t))) ≤ (log n − Ent(x(0))) exp(−αt/2)

where α is the log-Sobolev constant of the associated Markov chain.

The format closely parallels that of Proposition 1, though the proof is a
little more intricate. See the paper for proof.



Open Problem. A standard test bench for Markov chain related
problems is the discrete cube graph with vertex-set {0, 1}d and rates
νij = 1/d for adjacent vertices. In particular its log-Sobolev constant is
known. Can you get stronger results for the averaging process on this
cube than are implied by our general results?

I have shown all that’s explicitly known about the averaging process
itself, though more elaborate variant models have been studied.

We now move on to the voter model, which has a more substantial
literature in the finite setting, so what’s written here is far from
complete. It would be a valuable project for someone to write a
(50-page?) survey article.



The voter model and coalescing MCs.
Here the update rule has a random (fair coin flip) component. Nicest to
implement this within the meeting model via a “directed” convention:
when agents i , j meet, choose a random direction and indicate it using an
arrow i → j or j → i .

Voter model. Initially each agent has a different “opinion” – agent i has
opinion i . When i and j meet at time t with direction i → j , then agent j
adopts the current opinion of agent i .

So we can study

Vi (t) := the set of j who have opinion i at time t.

Note that Vi (t) may be empty, or may be non-empty but not contain i .
The number of different remaining opinions can only decrease with time.

Minor comments. (i) We can rephrase the rule as “agent i imposes his
opinion on agent j”.

(ii) The name is very badly chosen – people do not vote by changing their

minds in any simple random way.



Nuance. In the classical, infinite lattice, setting one traditionally
assumed only two different initial opinions. In our finite-agent case it
seems more natural to take the initial opinions to be all different.
Ultimate behavior is obvious (cf. General Principle 1): absorbed in one of
the n “everyone has same opinion” configurations.

Note that one can treat the finite and infinite cases consistently by using
IID U(0,1) opinion labels.



So {Vi (t), i ∈ Agents} is a random partition of Agents. A natural
quantity of interest is the consensus time

T voter := min{t : Vi (t) = Agents for some i}.

Coalescing MC model. Initially each agent has a token – agent i has
token i . At time t each agent i has a (maybe empty) collection Ci (t) of
tokens. When i and j meet at time t with direction i → j , then agent i
gives his tokens to agent j ; that is,

Cj(t+) = Cj(t−) ∪ Ci (t−), Ci (t+) = ∅.

Now {Ci (t), i ∈ Agents} is a random partition of Agents. A natural
quantity of interest is the coalescence time

T coal := min{t : Ci (t) = Agents for some i}.

Minor comments. Regarding each non-empty cluster as a particle, each

particle moves as the MC at half-speed (rates νij/2), moving independently

until two particles meet and thereby coalesce. Note this factor 1/2 in this

section.



The duality relationship.
For fixed t,

{Vi (t), i ∈ Agents} d
= {Ci (t), i ∈ Agents}.

In particular T voter d
= T coal.

They are different as processes. For fixed i , note that |Vi (t)| can only
change by ±1, but |Ci (t)| jumps to and from 0.

In figures on next slides,
time “left-to-right” gives CMC,
time “right-to-left” with reversed arrows gives VM.

Note this depends on the symmetry assumption νij = νji of the meeting
process.



Schematic – the meeting model on the 8-cycle.
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Literature on finite voter model has focussed on estimating

T voter d
= T coal, and I will show some of this work.

But there are several other questions one can ask about the finite-time
behavior . . . . . .



Voter model on the complete graph
There are two ways to analyze T voter

n on the complete graph, both
providing some bounds on other geometries.
Part of Kingman’s coalescent is the continuous-time MC on states
{1, 2, 3, . . .} with rates λk,k−1 =

(
k
2

)
, k ≥ 2. For that chain

EmT hit
1 =

m∑
k=2

1/

(
k

2

)
= 2(1− 1

m )

and in particular limm→∞ EmT hit
1 = 2.

In coalescing RW on the complete n-graph, the number of clusters
evolves as the continuous-time MC on states {1, 2, 3, . . . , n} with rates
λk,k−1 = 1

n−1
(
k
2

)
. So ET coal

n = (n − 1)× 2(1− 1
n ) and in particular

ET voter
n = ET coal

n ∼ 2n. (11)



The second way is to consider the variant of the voter model with only 2
opinions, and to study the number X (t) of agents with the first opinion.
On the complete n-graph, X (t) evolves as the continuous-time MC on
states {0, 1, 2, . . . , n} with rates

λk,k+1 = λk,k−1 = k(n−k)
2(n−1) .

This process arises in classical applied probability (e.g. as the Moran
model in population genetics). We want to study

T hit
0,n := min{t : X (t) = 0 or n}.

By general birth-and-death formulas, or by comparison with simple RW,

EkT hit
0,n = 2(n−1)

n (k(hn−1 − hk+1) + (n − k)(hn−1 − hn−k+1))

where hm :=
∑m

i=1 1/i . This is maximized by k = bn/2c, and

max
k

EkT hit
0,n ∼ (2 log 2) n.



Now we can couple the true voter model (n different initial opinions)
with the variant with only 2 opinions, initially held by k and n − k
agents. (Just randomly assign these two opinions, initially). From this
coupling we see

Pk(T hit
0,n > t) ≤ P(T voter

n > t)

Pk(T hit
0,n > t) ≥ 2k(n−k−1)

n(n−1) P(T voter
n > t)

In particular, the latter with k = bn/2c implies

ET voter
n ≤ (4 log 2 + o(1)) n.

This is weaker than the correct asymptotics (11).



Voter model on general geometry
Suppose the flow rates satisfy, for some constant κ,

ν(A,Ac) :=
∑

i∈A,j∈Ac

n−1νij ≥ κ
|A|(n − |A|)

n(n − 1)
.

On the complete graph this holds with κ = 1. We can repeat the analysis
above – the process X (t) now moves at least κ times as fast as on the
complete graph, and so

ET voter
n ≤ (4 log 2 + o(1)) n/κ.

This illustrates another general principle.



General Principle 5: Bottleneck statistics give crude general bounds

For a geometry with given rate matrix N = (νij), the quantity

ν(A,Ac) =
∑

i∈A,j∈Ac

n−1νij

has the interpretation, in terms of the associated continuous-time Markov
chain Z (t) at stationarity, as “flow rate” from A to Ac

P(Z (0) ∈ A,Z (dt) ∈ Ac) = ν(A,Ac) dt.

So if for some m the quantity

φ(m) = min{ν(A,Ac) : |A| = m}, 1 ≤ m ≤ n − 1

is small, it indicates a possible “bottleneck” subset of size m.

For many FMIE models, one can obtain upper bounds (on the expected
time until something desirable happens) in terms of the parameters
(φ(m), 1 ≤ m ≤ n/2). Such bounds are always worth noting, though

φ(m) is not readily computable, or simulate-able

The bounds are often rather crude for a specific geometry



More elegant to combine the family (φ(m), 1 ≤ m ≤ n/2) into a single
parameter, but the appropriate way to do this is (FMIE)
model-dependent. In the voter model case above we used the parameter

κ := min
A

n(n − 1)ν(A,Ac)

|A|(n − |A|)
= n(n − 1) min

m

φ(m)

m(n −m)
.

Quantities like κ are descriptive statistics of a weighted graph. In
literature you see the phrase “isoperimetric inequalities” which refers to
bounds for particular weighted graph. In our setting – bounding behavior
of a particular FMIE process in terms of the geometry – ”bottleneck
statistics” seems a better name.



Coalescing MC on general geometry
Issues clearly related to study of the meeting time Tmeet

ij of two
independent copies of the MC, a topic that arises in other contexts.
Under enough symmetry (e.g. continuous-time RW on the discrete torus)
the relative displacement between the two copies evolves as the same RW
run at twice the speed, and study of Tmeet

ij reduces to study of T hit
k .

First consider the general reversible case. In terms of the associated MC
define a parameter

τ∗ := max
i,j

EiT
hit
j .

The following result was conjectured long ago but only recently proved.
Note that on the complete graph the mean coalescence time is
asymptotically 2× the mean meeting time.

Theorem (Oliveira 2010)

There exist numerical constants C1,C2 <∞ such that, for any finite
irreducible reversible MC, maxi,j ETmeet

ij ≤ C1τ
∗ and ET coal ≤ C2τ

∗.

Proof is intricate.



To seek “1± o(1)” limits, let us work in the meeting model setting
(stationary distribution is uniform) and write τmeet for mean meeting time
from independent uniform starts. In a sequence of chains with n→∞,
impose a condition such as the following. For each ε > 0

n−2|{(i , j) : ETmeet
ij 6∈ (1± ε)τmeet}| → 0. (12)

Open problem. Assuming (12), under what further conditions can we
prove ET coal ∼ 2τmeet?

This project splits into two parts.
Part 1. For fixed m, show that the mean time for m initially independent
uniform walkers to coalesce should be ∼ 2(1− 1

m )τmeet.
Part 2. Show that for m(n)→∞ slowly, the time for the initial n
walkers to coalesce into m(n) clusters is o(τmeet).

Part 1 is essentially a consequence of known results, as follows.



From old results on mixing times (RWG section 4.3), a condition like
(12) is enough to show that τmix = o(τmeet). So – as a prototype use of
τmix – by considering time intervals of length τ , for τmix � τ � τmeet, the
events “a particular pair of walker meets in the next τ -interval” are
approximately independent. This makes the “number of clusters” process
behave as the Kingman coalescent.

Note. That is the hack proof. Alternatively, the explicit bound involving τrel on

exponential approximation for hitting time distributions from stationarity is

applicable to the meeting time of two walkers, so a more elegant way would be

to find an extension of that result applicable to the case involving m walkers.

Part 2 needs some different idea/assumptions to control short-time
behavior.



(restate) Open problem. Assuming (12), under what further conditions
can we prove ET coal ∼ 2τmeet?

What is known rigorously?

Cox (1989) proves this for the torus [0,m− 1]d in dimension d ≥ 2. Here
τmeet = τhit ∼ mdRd for d ≥ 3.

Cooper-Frieze-Radzik (2009) prove Part 1 for the random r -regular
graph, where τmeet ∼ τhit ∼ r−1

r−2n.

Cooper-Elsässer-Ono-Radzik (2012) prove (essentially)

ET coal = O(n/λ)

where λ is the spectral gap of the associated MC. But this bound is of
correct order only for expander-like graphs.



(repeat earlier slide)

Literature on finite voter model has focussed on estimating

T voter d
= T coal, and I have shown some of this work.

But there are several other questions one can ask about the finite-time
behavior. Let’s recall what we studied for the averaging process.



(repeat earlier slide: averaging process)

If the initial configuration is a probability distribution (i.e. unit
money split unevenly between individuals) then the vector of
expectations in the averaging process evolves precisely as the
probability distribution of the associated (continuous-time) Markov
chain with that initial distribution (Lemma 1).

There is a duality relationship with coupled Markov chains (Lemma
3).

There is an explicit bound on the closeness of the time-t
configuration to the limit constant configuration (Proposition 1).

Complementary to this global bound there is a “universal” (i.e. not
depending on the meeting rates) bound for an appropriately defined
local roughness of the time-t configuration (Propostion 2).

The entropy bound.



Other aspects of finite-time behavior (voter model)

1. Recall our “geometry-invariant” theme (General Principle 2). Here an
invariant property is

expected total number of opinion changes = n(n − 1).

2. If the proportions of agents with the various opinions are written as
x = (xi ), the statistic q :=

∑
i x2

i is one measure of concentration -
diversity of opinion. So study Q(t) :=

∑
i (n−1|Vi (t)|)2. Duality implies

EQ(t) = P(Tmeet ≤ t)

where Tmeet is meeting time for independent MCs with uniform starts.
Can study in special geometries.

3. A corresponding “local” measure of concentration - diversity is the
probability that agents (I , J) chosen with probability ∝ νij (“neighbors”)
have same opinion at t. (“Diffusive clustering”: Cox (1986))



4. The statistic q :=
∑

i x2
i emphasizes large clusters (large time); the

statistic ent(x) = −
∑

i xi log xi emphasizes small clusters (small time).
So one could consider

E(t) := −
∑
i

(n−1|Vi (t)|) log(n−1|Vi (t)|)

Apparently not studied – involves similar short-time issues as in the
ET coal ∼ 2τmeet? question.



General Principle 6: Approximating finite graphs by infinite graphs

For two of the standard geometries, there are local limits as n→∞.
• For the torus Zd

m, the m→∞ limit is the infinite lattice Zd .
• For the “random graphs with prescribed degree distribution” model,
(xxx not yet introduced?) the limit is the associated Galton-Watson tree.

There is also a more elaborate random network model (Aldous 2004)
designed to have a more “interesting” local weak limit for which one can
do some explicit calculations – it’s an Open Topic to use this as a
testbed geometry for studying FMIE processes.

So one can attempt to relate the behavior of a FMIE process on such a
finite geometry to its behavior on the infinite geometry. This is simplest
for the “epidemic” (FPP) type models later, but also can be used for
MC-related models, starting from the following



Local transience principle. For a large finite-state MC whose behavior
near a state i can be approximated be a transient infinite-state chain, we
have

EπT hit
i ≈ Ri/πi

where Ri is defined in terms of the approximating infinite-state chain as∫∞
0

pii (t) dt = 1
νiqi

, where qi is the chance the infinite-state chain started
at i will never return to i .

The approximation comes from the finite-state mean hitting time formula
via a “interchange of limits” procedure which requires ad hoc
justification.

Conceptual point here: local transience corresponds roughly to voter
model consensus time being Θ(n).



In the case of simple RW on the d ≥ 3-dimensional torus Zd
m, so n = md ,

this identifies the limit constant in EπT hit
i ∼ Rdn as Rd = 1/qd where qd

is the chance that RW on the infinite lattice Zd never returns to the
origin.

In the “random graphs with prescribed degree distribution” model, this
argument (and transience of RW on the infinite Galton-Watson limit
tree) shows that EπT hit

i = Θ(n).



A final thought

For Markov chains, mixing times and hitting times seem “basic” objects
of study in both theory and applications. These objects may look quite
different, but Aldous (1981) shows some connections, and in particular
an improvement by Peres-Sousi (2012) shows that (variation distance)
mixing time for a reversible chain agrees (up to constants) with
maxA:π(A)≥1/4 maxi EiT

hit
A .

We have seen that the behaviors of the Averaging Process and the Voter
Model are closely related to the mixing and hitting behavior of the
associated MC. Is there any direct connection between properties of these
two FMIE processes? Does the natural coupling tell you anything?


