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We now move on to the voter model, which (compared to the averaging
model) has a more substantial literature in the finite setting, so what’s
written here is far from complete. It would be a valuable project for
someone to write a (50-page?) survey article.

Here the update rule has a random (fair coin flip) component. Nicest to
implement this within the meeting model via a “directed” convention:
when agents i , j meet, choose a random direction and indicate it using an
arrow i → j or j → i .



Voter model. Initially each agent has a different “opinion” – agent i has
opinion i . When i and j meet at time t with direction i → j , then agent j
adopts the current opinion of agent i .

So we can study

Vi (t) := the set of j who have opinion i at time t.

Note that Vi (t) may be empty, or may be non-empty but not contain i .
The number of different remaining opinions can only decrease with time.

Minor comments. (i) We can rephrase the rule as “agent i imposes his
opinion on agent j”.

(ii) The name is very badly chosen – people do not vote by changing their

minds in any simple random way.



Nuance. In the classical, infinite lattice, setting one traditionally
assumed only two different initial opinions. In our finite-agent case it
seems more natural to take the initial opinions to be all different.
Ultimate behavior is obvious (cf. General Principle 1): absorbed in one of
the n “everyone has same opinion” configurations.

Note that one can treat the finite and infinite cases consistently by using
IID U(0,1) opinion labels.

So {Vi (t), i ∈ Agents} is a random partition of Agents. A natural
quantity of interest is the consensus time

T voter := min{t : Vi (t) = Agents for some i}.



Coalescing MC model. Initially each agent has a token – agent i has
token i . At time t each agent i has a (maybe empty) collection (cluster)
Ci (t) of tokens. When i and j meet at time t with direction i → j , then
agent i gives his tokens to agent j ; that is,

Cj(t+) = Cj(t−) ∪ Ci (t−), Ci (t+) = ∅.

Now {Ci (t), i ∈ Agents} is a random partition of Agents. A natural
quantity of interest is the coalescence time

T coal := min{t : Ci (t) = Agents for some i}.

Minor comments. Regarding each non-empty cluster as a particle, each

particle moves as the MC at half-speed (rates νij/2), moving independently

until two particles meet and thereby coalesce. Note this factor 1/2 in this

section.



The duality relationship.
For fixed t,

{Vi (t), i ∈ Agents} d
= {Ci (t), i ∈ Agents}.

In particular T voter d
= T coal.

They are different as processes. For fixed i , note that |Vi (t)| can only
change by ±1, but |Ci (t)| jumps to and from 0.

In figures on next slides,
time “left-to-right” gives CMC,
time “right-to-left” with reversed arrows gives VM.

Note this depends on the symmetry assumption νij = νji of the meeting
process.



Schematic – the meeting model on the 8-cycle.
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?C6(t) = {0, 1, 2, 6, 7}

C2(t) = {3, 4, 5}

V2(t) = {3, 4, 5}



Literature on finite voter model has focussed on estimating

T voter d
= T coal, and I will show some of this work.

But there are several other questions one can ask about the finite-time
behavior . . . . . .



Voter model on the complete graph
There are two ways to analyze T voter

n on the complete graph, both
providing some bounds on other geometries.
Part of Kingman’s coalescent is the continuous-time MC on states
{1, 2, 3, . . .} with rates λk,k−1 =

(
k
2

)
, k ≥ 2. For that chain

EmT hit
1 =

m∑
k=2

1/

(
k

2

)
= 2(1− 1

m )

and in particular limm→∞ EmT hit
1 = 2.

In coalescing RW on the complete n-graph, the number of clusters
evolves as the continuous-time MC on states {1, 2, 3, . . . , n} with rates
λk,k−1 = 1

n−1
(
k
2

)
. So ET coal

n = (n − 1)× 2(1− 1
n ) and in particular

ET voter
n = ET coal

n ∼ 2n. (1)



The second way is to consider the variant of the voter model with only 2
opinions, and to study the number X (t) of agents with the first opinion.
On the complete n-graph, X (t) evolves as the continuous-time MC on
states {0, 1, 2, . . . , n} with rates

λk,k+1 = λk,k−1 = k(n−k)
2(n−1) .

This process arises in classical applied probability (e.g. as the Moran
model in population genetics). We want to study

T hit
0,n := min{t : X (t) = 0 or n}.

By general birth-and-death formulas, or by comparison with simple RW,

EkT hit
0,n = 2(n−1)

n (k(hn−1 − hk+1) + (n − k)(hn−1 − hn−k+1))

where hm :=
∑m

i=1 1/i . This is maximized by k = bn/2c, and

max
k

EkT hit
0,n ∼ (2 log 2) n.



Now we can couple the true voter model (n different initial opinions)
with the variant with only 2 opinions, initially held by k and n − k
agents. (Just randomly assign these two opinions, initially). From this
coupling we see

Pk(T hit
0,n > t) ≤ P(T voter

n > t)

Pk(T hit
0,n > t) ≥ 2k(n−k−1)

n(n−1) P(T voter
n > t)

In particular, the latter with k = bn/2c implies

ET voter
n ≤ (4 log 2 + o(1)) n.

This is weaker than the correct asymptotics (1).



Voter model on general geometry
Suppose the flow rates satisfy, for some constant κ,

ν(A,Ac) :=
∑

i∈A,j∈Ac

n−1νij ≥ κ
|A|(n − |A|)

n(n − 1)
.

On the complete graph this holds with κ = 1. We can repeat the analysis
above – the process X (t) now moves at least κ times as fast as on the
complete graph, and so

ET voter
n ≤ (4 log 2 + o(1)) n/κ.

This illustrates another general principle.



General Principle 5: Bottleneck statistics give crude general bounds

For a geometry with given rate matrix N = (νij), the quantity

ν(A,Ac) =
∑

i∈A,j∈Ac

n−1νij

has the interpretation, in terms of the associated continuous-time Markov
chain Z (t) at stationarity, as “flow rate” from A to Ac

P(Z (0) ∈ A,Z (dt) ∈ Ac) = ν(A,Ac) dt.

So if for some m the quantity

φ(m) = min{ν(A,Ac) : |A| = m}, 1 ≤ m ≤ n − 1

is small, it indicates a possible “bottleneck” subset of size m.

For many FMIE models, one can obtain upper bounds (on the expected
time until something desirable happens) in terms of the parameters
(φ(m), 1 ≤ m ≤ n/2). Such bounds are always worth noting, though

φ(m) is not readily computable, or simulate-able

The bounds are often rather crude for a specific geometry



More elegant to combine the family (φ(m), 1 ≤ m ≤ n/2) into a single
parameter, but the appropriate way to do this is (FMIE)
model-dependent. In the voter model case above we used the parameter

κ := min
A

n(n − 1)ν(A,Ac)

|A|(n − |A|)
= n(n − 1) min

m

φ(m)

m(n −m)
.

Quantities like κ are descriptive statistics of a weighted graph. In
literature you see the phrase “isoperimetric inequalities” which refers to
bounds for particular weighted graph. In our setting – bounding behavior
of a particular FMIE process in terms of the geometry – ”bottleneck
statistics” seems a better name.



Coalescing MC on general geometry
Issues clearly related to study of the meeting time Tmeet

ij of two
independent copies of the MC, a topic that arises in other contexts.
Under enough symmetry (e.g. continuous-time RW on the discrete torus)
the relative displacement between the two copies evolves as the same RW
run at twice the speed, and study of Tmeet

ij reduces to study of T hit
k .

First consider the general reversible case. In terms of the associated MC
define a parameter

τ∗ := max
i,j

EiT
hit
j .

The following result was conjectured long ago but only recently proved.
Note that on the complete graph the mean coalescence time is
asymptotically 2× the mean meeting time.

Theorem (Oliveira 2010)

There exist numerical constants C1,C2 <∞ such that, for any finite
irreducible reversible MC, maxi,j ETmeet

ij ≤ C1τ
∗ and ET coal ≤ C2τ

∗.

Proof is intricate.



To seek “1± o(1)” limits, let us work in the meeting model setting
(stationary distribution is uniform) and write τmeet for mean meeting time
from independent uniform starts. In a sequence of chains with n→∞,
impose a condition such as the following. For each ε > 0

n−2|{(i , j) : ETmeet
ij 6∈ (1± ε)τmeet}| → 0. (2)

Open problem. Assuming (2), under what further conditions can we
prove ET coal ∼ 2τmeet?

This project splits into two parts.
Part 1. For fixed m, show that the mean time for m initially independent
uniform walkers to coalesce should be ∼ 2(1− 1

m )τmeet.
Part 2. Show that for m(n)→∞ slowly, the time for the initial n
walkers to coalesce into m(n) clusters is o(τmeet).

Part 1 is essentially a consequence of known results, as follows.



From old results on mixing times (RWG section 4.3), a condition like (2)
is enough to show that τmix = o(τmeet). So – as a prototype use of τmix –
by considering time intervals of length τ , for τmix � τ � τmeet, the
events “a particular pair of walker meets in the next τ -interval” are
approximately independent. This makes the “number of clusters” process
behave as the Kingman coalescent.

Note. That is the hack proof. Alternatively, the explicit bound involving τrel on

exponential approximation for hitting time distributions from stationarity is

applicable to the meeting time of two walkers, so a more elegant way would be

to find an extension of that result applicable to the case involving m walkers.

Part 2 needs some different idea/assumptions to control short-time
behavior.



(restate) Open problem. Assuming (2), under what further conditions
can we prove ET coal ∼ 2τmeet?

What is known rigorously?

Cox (1989) proves this for the torus [0,m− 1]d in dimension d ≥ 2. Here
τmeet = τhit ∼ mdRd for d ≥ 3.

Cooper-Frieze-Radzik (2009) prove Part 1 for the random r -regular
graph, where τmeet ∼ τhit ∼ r−1

r−2n.

Cooper-Elsässer-Ono-Radzik (2012) prove (essentially)

ET coal = O(n/λ)

where λ is the spectral gap of the associated MC. But this bound is of
correct order only for expander-like graphs.



(repeat earlier slide)

Literature on finite voter model has focussed on estimating

T voter d
= T coal, and I have shown some of this work.

But there are several other questions one can ask about the finite-time
behavior. Let’s recall what we studied for the averaging process.



(repeat earlier slide: averaging process)

If the initial configuration is a probability distribution (i.e. unit
money split unevenly between individuals) then the vector of
expectations in the averaging process evolves precisely as the
probability distribution of the associated (continuous-time) Markov
chain with that initial distribution

There is a duality relationship with coupled Markov chains

There is an explicit bound on the closeness of the time-t
configuration to the limit constant configuration

Complementary to this global bound there is a “universal” (i.e. not
depending on the meeting rates) bound for an appropriately defined
local roughness of the time-t configuration

The entropy bound.



Other aspects of finite-time behavior (voter model)

1. Recall our “geometry-invariant” theme (General Principle 2). Here an
invariant property is

expected total number of opinion changes = n(n − 1).

2. If the proportions of agents with the various opinions are written as
x = (xi ), the statistic q :=

∑
i x2

i is one measure of concentration -
diversity of opinion. So study Q(t) :=

∑
i (n−1|Vi (t)|)2. Duality implies

EQ(t) = P(Tmeet ≤ t)

where Tmeet is meeting time for independent MCs with uniform starts.
Can study in special geometries.

3. A corresponding “local” measure of concentration - diversity is the
probability that agents (I , J) chosen with probability ∝ νij (“neighbors”)
have same opinion at t. (“Diffusive clustering”: Cox (1986))



4. The statistic q :=
∑

i x2
i emphasizes large clusters (large time); the

statistic ent(x) = −
∑

i xi log xi emphasizes small clusters (small time).
So one could consider

E(t) := −
∑
i

(n−1|Vi (t)|) log(n−1|Vi (t)|)

Apparently not studied – involves similar short-time issues as in the
ET coal ∼ 2τmeet? question.



General Principle 6: Approximating finite graphs by infinite graphs

For two of the standard geometries, there are local limits as n→∞.
• For the torus Zd

m, the m→∞ limit is the infinite lattice Zd .
• For the “random graphs with prescribed degree distribution” model,
(xxx not yet introduced?) the limit is the associated Galton-Watson tree.

There is also a more elaborate random network model (Aldous 2004)
designed to have a more “interesting” local weak limit for which one can
do some explicit calculations – it’s an Open Topic to use this as a
testbed geometry for studying FMIE processes.

So one can attempt to relate the behavior of a FMIE process on such a
finite geometry to its behavior on the infinite geometry. This is simplest
for the “epidemic” (FPP) type models later, but also can be used for
MC-related models, starting from the following



Local transience principle. For a large finite-state MC whose behavior
near a state i can be approximated be a transient infinite-state chain, we
have

EπT hit
i ≈ Ri/πi

where Ri is defined in terms of the approximating infinite-state chain as∫∞
0

pii (t) dt = 1
νiqi

, where qi is the chance the infinite-state chain started
at i will never return to i .

The approximation comes from the finite-state mean hitting time formula
via a “interchange of limits” procedure which requires ad hoc
justification.

Conceptual point here: local transience corresponds roughly to voter
model consensus time being Θ(n).



In the case of simple RW on the d ≥ 3-dimensional torus Zd
m, so n = md ,

this identifies the limit constant in EπT hit
i ∼ Rdn as Rd = 1/qd where qd

is the chance that RW on the infinite lattice Zd never returns to the
origin.

In the “random graphs with prescribed degree distribution” model, this
argument (and transience of RW on the infinite Galton-Watson limit
tree) shows that EπT hit

i = Θ(n).



A final thought

For Markov chains, mixing times and hitting times seem “basic” objects
of study in both theory and applications. These objects may look quite
different, but Aldous (1981) shows some connections, and in particular
an improvement by Peres-Sousi (2012) shows that (variation distance)
mixing time for a reversible chain agrees (up to constants) with
maxA:π(A)≥1/4 maxi EiT

hit
A .

We have seen that the behaviors of the Averaging Process and the Voter
Model are closely related to the mixing and hitting behavior of the
associated MC. Is there any direct connection between properties of these
two FMIE processes? Does the natural coupling tell you anything?


