A STATISTICAL APPROACH TO DATA ASSIMILATION FOR HEMODYNAMICS

Marta D'Elia

Joint work with A. Veneziani

Mathematics & Computer Science Department, Emory University, Atlanta

EPSRC Workshop: Topics In Control, November 30th 2011

why data assimilation?

- 1. scientific computing (SC) has an increasing role in engineering, science and society → reliability of numerical results is a crucial issue for
 - investigation/ranking of methods
 - ullet assessing the **impact** of numerical simulations

precipitation simulation

why data assimilation?

- 1. scientific computing (SC) has an increasing role in engineering, science and society → reliability of numerical results is a crucial issue for
 - investigation/ranking of methods
 - ullet assessing the **impact** of numerical simulations

precipitation simulation

2. many application fields experience a tremendous increment of the amount of available data

why data assimilation?

- 1. scientific computing (SC) has an increasing role in engineering, science and society → reliability of numerical results is a crucial issue for
 - investigation/ranking of methods
 - assessing the **impact** of numerical simulations

precipitation simulation

2. many application fields experience a tremendous increment of the amount of available data

- 3. cardiovascular mathematics is an emerging field in SC
 - development of **numerical models**
 - development of diagnostic devices
 - → decision supporting in clinical practice
 - → reliability is mandatory

how to use measures?

- validation: new **benchmark** for numerical simulations
- merging into numerical simulations to obtain reliable results

how to use measures?

- validation: new **benchmark** for numerical simulations
- merging into numerical simulations to obtain reliable results

data assimilation

ensemble of methods for merging sparse and noisy information into a numerical model based on the approximation of physical and constitutive laws

goal: link together heterogeneous (in nature, quality, and density) sources of information in order to retrieve a consistent state for phenomena of interest

an application

• CHOA project – investigation of the bicuspid aortic valve, a congenital hearth disease

an application

• CHOA project – investigation of the bicuspid aortic valve, a congenital hearth disease

 main symptom of development of serious complications is the dilatation of the aorta – clinical methods fail to guide decisions for early intervention

an application

• CHOA project – investigation of the bicuspid aortic valve, a congenital hearth disease

 main symptom of development of serious complications is the dilatation of the aorta – clinical methods fail to guide decisions for early intervention

using 4D MRI, determine and analyze the blood flow
 patterns in the aortic root – flow reconstruction by image
 processing is not accurate enough

Dr. M.Brummer Emory CHOA

outline

- 1. deterministic formulation of the continuous and discrete problem
 - optimality result and alternative regularization
 - consistency and validation results

- **2. statistical formulation** of the discrete problem
 - Bayesian inversion: point and spread estimators
 - comparison with deterministic estimates
 - confidence intervals for velocity and wall shear stress

3. future work

1. deterministic formulation [1,2,3]

^[1] M. DE, A. Veneziani, *Methods for assimilating blood velocity measures in hemodynamics simulations: Preliminary results*, Procedia Computer Science, **2010**

^[2] M. DE et al., A variational data assimilation procedure for the incompressible Navier-Stokes Equations in hemodynamics, to appear on Journal of Scientific Computing, 2011.

^[3] M. DE et al., *Applications of variational data assimilation in computational hemodynamics*, Chapter in Modeling of Physiological Flows, Springer, **2011.**

vessel: domain $\Omega \subset \mathbb{R}^2$, \mathbb{R}^3 , with boundaries Γ_{in} , Γ_{out} , Γ_{wall}

variables: velocity ${\bf u}$ and pressure p

data: $\mathbf{d} \in \mathbb{R}^{N_s}$, vector of measured velocities

vessel: domain $\Omega \subset \mathbb{R}^2$, \mathbb{R}^3 , with boundaries Γ_{in} , Γ_{out} , Γ_{wall}

variables: velocity ${\bf u}$ and pressure p

data: $\mathbf{d} \in \mathbb{R}^{N_s}$, vector of measured velocities

vessel: domain $\Omega \subset \mathbb{R}^2$, \mathbb{R}^3 , with boundaries Γ_{in} , Γ_{out} , Γ_{wall}

variables: velocity u and pressure p

data: $\mathbf{d} \in \mathbb{R}^{N_s}$, vector of measured velocities

$$\begin{cases}
-\nu \nabla \cdot (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}}) + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p = \mathbf{s} & \text{in } \Omega, \\
\nabla \cdot \mathbf{u} = 0 & \text{in } \Omega, \\
\mathbf{u} = \mathbf{0} & \text{on } \Gamma_{u} \\
-\nu (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})\mathbf{n} + p\mathbf{n} = \mathbf{h} & \text{on } \Gamma_{in} \\
-\nu (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})\mathbf{n} + p\mathbf{n} = \mathbf{g} & \text{on } \Gamma_{o}
\end{cases}$$

$$\nabla \cdot \mathbf{u} = 0 \qquad \qquad \text{in } \Omega$$

$$\mathbf{u} = \mathbf{0}$$
 on Γ_{wall} ,

$$-\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}}\right)\mathbf{n} + p\mathbf{n} = \mathbf{h} \qquad \text{on } \Gamma_{in},$$

$$\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}} \right) \mathbf{n} + p \mathbf{n} = \mathbf{g}$$
 on Γ_{out} .

vessel: domain $\Omega \subset \mathbb{R}^2$, \mathbb{R}^3 , with boundaries Γ_{in} , Γ_{out} , Γ_{wall}

variables: velocity u and pressure p

data: $\mathbf{d} \in \mathbb{R}^{N_s}$, vector of measured velocities

$$\begin{aligned} & \textbf{state equations:} & \left\{ \begin{array}{l} -\nu \ \nabla \cdot (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}}) + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{s} & \text{in } \ \Omega, \\ & \nabla \cdot \mathbf{u} = 0 & \text{in } \ \Omega, \\ & \mathbf{u} = \mathbf{0} & \text{on } \ \Gamma_{wall}, \\ & -\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}} \right) \mathbf{n} + p \mathbf{n} = \mathbf{h} & \text{on } \ \Gamma_{in}, \\ & -\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}} \right) \mathbf{n} + p \mathbf{n} = \mathbf{g} & \text{on } \ \Gamma_{out}. \end{aligned} \right.$$

$$-\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}}\right)\mathbf{n} + p\mathbf{n} = \mathbf{h} \qquad \text{on } \Gamma_{in},$$

$$-\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}}\right)\mathbf{n} + p\mathbf{n} = \mathbf{g} \qquad \text{on } \Gamma_{out}.$$

assimilation:
$$\min_{\mathbf{h}} \mathcal{J}(\mathbf{u}, \mathbf{h}) = dist(f(\mathbf{u}), \mathbf{d}) + \mathcal{R}(\mathbf{h})$$

s.t. state equations

discretize using the finite element (FE) method [1]

$$\min_{\mathbf{H}} \mathcal{J}(\mathbf{V}, \mathbf{H}) = \frac{1}{2} \|\mathbf{D}\mathbf{V} - \mathbf{d}\|_{2}^{2} + \frac{\alpha}{2} \|\mathbf{L}\mathbf{H}\|_{2}^{2}$$

s.t. $\mathbf{S}\mathbf{V} = \mathbf{R}_{in}^{\mathrm{T}} \mathbf{M}_{in} \mathbf{H} + \mathbf{F}.$

$$(\mathbf{u} \cdot \nabla)\mathbf{u} \longrightarrow (\boldsymbol{\beta} \cdot \nabla)\mathbf{u}$$

using the finite element (FE) method [1]

$$\min_{\mathbf{H}} \mathcal{J}(\mathbf{V}, \mathbf{H}) = \frac{1}{2} \|\mathbf{D}\mathbf{V} - \mathbf{d}\|_{2}^{2} + \frac{\alpha}{2} \|\mathbf{L}\mathbf{H}\|_{2}^{2}$$

s.t. $\mathbf{S}\mathbf{V} = \mathbf{R}_{in}^{\mathrm{T}} \mathbf{M}_{in} \mathbf{H} + \mathbf{F}.$

notation • $\mathbf{V} = \begin{bmatrix} \mathbf{U} \\ \mathbf{P} \end{bmatrix}$, \mathbf{U} : discretized velocity, \mathbf{P} : discretized pressure

•
$$S = \begin{bmatrix} C + A & B^T \\ B & O \end{bmatrix}$$
,

- C, A, B: discrete diffusion, advection and divergence operators
- R_{in} : restriction matrix, M_{in} : boundary mass matrix
- Q: selection matrix, s.t. $[QU]_i$ = solution evaluated at the data sites D = [Q O], extension of Q to pressure degrees of freedom
- L: discretized differential operator, here discrete gradient

optimize

solving the KKT system induced by the Lagrangian with the Reduced Hessian method:

$$\mathcal{L}(\mathbf{V}, \mathbf{H}, \boldsymbol{\Lambda}) = \frac{1}{2} \|\mathbf{D}\mathbf{V} - \mathbf{d}\|_{2}^{2} + \frac{\alpha}{2} \|\mathbf{L}\mathbf{H}\|_{2}^{2} + \boldsymbol{\Lambda}^{\mathrm{T}}(\mathbf{S}\mathbf{V} - \mathbf{R}_{in}^{\mathrm{T}}\mathbf{M}_{in}\mathbf{H} - \mathbf{F})$$

optimize

solving the KKT system induced by the Lagrangian with the Reduced Hessian method:

$$\mathcal{L}(\mathbf{V}, \mathbf{H}, \boldsymbol{\Lambda}) = \frac{1}{2} \|\mathbf{D}\mathbf{V} - \mathbf{d}\|_{2}^{2} + \frac{\alpha}{2} \|\mathbf{L}\mathbf{H}\|_{2}^{2} + \boldsymbol{\Lambda}^{\mathrm{T}}(\mathbf{S}\mathbf{V} - \mathbf{R}_{in}^{\mathrm{T}}\mathbf{M}_{in}\mathbf{H} - \mathbf{F})$$

adjoint equation: $D^{T}(DV - d) + S^{T}\Lambda = 0$

residual equation: $\alpha \mathbf{L}^{\mathrm{T}} \mathbf{L} \mathbf{H} - \mathbf{M}_{in}^{\mathrm{T}} \mathbf{R}_{in} \mathbf{\Lambda} = \mathbf{0}$

state equation: $SV - R_{in}^T M_{in} H - F = 0$.

reduced system: $WH = Z^{T}(d - DS^{-1}F)$

reduced Hessian: $W = Z^TZ + \alpha L^TL$

sensitivity matrix: $Z = DS^{-1}R_{in}^{T}M_{in}$

optimality result

- sufficient conditions for an equality PDE constrained opt.pb: positive definite Hessian
- the regularized formulation always satisfies necessary and sufficient conditions
- find sufficient conditions for the selection matrix when no regularization is used

optimality result

- sufficient conditions for an equality PDE constrained opt.pb: positive definite Hessian
- the regularized formulation always satisfies necessary and sufficient conditions
- find sufficient conditions for the selection matrix when no regularization is used

Proposition sufficient conditions for the existence of a unique minimizer are:

1.
$$\alpha > 0$$
, or

2.
$$\alpha = 0$$
 and $Null(D) \cap Range(S^{-1}R_{in}^TM_{in}) = \{0\}$

this condition is satisfied by choosing D such that its restriction to rows corresponding to sites on Γ_{in} has rank N_{in} (degrees of freedom of U on Γ_{in})

optimality result

- sufficient conditions for an equality PDE constrained opt.pb: positive definite Hessian
- the regularized formulation always satisfies necessary and sufficient conditions
- find sufficient conditions for the selection matrix when no regularization is used

Proposition sufficient conditions for the existence of a unique minimizer are:

1.
$$\alpha > 0$$
, or

2.
$$\alpha = 0$$
 and $Null(D) \cap Range(S^{-1}R_{in}^TM_{in}) = \{0\}$

this condition is satisfied by choosing D such that its restriction to rows corresponding to sites on Γ_{in} has rank N_{in} (degrees of freedom of U on Γ_{in})

left: sites on grid nodes

right: sparse sites on the inflow boundary

(using P1bubble-P1 FE pair)

interpolation

- given sparse measurements on inflow not satisfying sufficient conditions
- recover those conditions with approximated data on grid nodes on **inflow**

interpolation

- given sparse measurements on inflow not satisfying sufficient conditions
- recover those conditions with approximated data on grid nodes on **inflow**approximation: piecewise linear **interpolation** of each velocity component $\mathbf{d}_{i} = \mathbf{\Pi} \mathbf{d}(\mathbf{x}_{i})$ where $\mathbf{\Pi} \mathbf{d}$ is the interpolating function recovered from k values

interpolation

- given sparse measurements on inflow not satisfying sufficient conditions
- recover those conditions with approximated data on grid nodes on **inflow**approximation: piecewise linear **interpolation** of each velocity component $\mathbf{d}_j = \mathbf{\Pi} \mathbf{d}(\mathbf{x}_j)$ where $\mathbf{\Pi} \mathbf{d}$ is the interpolating function recovered from k values

ullet black data: ${f d}$

• blue data: $\widetilde{\mathbf{d}}$

- original data $\mathbf{d} = \mathbf{u}_{ex} + \boldsymbol{\varepsilon}$
- interpolated data $\tilde{\mathbf{d}} = \Pi \mathbf{d} = \mathbf{u}_{ex} + \boldsymbol{\eta}$ where Π is the interpolation matrix

nonlinear formulation

non-linear constraint Navier-Stokes momentum equation, $-\nu \nabla \cdot (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}}) + (\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p$ algorithm 1. iterative procedure exploiting the Picard (or Newton) method:

given \mathbf{V}_k , a guess for the velocity at step k+1, solve

$$\begin{aligned} & \min_{\mathbf{H}_{k+1}} \ \frac{1}{2} \| \mathbf{D} \mathbf{V}_{k+1} (\mathbf{H}_{k+1}) - \mathbf{d} \|_2^2 + \frac{\alpha}{2} \| \mathbf{L} \mathbf{H}_{k+1} \|_2^2 \\ & \text{s.t.} \quad \mathbf{S}_k \mathbf{V}_{k+1} = \mathbf{R}_{in}^{\mathrm{T}} \mathbf{M}_{in} \mathbf{H}_{k+1} + \mathbf{F} \end{aligned} \qquad \text{where } \mathbf{S}_k = \begin{bmatrix} \mathbf{C} + \mathbf{A}_k & \mathbf{B}^{\mathrm{T}} \\ \mathbf{B} & \mathbf{O} \end{bmatrix}$$

up to fulfillment of a convergence criterion

• the deterministic procedure is an effective and robust noise filtering method

• the deterministic procedure is an effective and robust noise filtering method

• the discretization error decreases as more data are available: it is proportional $N_s^{-0.5}$.

• the sample mean of the computed velocity over N_r noise realizations converges to the noise-free solution with rate $N_r^{-0.5}$

• the discretization error is proportional to the amount of noise

domain: rectangular domain representing a slice of a cylinder

data generation: analytical solution with additional noise, data on the inflow boundary do not satisfy sufficient conditions — piece-wise linear interpolation

data generation: analytical solution with additional noise, data on the inflow boundary do not satisfy sufficient conditions — piece-wise linear interpolation

2. statistical formulation [4]

statistical inversion

goal: estimate the reliability of results → quantification of the uncertainty

statistical inversion

goal: estimate the reliability of results → quantification of the uncertainty

idea: we predict stochastic features of the variables of interest the prediction of the uncertainty is based on the knowledge of

- the measurement process
- deterministic models available

statistical inversion

goal: estimate the reliability of results \rightarrow quantification of the uncertainty

idea: we predict stochastic features of the variables of interest the prediction of the uncertainty is based on the **knowledge** of

- the measurement process
- deterministic models available

main features:

- all discretized variables are treated as random the randomness is in the degree of information of their realizations such degree resides in the probability distributions
- the entities involved are probability density functions (PDFs)
- the method delivers a **distribution**

(deterministic methods produce a **single** estimate)

statistical inversion – notation

random variables (RV):

- H: RV for normal stress of the fluid at the inflow section
- M: RV for the measures
- \bullet ε : RV for the noise perturbing the measurements

statistical inversion – notation

random variables (RV):

- H: RV for normal stress of the fluid at the inflow section
- M: RV for the measures
- ε : RV for the noise perturbing the measurements

probability density functions (PDFs):

- $\pi_{pr}(H)$: PDF of **H**, the *prior*
- $\pi_{noise}(\varepsilon)$: PDF of ε
- $\pi(M|H)$: PDF of M conditioned on a realization of H; the *likelihood*
- $\pi_{post}(H) = \pi(H|M)$: PDF of **H** conditioned on a realization of **M**, the *posterior*

statistical inversion – notation

statistical properties of **M** are determined by the distribution of **H** and ε

$$ZH + \varepsilon = M$$
 (additive noise model)

- linear (or linearized) **deterministic** model that relates **H** and **M**
- $Z = DS^{-1}R_{in}M_{in}$ is the "Neumann-to-Dirichlet" map

statistical inversion – notation

statistical properties of M are determined by the distribution of H and ε

$$\mathbf{ZH} + \boldsymbol{\varepsilon} = \mathbf{M}$$
 (additive noise model)

- linear (or linearized) **deterministic** model that relates **H** and **M**
- $Z = DS^{-1}R_{in}M_{in}$ is the "Neumann-to-Dirichlet" map

assumption: independence of **H** and ε

consequence: M|H is distributed like ε with density function translated by ZH

$$\Rightarrow \pi(M|H) = \pi_{noise}(M - ZH)$$

objective: estimate the posterior exploiting the *Bayes theorem*

$$\pi_{post}(H) = \frac{\pi(M|H)\pi_{pr}(H)}{\pi(M)}$$

we are interested in $\mathbf{H} \Rightarrow$ the denominator does not affect the solution

when $M = \mathbf{d}$ is a specific realization of \mathbf{M} , $\underline{\pi_{post}(H)} \propto \pi_{noise}(\mathbf{d} - \mathbf{Z}H)\pi_{pr}(H)$

Gaussian assumption: $H \sim \mathcal{N}(H_0, \Sigma_{pr}), \ prior$

$$\varepsilon \sim \mathcal{N}(\varepsilon_0, \Sigma_{noise}), likelihood$$

$$H|M \sim \mathcal{N}(H_{post}, \Sigma_{post}), posterior$$

$$H_{post} = (\Sigma_{pr}^{-1} + \mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} \mathbf{Z})^{-1} (\mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} (\mathbf{d} - \varepsilon_0) + \Sigma_{pr}^{-1} H_0)$$

$$\Sigma_{post} = (\Sigma_{pr}^{-1} + \mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} \mathbf{Z})^{-1}$$

using this result one can calculate point or interval estimates

using this result one can calculate point or interval estimates

maximum a posteriori (MAP) estimator:

the most likely value of **H** given **d**: $H_{MAP} = \arg \max_{H} \pi_{post}(H)$

Gaussian assumption $\Rightarrow H_{MAP} = H_{post}$: expected value of the posterior

using this result one can calculate point or interval estimates

maximum a posteriori (MAP) estimator:

the most likely value of **H** given **d**: $H_{MAP} = \arg \max_{H} \pi_{post}(H)$

Gaussian assumption $\Rightarrow H_{MAP} = H_{post}$: expected value of the posterior

maximum likelihood (ML) estimator:

value of **H** which is most likely to produce the data **d**: $H_{ML} = \arg \max_{H} \pi(M|H)$

2.
$$H_{MAP} = (\Sigma_{pr}^{-1} + \mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} \mathbf{Z})^{-1} \quad \mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} \quad (\mathbf{d} - \mathbf{D}\mathbf{S}^{-1}\mathbf{F})$$

3.
$$H_{ML} = (\mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}_{noise}^{-1} \mathbf{Z})^{-1} \qquad \mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}_{noise}^{-1} \quad (\mathbf{d} - \mathbf{D}\mathbf{S}^{-1}\mathbf{F})$$

the choice between 2. and 3. depends on the level of prior knowledge

- 2. corresponds to moving the estimate towards the prior
- **3.** corresponds to not trusting our prior belief on **H**: " $\Sigma_{pr} \to 0$ "

comparison 1.
$$H_{det} = (\alpha L^{T}L + Z^{T}Z)^{-1}$$
 Z^{T} $(\mathbf{d} - DS^{-1}\mathbf{F})$

2.
$$H_{MAP} = (\Sigma_{pr}^{-1} + \mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} \mathbf{Z})^{-1} \quad \mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} \quad (\mathbf{d} - \mathbf{D}\mathbf{S}^{-1}\mathbf{F})$$

3.
$$H_{ML} = (\mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} \mathbf{Z})^{-1}$$
 $\mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1}$ $(\mathbf{d} - \mathbf{D}\mathbf{S}^{-1}\mathbf{F})$

the choice between 2. and 3. depends on the level of prior knowledge

- 2. corresponds to moving the estimate towards the prior
- **3.** corresponds to not trusting our prior belief on **H**: " $\Sigma_{pr} \to 0$ "

when 3. is not well-defined (data not satisfying suff. cond.), we use 2. with

Gaussian smoothness priors: prior with encoded structural information

example: assumption of differentiability for \mathbf{H} , $\Sigma_{prior}^{-1} \propto \mathbf{L}^{\mathrm{T}} \mathbf{L}$

comparison 1.
$$H_{det} = (\alpha L^{T}L + Z^{T}Z)^{-1}$$
 Z^{T} $(\mathbf{d} - DS^{-1}\mathbf{F})$

2.
$$H_{MAP} = (\alpha \mathbf{L}^{\mathrm{T}} \mathbf{L} + \mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} \mathbf{Z})^{-1} \quad \mathbf{Z}^{\mathrm{T}} \Sigma_{noise}^{-1} \quad (\mathbf{d} - \mathbf{D}\mathbf{S}^{-1} \mathbf{F})$$

3.
$$H_{ML} = (\mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}_{noise}^{-1} \mathbf{Z})^{-1}$$
 $\mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}_{noise}^{-1}$ $(\mathbf{d} - \mathbf{D}\mathbf{S}^{-1}\mathbf{F})$

the choice between 2. and 3. depends on the level of prior knowledge

- 2. corresponds to moving the estimate towards the prior
- **3.** corresponds to not trusting our prior belief on **H**: " $\Sigma_{pr} \to 0$ "

when 3. is not well-defined (data not satisfying suff. cond.), we use 2. with

Gaussian smoothness priors: prior with encoded structural information

example: assumption of differentiability for \mathbf{H} , $\Sigma_{prior}^{-1} \propto \mathbf{L}^{\mathrm{T}} \mathbf{L}$

comparison 1.
$$H_{det} = (\alpha L^{T}L + Z^{T}Z)^{-1}$$
 Z^{T} $(\mathbf{d} - DS^{-1}\mathbf{F})$

2.
$$H_{MAP} = (\alpha L^{T}L + Z^{T} \Sigma_{noise}^{-1} Z)^{-1} Z^{T} \Sigma_{noise}^{-1} (\mathbf{d} - DS^{-1}\mathbf{F})$$

3.
$$H_{ML} = (\mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}_{noise}^{-1} \mathbf{Z})^{-1}$$
 $\mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}_{noise}^{-1}$ $(\mathbf{d} - \mathbf{D}\mathbf{S}^{-1}\mathbf{F})$

the choice between 2. and 3. depends on the level of prior knowledge

- 2. corresponds to moving the estimate towards the prior
- **3.** corresponds to not trusting our prior belief on **H**: " $\Sigma_{pr} \to 0$ "

when 3. is not well-defined (data not satisfying suff. cond.), we use 2. with

Gaussian smoothness priors: prior with encoded structural information

example: assumption of differentiability for \mathbf{H} , $\Sigma_{prior}^{-1} \propto \mathbf{L}^{\mathrm{T}} \mathbf{L}$

likelihood parameters

likelihood function: Gaussian PDF

- expected value: $\varepsilon_0 = \mathbf{0}$, (personal communication of Dr. Brummer, CHOA)
- correlation: exponential decay w.r.t. the square of the mutual distance

$$[\Sigma_{noise}]_{ij} = [\Sigma_{\varepsilon}]_{ij} = exp\left\{-\frac{1}{l^2}\|\mathbf{x}_i^m - \mathbf{x}_j^m\|_2^2\right\}, \qquad l = \text{reference distance}$$

numerical results

discretization: compatible finite element (FE) spaces for velocity and pressure P1bubble-P1 C++ finite element solver lifeV finite element library, see www.lifev.org

analytic solution:
$$\Omega = [-0.5, 1.5] \times [0, 2]$$

$$[\mathbf{u}]_1(x,y) = 1 - e^{\lambda x} \cos(2\pi y)$$

$$[\mathbf{u}]_2(x,y) = \frac{\lambda}{2\pi} e^{\lambda x} \sin(2\pi y)$$

$$p(x,y) = \frac{1}{2}e^{2\lambda x} + C$$

- generated adding to the analytic solution Gaussian noise

- located on grid nodes, i.e. discretization step Δ is s.t. $\Delta \propto N_s^{-1}$. with layers: $\{(x,y) \mid x \in \{0.5, 0, 0, 5, 1.5\}, y \in [0, 2] \}$.
- OR sparse on Γ_{in} and in Ω

tests: compare MAP and ML with deterministic estimates

data: • on Γ_{in} not satisfying conditions for optimality

• on internal slices parallel to Γ_{in}

tests: compare MAP and ML with deterministic estimates

data: • on Γ_{in} not satisfying conditions for optimality

• on internal slices parallel to Γ_{in}

indexes of accuracy:

• $\bar{E}_{\mathbf{U}} = \frac{1}{n} \sum_{i=1}^{n} E_{\mathbf{U},i}$, for n = 30 noise realizations

• % gain =
$$\gamma = 1 - \frac{\overline{E}_{\mathbf{U},MAP}}{\overline{E}_{\mathbf{U},det}}$$
 or $1 - \frac{\overline{E}_{\mathbf{U},ML}}{\overline{E}_{\mathbf{U},det}}$

test case A

- linearized formulation
- H_{det} versus H_{MAP}
- three different values of α
- interpolation not active

SNR	α	$\overline{E}_{\mathbf{U},det}$	$\overline{E}_{\mathbf{U},MAP}$	γ
20	0.5	0.0665	0.0530	24%
20	0.05	0.0666	0.0550	17%
20	0.005	0.0706	0.0579	18%
10	0.5	0.1272	0.0946	26%
10	0.05	0.1514	0.1032	32%
10	0.005	0.1256	0.1059	28%

 $it(H_{MAP}) \propto 1.3 \; it(H_{det}), \; (due \; to \; the \; presence \; of \; \Sigma_{noise}^{-1})$

test case A

- linearized formulation
- H_{det} versus H_{MAP}
- three different values of α
- interpolation not active

SNR	α	$\overline{E}_{\mathbf{U},det}$	$\overline{E}_{\mathbf{U},MAP}$	γ
20	0.5	0.0665	0.0530	24%
20	0.05	0.0666	0.0550	17%
20	0.005	0.0706	0.0579	18%
10	0.5	0.1272	0.0946	26%
10	0.05	0.1514	0.1032	32%
10	0.005	0.1256	0.1059	28%

 $it(H_{MAP}) \propto 1.3 \ it(H_{det})$, (due to the presence of Σ_{noise}^{-1})

test case B

- linearized formulation
- H_{det} versus H_{ML}
- $\bullet \ \alpha = 0$
- interpolation active

SNR	$\overline{E}_{\mathbf{U},det}$	$\overline{E}_{\mathbf{U},ML}\left(mod ight)$	γ
20	0.0709	0.0552	22%
10	0.1518	0.1256	17%

 $it(H_{ML}) \propto 1.5 \ it(H_{det})$, (due to the presence of Σ_{noise}^{-1})

test case C

- nonlinear formulation
- H_{det} versus H_{MAP}
- $\alpha = 0.5$ (see linearized case)
- interpolation not active

SNR	$\overline{E}_{\mathbf{U},det}$	$\overline{E}_{\mathbf{U},MAP}$	γ
20	0.0822	0.07371	10%
10	0.1394	0.1041	25%

test case C

- nonlinear formulation
- H_{det} versus H_{MAP}
- $\alpha = 0.5$ (see linearized case)
- interpolation not active

SNR	$\overline{E}_{\mathbf{U},det}$	$\overline{E}_{\mathbf{U},MAP}$	γ
20	0.0822	0.07371	10%
10	0.1394	0.1041	25%

test case D

- nonlinear formulation
- H_{det} versus H_{ML}
- $\alpha = 0$ (see linearized case)
- interpolation active

	SNR	$\overline{E}_{\mathbf{U},det}$	$\overline{E}_{\mathbf{U},ML}$	γ
	20	0.0855	0.0579	6%
-	10	0.1675	0.1363	18%

test case E

- ullet axisymmetric formulation
- H_{det} versus H_{MAP}
- $\alpha = 10^{-7}$
- ullet interpolation active

SNR	$\overline{E}_{\mathbf{U},det}$	$oxed{E}_{\mathbf{U},MAP}$	γ
20	0.0396	0.0308	22%
10	0.1423	0.0978	31%

spread estimators - mathematical background

the multivariate normal distribution

probability density function of a random vector $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \, \boldsymbol{\Sigma})$:

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d det(\Sigma)}} exp\left\{-(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\} \quad \forall \ x_i \in (-\infty, \infty), \ i = 1, ..., \ d$$

 $\boldsymbol{\mu} \in \mathbb{R}^d$: expected value, $\Sigma \in \mathbb{R}^{d,d}$: s.p.d. covariance matrix.

spread estimators - mathematical background

the multivariate normal distribution

probability density function of a random vector $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \, \boldsymbol{\Sigma})$:

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d det(\Sigma)}} exp\left\{-(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\} \quad \forall \ x_i \in (-\infty, \infty), \ i = 1, ..., \ d$$

 $\boldsymbol{\mu} \in \mathbb{R}^d$: expected value, $\Sigma \in \mathbb{R}^{d,d}$: s.p.d. covariance matrix.

contour lines of constant density c are ellipsoids generated by $(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) = c^2$

spread estimators - mathematical background

properties: P1 Affine transformations of X are normally distributed.

P2 All subsets of the components of **X** have normal distribution.

- **P3** $(\mathbf{X} \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1} (\mathbf{X} \boldsymbol{\mu})$ is distributed as χ_d^2 where χ_d^2 denotes the chi-squared distribution with d DOFs
 - The $\mathcal{N}(\boldsymbol{\mu}, \Sigma)$ distribution assigns probability (1α) to the ellipsoid $\{\mathbf{x}: (\mathbf{x} \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1} (\mathbf{x} \boldsymbol{\mu}) < \chi_d^2(\alpha)\}$

 λ_i , i = 1, 2, are e-values of Σ

spread estimators - velocity

goal: quantify how likely velocity and flow related variables are inside an interval of (critical, significant) values → predict vessel dilatation

spread estimators - velocity

goal: quantify how likely velocity and flow related variables are inside an interval of (critical, significant) values → predict vessel dilatation

velocity distribution

• <u>deterministic model</u>: affine transformation $\mathbf{V} = \mathbf{S}^{-1}\mathbf{R}_{in}^{\mathrm{T}}\mathbf{M}_{in}\mathbf{H} + \mathbf{S}^{-1}\mathbf{F}$

$$\mathbf{U} = \mathbf{E}(\mathbf{S}^{-1}\mathbf{R}_{in}^{\mathrm{T}}\mathbf{M}_{in}\mathbf{H} + \mathbf{S}^{-1}\mathbf{F}) = \mathbf{T}\mathbf{H} + \mathbf{E}\mathbf{S}^{-1}\mathbf{F}$$

- velocity distribution: $\mathbf{U} \sim \mathcal{N}(U, \Sigma_U)$
- expectation value $U = TH_{post} + ES^{-1}F$
- correlation matrix: $\Sigma_U = T\Sigma_{post}T^T$

spread estimators - velocity

goal: quantify how likely velocity and flow related variables are inside an interval of (critical, significant) values → predict vessel dilatation

velocity distribution

• deterministic model: affine transformation $\mathbf{V} = \mathbf{S}^{-1} \mathbf{R}_{in}^{\mathrm{T}} \mathbf{M}_{in} \mathbf{H} + \mathbf{S}^{-1} \mathbf{F}$

$$\mathbf{U} = \mathbf{E}(\mathbf{S}^{-1}\mathbf{R}_{in}^{\mathrm{T}}\mathbf{M}_{in}\mathbf{H} + \mathbf{S}^{-1}\mathbf{F}) = \mathbf{T}\mathbf{H} + \mathbf{E}\mathbf{S}^{-1}\mathbf{F}$$

- velocity distribution: $\mathbf{U} \sim \mathcal{N}(U, \Sigma_U)$
- expectation value $U = TH_{post} + ES^{-1}F$
- correlation matrix: $\Sigma_U = T\Sigma_{post}T^T$

velocity confidence regions

horizontal and vertical velocity in the *i*-th DOF, $[\mathbf{U}_i \ \mathbf{U}_{i+N_u/2}]^{\mathrm{T}} \in \mathbb{R}^2$: subset of the components of $\mathbf{U} \Rightarrow 2\mathbf{D}$ Gaussian random vector \Rightarrow we can draw credibility regions

 λ_i , i = 1, 2, are e-values of Σ_U , i

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$

input noise: std = 0.1467

output noise: $\max std = 0.098$

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$

input noise: std = 0.1467

output noise: $\max \text{ std} = 0.098$

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$

input noise: std = 0.1467

output noise: $\max std = 0.098$

test case: same analytic solution, square domain, SNR = 20

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$

input noise: std = 0.1467

output noise: max std = 0.098

test case: axisymmetric case, cylindrical square domain, SNR = 20

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$

test case: axisymmetric case, cylindrical square domain, SNR = 20

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_{j} - U_{j})^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_{j} - U_{j}) < \chi_{2}^{2} (40\%) \cong 1,$$
sd
0,1
0,2
0,3

input noise: std = 0.325, all over the domain

output noise: $\max std = 0.376$, in a restricted area

test case: axisymmetric case, cylindrical square domain, SNR = 20

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$
sd
0.1 0,2 0.3

input noise: std = 0.325, all over the domain

output noise: $\max \text{ std} = 0.376$, in a restricted area

test case: axisymmetric case, cylindrical square domain, SNR = 20

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$
sd
0.1 0.2 0.3

input noise: std = 0.325, all over the domain

output noise: $\max \text{ std} = 0.376$, in a restricted area

towards real geometries - carotid

SNR	$\mid n \mid$	$\overline{E}_{U,det}$	$\overline{E}_{U,ML}$	γ
20	20	0.05273	0.03617	31%

towards real geometries - carotid

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$

WSS distribution

- deterministic model: linear transformation $\mathbf{WSS} = \mathbf{T}_w \mathbf{U}$
- \Rightarrow **WSS** $\sim \mathcal{N}(WSS, \Sigma_{WSS})$

 T_w maps the discretized velocity into the discretized WSS

• expectation value $WSS = T_wU$, covariance $\Sigma_w = T_w\Sigma_UT_w^T$

WSS distribution

- deterministic model: linear transformation $\mathbf{WSS} = \mathbf{T}_w \mathbf{U}$
- \Rightarrow WSS $\sim \mathcal{N}(WSS, \Sigma_{WSS})$

 T_w maps the discretized velocity into the discretized WSS

• expectation value $WSS = T_wU$, covariance $\Sigma_w = T_w\Sigma_UT_w^T$

WSS confidence regions

horizontal and vertical WSS in the *i*-th DOF, $[\mathbf{WSS}_i \ \mathbf{WSS}_{i+N_w/2}]^T \in \mathbb{R}^2$:

subset of the components of $WSS \Rightarrow 2D$ Gaussian random vector

 \Rightarrow we can draw credibility regions

map of the maximum deviation from the mean in a 60% confidence region: $\sqrt{\lambda_{max}}$

$$(\mathbf{U}_j - U_j)^{\mathrm{T}} \Sigma_{U,j}^{-1} (\mathbf{U}_j - U_j) < \chi_2^2 (40\%) \cong 1,$$

4. future work

real data

• perform simulations using measures from postprocessing of MRIs

• use 3D (real geometries)

improve computational performance

• implement more efficient preconditioning techniques

• use different optimization techniques for nonlinear problems (Newton-like methods)

• combine the formulation with model reduction methods

• move to parallel implementation

special thanks to

- M. Benzi, Emory University, Atlanta, GA
- M. Gunzburger, Florida State University, Tallahassee, FL
- M. Perego, Florida State University, Tallahassee, FL

thank you for your attention questions?

REFERENCES

- [1] M. D'Elia, A. Veneziani, *Methods for assimilating blood velocity measures in hemodynamics simulations: preliminary results*, Procedia Comp. Science, 1, p. 1231-1239, **2010**.
- [2] M.D'Elia et al., A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics, to appear on Journal of Scientific Computing, **2011**.
- [3] M. D'Elia, M. Perego, A. Veneziani, *Applications of variational data Assimilation in computational hemodynamics*, Chapter in Modeling of Physiological Flows, Springer, **2011**.
- [4] M. D'Elia, A. Veneziani, A data assimilation technique for including noisy measurements of the velocity field into Navier-Stokes simulations, Proc. of V European Conference on Computational Fluid Dynamics, ECCOMAS, **2010**.
- [5] M. D'Elia, A. Veneziani, *Uncertainty quantification for the incompressible Navier-Stokes equations in hemodynamics*, submitted.