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why data assimilation?

1. scientific computing (SC) has an increasing role in engineering, science ,/

and society — reliability of numerical results is a crucial issue for
® investigation/ranking of methods

® assessing the impact of numerical simulations
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why data assimilation?

and society — reliability of numerical results is a crucial issue for
® investigation/ranking of methods

® assessing the impact of numerical simulations

2. many application fields experience a tremendous increment of the

amount of available data

3. cardiovascular mathematics is an emerging field in SC
* development of numerical models
* development of diagnostic devices
— decision supporting in clinical practice

= reliability is mandatory
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® validation: new benchmark for numerical simulations
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how to use measures?

® validation: new benchmark for numerical simulations

® merging into numerical simulations to obtain reliable results

data assimilation

ensemble of methods for merging sparse and noisy information into a numerical model

based on the approximation of physical and constitutive laws

goal: link together heterogeneous (in nature, quality, and density) sources of information

in order to retrieve a consistent state for phenomena of interest




an application

® CHOA project — investigation of the bicuspid aortic valve, a

congenital hearth disease
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an application

Pulmonary Trunk

® CHOA project — investigation of the bicuspid aortic valve, a

Tricuspid
Valve

congenital hearth disease

Right Afrium

Right Ventricie

® main symptom of development of serious complications is
the dilatation of the aorta — clinical methods fail to guide

decisions for early intervention




an application

Pulmonary Trunk

® CHOA project — investigation of the bicuspid aortic valve, a
congenital hearth disease

Right Atrium

Right Ventricla

.

Dr. M.Brummer Emory CHOA

® main symptom of development of serious complications is
the dilatation of the aorta — clinical methods fail to guide

decisions for early intervention

® using 4D MRI, determine and analyze the blood flow
patterns in the aortic root — flow reconstruction by image

processing is not accurate enough




outline

1. deterministic formulation of the continuous and discrete problem
= optimality result and alternative regularization

= consistency and validation results

2. statistical formulation of the discrete problem
= Bayesian inversion: point and spread estimators
" comparison with deterministic estimates

= confidence intervals for velocity and wall shear stress

3. future work




1. deterministic
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mathematical problem

vessel: domain 2 C R2, R3, with boundaries Ty, Tout, Dwail

variables: velocity u and pressure p

data: d € R, vector of measured velocities
Fwall 1ﬁouiﬁ
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mathematical problem

vessel: domain 2 C R?, R3, with boundaries Ty, Tout, Dwai

variables: velocity u and pressure p

data: d € R, vector of measured velocities
Fwall 1ﬁouiﬁ

W
IRy

state equations: (—v V- (Vu+Vu')+(u-V)u+Vp=s in Q,

V-u=0 in €,
{ u=20 on Ffwalla
—z/(Vu+VuT)n+pn =h on L',

| —v(Vu+Vul)n+pn=g on I'yyu:.




mathematical problem

vessel: domain 2 C R?, R3, with boundaries Ty, Tout, Dwai

variables: velocity u and pressure p

data: d € R, vector of measured velocities

Fwall

1ﬁouiﬁ

e

QA

state equations: (v V- (Vu+Vu')+(u-Vju+Vp=s in Q
V-ou=0 in Q,
] v=0 on 'yai,
—v(Vu+Vul)n+pn=nh on T,
[ —v(Vu+Vu')n+pn=g on T'pys.

assimilation: m&n J(u, h) = dist(f(u), d) +R(h)

s.t. state equations




discrete formulation (u-V)u s (8- V)u

discretize using the finite element (FE) method [1]
i 1 2 O 2
min 7 (V. H) = £ [DV - d + L3
st. SV =Rl M,;,H + F.

[1] M. DE, A. Veneziani, Methods for assimilating blood velocity measures in hemodynamics simulations: Preliminary results, Procedia
Computer Science, 2010




discrete formulation (u-V)u mm (8- V)u

discretize using the finite element (FE) method [1]
: 1 !
min J(V, H) = _|DV —d||3 + 5 |LH|3
H 2 2
st. SV =R} M;,H+ F.

notation e V = { g }, U: discretized velocity, P: discretized pressure
. S— [ C+A Bt ]
LB o I

e C, A, B: discrete diffusion, advection and divergence operators

R;,: restriction matrix, M;,: boundary mass matrix

Q: selection matrix, s.t. [QU]; = solution evaluated at the data sites

D = [Q O], extension of Q to pressure degrees of freedom

L: discretized differential operator, here discrete gradient

[1] M. DE, A. Veneziani, Methods for assimilating blood velocity measures in hemodynamics simulations: Preliminary results, Procedia
Computer Science, 2010




discrete formulation

optimize

solving the KK'T' system induced by the Lagrangian with the Reduced Hessian method:

1
L(V,H,A)= =DV —d|2 + < |[LH|2 + AT(SV - REM;,H — F
2 2 mn




discrete formulation
optimize

solving the KK'T' system induced by the Lagrangian with the Reduced Hessian method:

1
L(V,H,A)= =DV —d|2 + < |[LH|2 + AT(SV - REM;,H — F
2 2 mn

adjoint equation: DY(DV —d) +S*A =0
residual equation: aLTLH — M%RmA =0

state equation: SV —RI M,;,H—F = 0.

mn

! |

reduced system: WH = Z'(d — DS™'F)
reduced Hessian: W = Z1Z + o LTL

sensitivity matrix: Z = DSTIR} M,




optimality result

* sufficient conditions for an equality PDE constrained opt.pb: positive definite Hessian
* the regularized formulation always satisfies necessary and sufficient conditions

® find sufficient conditions for the selection matrix when no regularization is used




optimality result

* sufficient conditions for an equality PDE constrained opt.pb: positive definite Hessian
* the regularized formulation always satisfies necessary and sufficient conditions

® find sufficient conditions for the selection matrix when no regularization is used

Proposition sufficient conditions for the existence of a unique minimizer are:

1. >0, or
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optimality result

* sufficient conditions for an equality PDE constrained opt.pb: positive definite Hessian
* the regularized formulation always satisfies necessary and sufficient conditions

® find sufficient conditions for the selection matrix when no regularization is used

Proposition sufficient conditions for the existence of a unique minimizer are:

1. >0, or

2. a =0 and Null(D) N Range(S™R} M;,) = {0}

this condition is satisfied by choosing D such that its restriction to rows corre-
sponding to sites on I';, has rank N;, (degrees of freedom of U on T';,)

g é\ left: sites on grid nodes

K § right: sparse sites on the inflow boundary
N4
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(using P1bubble-P1 FE pair)
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interpolation

® given sparse measurements on inflow not satisfying sufficient conditions

® recover those conditions with approximated data on grid nodes on inflow
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interpolation

® given sparse measurements on inflow not satisfying sufficient conditions
* recover those conditions with approximated data on grid nodes on inflow

approximation: piecewise linear interpolation of each velocity component

d; = IId(x;) where Ild is the interpolating function recovered from k values

e original datad =ue, + €

e interpolated data d=1Id = u., + n

where II is the interpolation matrix

e black data: d

e blue data: d




nonlinear formulation

non-linear constraint Navier-Stokes momentum equation, —v V - (Vu + Vu?l) + (u- V)u+ Vp

algorithm 1. iterative procedure exploiting the Picard (or Newton) method:

given Vi, a guess for the velocity at step k+1, solve

min §||DVyy1(Hey1) —d||3 + $ | LH1 |3
Hp1 where S, = [

C+ AL BT ]
s.t. SkaH = R;[;LMank—l—l + F

B O

up to fulfillment of a convergence criterion




numerical results

e the deterministic procedure is an effective and robust noise filtering method




numerical results

e the deterministic procedure is an effective and robust noise filtering method

e the discretization error decreases as more data are available: it is propor-
tional N;9-°.

e the sample mean of the computed velocity over IV, noise realizations con-
verges to the noise-free solution with rate N 9-°

e the discretization error is proportional to the amount of noise




numerical results

domain: rectangular domain representing a slice of a cylinder
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numerical results

data generation: analytical solution with additional noise, data on the inflow boundary do
not satisfy sufficient conditions —» piece-wise linear interpolation
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numerical results

data generation: analytical solution with additional noise, data on the inflow boundary do
not satisfy sufficient conditions —» piece-wise linear interpolation




. statistical
formulation.

[4] M.DE,. Veneziani, Uncertainty Quantification for the incompressible Navier-Stokes equations in Hemodynamics, in preparation.
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statistical inversion

goal: estimate the reliability of results = quantification of the uncertainty

idea: we predict stochastic features of the variables of interest
the prediction of the uncertainty is based on the knowledge of
B the measurement process

B deterministic models available

main features:

B 3]l discretized variables are treated as random

the randomness is in the degree of information of their realizations

such degree resides in the probability distributions

m the entities involved are probability density functions (PDFs)

B the method delivers a distribution

(deterministic methods produce a single estimate)




statistical inversion — notation

random variables (RV):
e H: RV for normal stress of the fluid at the inflow section
e M: RV for the measures

e c: RV for the noise perturbing the measurements




statistical inversion — notation

random variables (RV):
e H: RV for normal stress of the fluid at the inflow section
e M: RV for the measures

e c: RV for the noise perturbing the measurements

probability density functions (PDFs):
o m,-(H): PDF of H, the prior
® Thoise(€): PDF of €
e m(M|H): PDF of M conditioned on a realization of H; the likelihood
o Tpost(H) =m(H|M): PDF of H conditioned on a realization of M, the posterior




statistical inversion — notation

statistical properties of M are determined by the distribution of H and €
ZH+e =M (additive noise model)

e linear (or linearized) deterministic model that relates H and M

e Z =DS 'R;,M,;, is the “Neumann-to-Dirichlet” map




statistical inversion — notation

statistical properties of M are determined by the distribution of H and €
ZH+e =M (additive noise model)

e linear (or linearized) deterministic model that relates H and M

e Z =DS 'R;,M,;, is the “Neumann-to-Dirichlet” map

assumption: independence of H and €
consequence: M |H is distributed like € with density function translated by ZH

= m(M|H) = Tpoise(M — ZH)




statistical inversion

objective: estimate the posterior exploiting the Bayes theorem

M|H )7y, (H)
(M)

T
Tpost (H ) = (
we are interested in H = the denominator does not affect the solution

when M = d is a specific realization of M, mpost (H) X Tnoise(d — ZH )y (H)

Gaussian assumption: H ~ N(Hy,Xp), prior
e ~ N (g0, Znoise), likelihood
H|M ~ N(Hpost, Xpost), posterior

Hpost = (5., + 278, 0. 2) (218, s (d — €0) + 5V Ho)

noise noise

noise

Ypost = (2;7} + 7zt 7y
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using this result one can calculate point or interval estimates
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using this result one can calculate point or interval estimates

maximum a posteriori (MAP) estimator:

the most likely value of H given d: Hpjap = arg MAX Tpost (H)

Gaussian assumption = Hyrap = Hpost: expected value of the posterior



statistical inversion

using this result one can calculate point or interval estimates

maximum a posteriori (MAP) estimator:

the most likely value of H given d: Hpjap = arg MAX Tpost (H)

Gaussian assumption = Hyrap = Hpost: expected value of the posterior

maximum likelihood (ML) estimator:

value of H which is most likely to produce the datad: Hysr, = arg max m(M|H)




point estimators

comparison 1. Hy,; = (aLTL+2Z1Z)7! 7t (d — DS™'F)
2. Hyap =& +27%,,...2)7 2%, ). (d—DS7'F)

noise noise

3. Hyp, =(2Z%2 1 7)7! zTs-1 ~ (d—-DS™'F)

noise noise

the choice between 2. and 3. depends on the level of prior knowledge
2. corresponds to moving the estimate towards the prior

3. corresponds to not trusting our prior belief on H: “X,, — 0”




point estimators

comparison 1. Hy,; = (aLTL+2Z1Z)7! /A (d — DS™IF)
2. Hyap = +2%%,,.2)71 278, ). (d—DS™'F)

noise noise

3. Hyp =(2Z%2 1 7)7! zTs-1 ~ (d—-DS™'F)

noise noise

the choice between 2. and 3. depends on the level of prior knowledge
2. corresponds to moving the estimate towards the prior

3. corresponds to not trusting our prior belief on H: “X,. — 0”

when 3. is not well-defined (data not satisfying suff. cond.), we use 2. with

Gaussian smoothness priors: prior with encoded structural information

example: assumption of differentiability for H, E;:rlz'or x LTL
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point estimators

comparison 1. Hy,; = (aLTL+Z1Z)7! zt (d — DS™IF)
2. Hyap = (aLTL+2zT2 L 7)~1 7Ty 1 =~ (d—-DS™'F)

noise noise

3. Hyp, =(Z'% 1 7)71 ZTsx-1 ~ (d—-DS™'F)

noise noise

the choice between 2. and 3. depends on the level of prior knowledge
2. corresponds to moving the estimate towards the prior

3. corresponds to not trusting our prior belief on H: “X,. — 0”

when 3. is not well-defined (data not satisfying suff. cond.), we use 2. with

Gaussian smoothness priors: prior with encoded structural information

example: assumption of differentiability for H, E;rl,io,r x LTL




likelihood parameters

likelihood function: Gaussian PDF

e expected value: ¢y = 0, (personal communication of Dr. Brummer, CHOA)

e correlation: exponential decay w.r.t. the square of the mutual distance

1
Enoiselij = [Xelij = exp {_Z_ZHXZm — XTH%}, | = reference distance




numerical results

discretization: compatible finite element (FE) spaces for velocity and pressure P1bubble-P1

C+H+ finite element solver 1ifeV finite element library, see www.lifev.org

I

5 = e

° . — e e
analytic solution: ) = [-0.5, 1.5] x [0, 2] Z;j%w:; ===
i (z,y) =1 — e cos(2my) | -

=y - [

= = ——F

ulp(z,y) = greXsin@my)

_ 1 _2X ;E H:—%;::;——:;:_;

pla,y) = 35 +C e

e ”j//.,ih\/\\\\\:\@“% -g___—_——::‘i

data: - generated adding to the analytic solution Gaussian noise

- located on grid nodes, i.e. discretization step A is s.t. A oc N 1.
with layers: {(z,y) | z € {0.5, 0, 0,5, 1.5}, y €10, 2] }.

- OR sparse on I';,, and in 2



http://www.lifev.org/

point estimators — numerical results

tests: compare MAP and ML with deterministic estimates

data: e on I';, not satisfying conditions for optimality

e on internal slices parallel to I';,

Fwall Fout

W
T




point estimators — numerical results

tests: compare MAP and ML with deterministic estimates

data: e on I';, not satisfying conditions for optimality

e on internal slices parallel to I';,

Fwall Fout

W
T

indexes of accuracy:

_ n
o Fy = % > Ey,, for n = 30 noise realizations

E E
o« % gain =y — 1 2omar oy Buar

EU,det EU,det




point estimators — numerical results

test case A

e linearized formulation
o H,y.; versus Hyjap
e three different values of o

e interpolation not active

SNR o Ev,det | Eu,map Y
20 0.5 0.0665 0.0530 24%
20 0.05 | 0.0666 0.0550 17%
20 0.005 | 0.0706 0.0579 18%
10 0.5 0.1272 0.0946 26%
10 0.05 | 0.1514 0.1032 32%
10 0.005 | 0.1256 0.1059 28%

it(Hyap) < 1.3 it(Hget), (due to the presence of X

-1
noise

)




point estimators — numerical results

test case A

e linearized formulation
o H,y.; versus Hyjap
e three different values of o

e interpolation not active

test case B

e linearized formulation
o Hg.: versus Hsy,
o =20

e interpolation active

SNR a Evu,det | Eu,map | v
20 0.5 0.0665 0.0530 24%
20 0.05 | 0.0666 0.0550 17%
20 0.005 | 0.0706 0.0579 18%
10 0.5 0.1272 0.0946 26%
10 0.05 0.1514 0.1032 32%
10 0.005 | 0.1256 0.1059 28%

it(Hprap) < 1.3 it(Hget), (due to the presence of X

-1
noise)

SNR EU,det EU,ML (mod) Y
20 0.0709 0.0552 22%
10 0.1518 0.1256 17%

it(Hprr) o< 1.5 it(Hget), (due to the presence of X

-1
noise)




point estimators — numerical results

test case C

e nonlinear formulation SNR | Eudet | Eumap y

o H,., versus Huip 20 | 0.0822 | 0.07371 | 10%

10 0.1394 0.1041 25%

e o = 0.5 (see linearized case)

e interpolation not active




point estimators — numerical results

test case C

e nonlinear formulation SNR | Fuget | EU.map ~y

o H,., versus Huip 20 | 0.0822 | 0.07371 | 10%

10 0.1394 0.1041 25%

e o = 0.5 (see linearized case)

e interpolation not active

test case D

e nonlinear formulation o o

SNR | Eu,det | Fu,mL Y
® Hger versus Hyr, 20 | 0.0855 | 0.0579 | 6%
10 0.1675 | 0.1363 | 18%

e o = 0 (see linearized case)

e interpolation active




point estimators — numerical results

test case E

e axisymmetric formulation

SNR | Evget | Eumap y
® Haer versus Hyap 20 | 0.0396 | 0.0308 | 22%
o o —10-7 10 | 0.1423 | 0.0978 | 31%

e interpolation active




spread estimators — mathematical background

the multivariate normal distribution

probability density function of a random vector X ~ N (u, X):

f(X) — ! e:z:p{—(x— M)Tz_l(x_ l’l’)} Vi € (—OO, 00)7 L= 17 a3 d

/(21 4det(2)

p € RY: expected value, ¥ € R%%: s.p.d. covariance matrix.




spread estimators — mathematical background

the multivariate normal distribution

probability density function of a random vector X ~ N (u, ):

f(X) — ! e:z:p{—(x— M)Tz_l(x_ H)} Vi € (_007 00)7 L= 17 a3 d

/(21 4det(2)

p € RY: expected value, ¥ € R%%: s.p.d. covariance matrix.

contour lines of constant density c are ellipsoids generated by (x — pu)TX "1 (x — u) = 2




2D example i, © =1, 2, are e-values of X

X max

contour line of value ¢




spread estimators — mathematical background

properties: P1 Affine transformations of X are normally distributed.

P2 All subsets of the components of X have normal distribution.

P3 o (X— )" 1(X — p) is distributed as x?
where x% denotes the chi-squared distribution with d DOFs

e The NV (u, X) distribution assigns probability (1 — «) to the ellipsoid
{x: (x—p)" S (x— p) < xglo)}




2D example probability for X to be inside the shaded region is 1 — «

Ai, 1 =1, 2, are e-values of X

................................................................ | 2
V Amin X3 () \/ Amaz X5 ()

contour line of value x3(a) X,




spread estimators - velocity

goal: quantify how likely velocity and flow related variables are inside an interval of

(critical, significant) values = predict vessel dilatation




spread estimators - velocity

goal: quantify how likely velocity and flow related variables are inside an interval of

(critical, significant) values = predict vessel dilatation

velocity distribution

e deterministic model: affine transformation V.= S™1R! M;,H + S™1F

U=ES'RIM;,,H+S'F)=TH+ES™'F

e velocity distribution: U ~ N (U, Xp)
e expectation value U = TH st + ES™!'F

e correlation matrix: Xy = TZpostTT




spread estimators - velocity

goal: quantify how likely velocity and flow related variables are inside an interval of

(critical, significant) values = predict vessel dilatation

velocity distribution

e deterministic model: affine transformation V.= S™1R! M;,H + S™1F

U=ES'RIM;,,H+S'F)=TH+ES™'F

e velocity distribution: U ~ N (U, Xp)
e expectation value U = TH st + ES™!'F

e correlation matrix: Xy = TZpostTT

velocity confidence regions
horizontal and vertical velocity in the i-th DOF, [U; U, n, /2]T c R?:

subset of the components of U = 2D Gaussian random vector

= we can draw credibility regions




velocity confidence region 1 — a credibility region for U on the i-th DOF

Ai, =1, 2, are e-values of Xy,

v/ Amin X5 (oz) \/ Amaz X3 ()

contour line of value x3(a) U.
1
-




spread estimators — numerical results

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean

in a 60% confidence region: vAmaz

(U; —U)TS5L(U; = Uj) < x3(40%) = 1,

e .
—
e ——
e R e —
e s e —— L
= = — =
= | = e
=t ——— e ——
e — e —
e B e T e
[ .~ B -
o e e
B M S O i e e S s S
—_—
D)
S VRS oi el R
e e = ==
e e ey et
IR e
e — e
s et S E—— — ——
- e
e ——— T
[— I S S M " S
B e I e
e o e e — I

L




spread estimators — numerical results

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean

in a 60% confidence region: vAmaz

(U; —U)TSH(U; —Uy) < x3(40%) = 1,

sd
E098

~0.08

~0.06

0.04

0.02

L

T

M

T g

- "’:/{xh»h\/\\\\\:;-h

input noise: std = 0.1467

output noise: max std = 0.098



spread estimators — numerical results

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean

in a 60% confidence region: vAmaz

(U; —U)TSH(U; —Uy) < x3(40%) = 1,

sd
E098

~0.08

~0.06

0.04

0.02

L

T

M

T g

- "’:/{xh»h\/\\\\\:;-h

input noise: std = 0.1467

output noise: max std = 0.098



spread estimators — numerical results
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spread estimators — numerical results

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean

in a 60% confidence region: vAmaz

(U; —U)TSH(U; —Uy) < x3(40%) = 1,

sd
E098

~0.08

~0.06

0.04

0.02
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input noise: std = 0.1467

output noise: max std = 0.098



spread estimators — numerical results
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spread estimators — numerical results

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean

in a 60% confidence region: vAmaz
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spread estimators — numerical results

test case: axisymmetric case, cylindrical square domain, SNR = 20

map of the maximum deviation from the mean

in a 60% confidence region: vAmaz
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spread estimators — numerical results

test case: axisymmetric case, cylindrical square domain, SNR = 20

map of the maximum deviation from the mean
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towards real geometries - carotid

SNR| n | Ey det | Eymr | 2l
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towards real geometries - carotid
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spread estimators — the wall shear stress (WSS)

WSS distribution

e deterministic model: linear transformation WSS =T,U

= WSS ~ N(WSS, Swss)
T, maps the discretized velocity into the discretized WSS

e expectation value WSS = T, U, covariance ¥, = T, Xy TE




spread estimators — the wall shear stress (WSS)

WSS distribution

e deterministic model: linear transformation WSS =T,U

= WSS ~ N(WSS, Swss)
T, maps the discretized velocity into the discretized WSS

e expectation value WSS = T, U, covariance ¥, = T, Xy TE

WSS confidence regions

horizontal and vertical WSS in the i-th DOF, [WSS; WSS, v, 2]' € R%:

subset of the components of WSS = 2D Gaussian random vector

= we can draw credibility regions




spread estimators — the wall shear stress (WSS)
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spread estimators — the wall shear stress (WSS)

map of the maximum deviation from the mean

in a 60% confidence region: vAmaz

(U; —Uj)TS55(U; = Uj) < x3(40%) = 1,
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4. future work



real data

e perform simulations using measures from postprocessing of MRIs

e use 3D (real geometries)




improve computational performance

e implement more efficient preconditioning techniques
e use different optimization techniques for nonlinear problems (Newton-like methods)
e combine the formulation with model reduction methods

e move to parallel implementation
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