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Unwinding large positions is part of day-to-day business

. . . of banks, insurance companies, funds, energy companies, . . .

How to sell / buy?
I Not too fast

split orders over time to reduce liquidation costs

I Not too slow

reduce market risk of open position

Stochastic control problem: What is the optimal trade-off?
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Which lottery do you choose?

Lottery 1:

0
1

4

2000

3
4

Lottery 2:

1000
3

4

3000

1
4
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Skewed versus unskewed proceed distribution
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Wanted:

A model such that ...

I allows to introduce skewness in the revenue distribution

I the trading speed is price sensitive

I time consistent strategies

I numerically efficient

I the relative trading rate is independent of the remaining position size
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Model: Trading rates determine remaining position

I T = time horizon

I zt = trading rate at t ∈ [0,T ]

I xt = position size at t ∈ [0,T ]

xt = x0 −
∫ t

0

zudu

Constraint: xT = 0
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Model: Trading rates determine price impact

Non-influenced forward price dynamics

dSt = σ(St)dWt

Realized price at t:

S̃t = St − ηzt ,

where η > 0 is the price impact parameter.

Price impact is LAT:

I linear

I absolute

I temporary
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Liquidity costs grow quadratically

Realized proceeds / costs up to t:

Rt =

∫ t

0

zuS̃udu =

∫ t

0

zuSudu −
∫ t

0

ηz2
udu.

Expected realized proceeds / costs:

E [Rt ] = x0S0︸︷︷︸ − E

∫ t

0

ηz2
udu︸ ︷︷ ︸

book value liqu. costs

A risk neutral agent closes the position linearly!
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Model: Measuring risk

Risk functional: ∫ T

0

λ(St)x2
t dt

Possible choices for λ(s):

I Long position: λ(s) = max[c ∗ (s̄ − s), 0]2

I Short position: λ(s) = max[c ∗ (s − s̄), 0]2

Interpretation: time average of the value-at-risk squared
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Interpret the risk functional as value-at-risk

Risk functional:

∫ T

0

λ(St)x2
t dt

Let c = 5% quantile of mark-to-market losses up t + ∆ of a long
position x :

P(x(St+∆ − S0) ≤ c) = 5%.

Then

c = x
(

Ste
−σ
√

∆ a−σ2/2∆ − S0

)
,

where

I a = 95%−quantile of the standard normal distribution

I ∆ = holding period
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Model: gain + value function

Gain function: expected liquidity costs + risk

J(t, s, x ; (zr )) = E

[∫ T

t

ηz2
r + λ(Sr )x2

r dr

∣∣∣∣St = s, xt = x

]

Value function:

V (t, s, x) = inf
(zr )∈At(x)

J(t, s, x ; (zr )).
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HJB Equation

V (t, s, x) solves

−∂V

∂t
− 1

2
σ2 ∂

2V

∂s2
− λ(s)x2 − inf

z∈R
(ηz2 − ∂V

∂x
z) = 0 (1)

with terminal condition

lim
t↗T

V (t, s, x) =

{
∞ for x 6= 0

0 for x = 0.

Variable reduction: V (t, s, x) = I (t, s) η
T−t x2. Then

−∂I

∂t
− 1

2
σ2 ∂

2I

∂s2
− I

T − t
+

I 2

T − t
− (T − t)

λ(s)

η
= 0, (2)

with I (T , s) = 1.
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Explicit solutions for price-insensitive risk

Definition:

Ic(t) =


√

c

η
(T − t) coth

(√
c

η
(T − t)

)
if c > 0

1 if c = 0.

Proposition
Suppose that λ(s) = c. Then the value function is given by

V (t, x) =
η

T − t
Ic(t)x2

and the optimal trading speed by

zt = Ic(t)
xt

T − t
.

Proof. follows from Kratz, Schöneborn 2009.
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Insensitive risk: optimal liquidation paths

Optimal trading speed:

zt = Ic(t)
xt

T − t︸ ︷︷ ︸
linear closure

The factor Ic(t) inflates linear trading!

Figure: Inflator and position paths
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Price-sensitive risk: Inflator solves a PDE

− ∂I

∂t
− 1

2
σ2 ∂

2I

∂s2
− I

T − t
+

I 2

T − t
− (T − t)

λ(s)

η
= 0, (3)

Theorem
There exists a unique viscosity solution I of (3) on [0,T )× (0,∞) such
that

I I ≥ 1

I I has polynomial growth in s

I boundary conditions

lim
t↗T
s→s0

I (t, s) = 1 for all s0 ∈ (0,∞),

lim
t→t0
s↘0

I (t, s) = Iλ(0)(t0) for all t0 ∈ [0,T ).

Moreover, I is continuous.
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The value function is a quadratic form

Theorem
The value function is a quadratic form in x:

V (t, s, x) = I (t, s)
η

T − t
x2.

The optimal trading speed is given by

z(t, s, x) = I (t, s)
x

T − t
.

Associated position trajectory

xt = x0 exp

(
−
∫ t

0

I (u,Su)

T − u
du

)
.
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Long position: Inflator increases as prices fall

I long position x0 > 0
I risk weight λ(s) = max[c ∗ (s̄ − s), 0]2

Parameters: S0 = 50, s̄ = 50, c = 0.01
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Optimal trading speed

Optimal trading speed

z(t, s, x) = I (t, s)︸ ︷︷ ︸ x

T − t︸ ︷︷ ︸ .
inflator linear closure
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Trading speed depends on price evolvement

Figure: Price dependence of liquidation paths for c = 0.03
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Skewness in proceeds / costs

Figure: Histograms of realized proceeds
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Can we solve the discrete problem explicitly?

Discrete value function:

V N
n (s, x) := inf

(zk )∈Ak (x)
E

[
N−1∑
k=n

ηNz2
k + λN(SN

k )x2
k

∣∣∣∣SN
n = s, xn = x

]
.

Proposition
The value function is a quadratic form

V N
n (s, x) = aNn (s)x2,

where aNn is defined via the function recursion

aNN−1(s) = ηN + λN(s), aNn (s) =
ηNE [aNn+1(SN

n+1)|Sn = s]

ηN + E [aNn+1(SN
n+1)|Sn = s]

+ λN(s).
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The discrete value fct converges

Theorem
We have V N → V pointwise in [0,T )× (0,∞)× R as N →∞.
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Conclusion

I We present a liquidation model with a price sensitive risk functional

I A device that allows to introduce skewness in the revenue / cost
distribution

I Trading speed increases if prices move into an unfavorable direction

I Inflator is characterized in terms of a PDE

I A flexible and numerically efficient way to derive time consistent
liquidation paths
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Thank you!
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