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Introduction

Previous Results and Physical Background

S. Albeverio, A. H., V- Kolokoltsov
Systems of stochastic Newton / Hamilton equations in Euclidean space
given by:

dx(t) = v(t)dt, x(0) = x0,

dv(t) = (−βv(t)dt) + K(x(t))dt + dwt, v(0) = v0

where w is standard Brownian motion, K allows for a strong solution, t ≥ 0,
and β ∈ IR.
Qualitative problems, asymptotic behaviour for small times and parameters.

The solution (x(t), v(t)) is a degenerate diffusion on the cotangent bundle
with possibly hypoelliptic generator.
Generalizations: Geodesic flow and driving Lévy processes
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Introduction

The OU-process

For the physical Ornstein Uhlenbeck theory of motion, given by a second
order SDE on IRd, the solution of the corresponding system on the cotangent
bundle (IR2d) is given by:

vt = e−βtv0 +
∫ t

0
e−β(t−u) dBu,

which is called Ornstein-Uhlenbeck velocity process, and

xt = x0 +
∫ t

0
e−βsv0ds +

∫ t

0

∫ s

0
e−βseβu dBuds, (1)

which is called Ornstein-Uhlenbeck position process. The initial values are
given by (x0, v0) = (x(0), v(0)) and t ≥ 0.

In Nelson’s notation the noise B is Gaussian with variance 2β2D with
2β2D = 2βkT

m and physical constants k, T, m in order to match
Smolouchwsky’s constants.
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Introduction

The Smoluchowski-Kramers Limit

Let (x, v) be the solution of the system

dx(t) = v(t)dt, x(0) = x0,

dv(t) = −βv(t)dt + βb(x(t), t)dt + βdwt, v(0) = v0 .

where w is standard Brownian motion in IR`.

Theorem Let (x, v) satisfy the equation above and assume that b is a function
in IR` satisfying a global Lipschitz condition. Moreover assume that
w is standard BM and y solves the equation

dy(t) = b(y(t), t)dt + dw(t) y(0) = x0 .

Then for all x0 with probability one

lim
β→∞

x(t) = y(t),

uniformly for t in compact subintervals of [0,∞).

Remark: Ramona Westermann: smoother noise 1
δ

∫ t
0 ξ s

δ
ds, ξ Gaussian

”Application to manifolds” D. Elworthy Abel Symposium 2005
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Smoluchowski-Kramers for Lévy Noise

Modified OU-process

Here we introduce a modified Ornstein-Uhlenbeck position process driven by
βXt, where {Xt}t≥0 is an α-stable Lévy process, 0 < α < 2 and β > 0 is a
scaling parameter as above

xt = x0 +
∫ t

0
e−βsv0ds +

∫ t

0

∫ s

0
e−β(s−u)βb(xs)duds +

∫ t

0

∫ s

0
e−β(s−u)βdXuds. (2)

For arbitrary Lévy processes Y the characteristic function is of the form
φYt(u) = etη(u) for each u ∈ IR, t ≥ 0, η being the Lévy-symbol of Y(1).

e.g. Applebaum, Samorodnitsky and Taqqu, Sato

We concentrate on α-stable Lévy processes with Lévy-symbol:

η(u) = −σα|u|α

for constant γ.
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Smoluchowski-Kramers for Lévy Noise

Time change

Proposition Assume that Y is an α-stable Lévy process, 0 < α < 2, and g is a
continuous function on the interval [s, t] ⊂ T  IR.
Let η be the Lévy symbol of Y1 and
ξ be the Lévy symbol of ψ(t) =

∫ t
s g(r) dYr.

Then we have

ξ(u) =
∫ t

s
η(ug(r)) dr .

cf. Lukacs

For g(`) = eβ(`−t), ` ≥ 0 and the α-stable process X as above the symbol of
Zt =

∫ t
s eβ(r−t) dXr is:

ξ(u) =
∫ t

s
eαβ(r−t) dr · η(u) =

1
αβ

(
1− e−αβt) η(u)

with η as above, and 0 ≤ s ≤ t.
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Smoluchowski-Kramers for Lévy Noise

Time Change - α-stable case

Recall: For the α-stable process X, 0 < α < 2, the symbol of Zt =
∫ t

s eβ(r−t) dXr

is:
1
αβ

(
1− e−αβt) η(u)

with η, η1 as above respectively, and 0 ≤ s ≤ t.

We are thus lead to introduce the time change:

τ−1(t) =
1
αβ

(
1− e−αβt)

which is actually deterministic.

This means that Xt and Zτ−1(t) have the same distribution.

7 / 11 Astrid Hilbert



Smoluchowski-Kramers for Lévy Noise

Time Change - α-stable case

Recall: For the α-stable process X, 0 < α < 2, the symbol of Zt =
∫ t

s eβ(r−t) dXr

is:
1
αβ

(
1− e−αβt) η(u)

with η, η1 as above respectively, and 0 ≤ s ≤ t.

We are thus lead to introduce the time change:

τ−1(t) =
1
αβ

(
1− e−αβt)

which is actually deterministic.

This means that Xt and Zτ−1(t) have the same distribution.

7 / 11 Astrid Hilbert



Smoluchowski-Kramers for Lévy Noise

Approximation Theorem

Theorem 1 Let x be the position process (2) and assume that b is a function
in IR` satisfying a global Lipschitz condition. Moreover assume that
X an α-stable and y solves the equation

dy(t) = b(y(t), t)dt + dX(t) y(0) = x0 .

Then for all x0 with probability one

lim
β→∞

x(t) = y(t),

uniformly for t in compact subintervals of [0,∞).
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Smoluchowski-Kramers for Lévy Noise

For b = 0 the increment of the OU position process is

xt2 − xt1 =
∫ t2

t1
e−βsv0ds +

∫ t2

t1

∫ s

0
e−βseβuβ dXuds. (3)

For the part of the double integral which reveals the limiting increment we use
partial integration to have

e−βsβ

∫ t2

t1

∫ s

t1
eβu dXuds = −e−βt2

∫ t2

t1
eβu dXu + (Xt2 − Xt1) (4)

By introducing a time change, on the right hand side of (4) we obtain

−e−βt2

∫ t2

t1
e−β(t2−u) dXu = Z 1

αβ (1−e−αβ∆t) =
1

α
√
β

Z 1
α (1−e−αβ∆t)

The time changed process Z is an α-stable Lévy process. If β → 1 then
e−αβ∆t tends to zero and Z 1

α (1−e−αβ∆t) converges to Z 1
α

.

The product 1
α
√
β

Z 1
α (1−e−βα∆t) tends to zero almost surely for large β.

The result also holds for b(y(t), t) 6= 0 e.g. by applying the technique of Nelson
to the nonlinear term.
Existence of solutions D. Applebaum, Samorodnitzky and Taqqu.
Songfu Zhang 2008 multiplicative Lévy noise, Poisson random measures,
worked on SPDE’s (M. Röckner).
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Smoluchowski-Kramers for Fractional Brownian Noise

Approximation Theorem - fractional BM

Recalling the scaled, modified Ornstein Uhlenbeck process:

xt = x0 +
∫ t

0
e−βsv0ds +

∫ t

0

∫ s

0
e−β(s−u)βb(xs)duds +

∫ t

0

∫ s

0
e−βseβuβdBH

u ds. (5)

where
{

BH
t

}
t≥0 is Fractional Brownian motion with index H, 0 < H < 1, β > 0,

and b is a function in IR` satisfying a linear growth condition.
Existence of a pathwise unique solution via a Girsanov theorem with the
Ornstein Uhlenbeck process as reference plus Yamada Watanabe theorem.

Theorem 2 Let the position process x and b be as above. Moreover assume
that

{
BH

t

}
t≥0 is Fractional Brownian motion and y solves the equation

dy(t) = b(y(t), t)dt + dBH
t (t) y(0) = x0 .

Then for all x0 in probability

lim
β→∞

x(t) = y(t),

uniformly for t in compact subintervals of [0,∞).
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Smoluchowski-Kramers for Fractional Brownian Noise

Incase b = 0 we have a Gaussian Process
Do a change of measure – only the nonlinear part of the drift -
Ornstein Uhlenbeck part remains.
Existence of solutions Nualart and Ouknine resp. Rascanu.
See also: Boufoussi and C.A.Tudor.
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