Differentiable approximation of Lévy and fractional processes

Haidar Al-Talibi, Astrid Hilbert, Vassili Kolokoltsov

Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet

December 2, 2011

Linnæus University School of Computer Science, Physics and Mathematics • □ ▶ • @ ▶ • B ▶ • B ▶

Astrid Hilbert

Introduction

Previous Results and Physical Background

S. Albeverio, A. H., V- Kolokoltsov

Systems of stochastic Newton / Hamilton equations in Euclidean space given by:

 $dx(t) = v(t)dt, \quad x(0) = x_0,$ $dv(t) = (-\beta v(t)dt) + K(x(t))dt + dw_t, \quad v(0) = v_0$

where *w* is standard Brownian motion, *K* allows for a strong solution, $t \ge 0$, and $\beta \in \mathbf{R}$.

Qualitative problems, asymptotic behaviour for small times and parameters.

The solution (x(t), v(t)) is a degenerate diffusion on the cotangent bundle with possibly hypoelliptic generator.

Generalizations: Geodesic flow and driving Lévy processes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

Previous Results and Physical Background

S. Albeverio, A. H., V- Kolokoltsov

Systems of stochastic Newton / Hamilton equations in Euclidean space given by:

 $dx(t) = v(t)dt, \quad x(0) = x_0,$ $dv(t) = (-\beta v(t)dt) + K(x(t))dt + dw_t, \quad v(0) = v_0$

where *w* is standard Brownian motion, *K* allows for a strong solution, $t \ge 0$, and $\beta \in \mathbf{R}$.

Qualitative problems, asymptotic behaviour for small times and parameters.

The solution (x(t), v(t)) is a degenerate diffusion on the cotangent bundle with possibly hypoelliptic generator.

Generalizations: Geodesic flow and driving Lévy processes

The OU-process

For the physical Ornstein Uhlenbeck theory of motion, given by a second order SDE on \mathbb{R}^d , the solution of the corresponding system on the cotangent bundle (\mathbb{R}^{2d}) is given by:

$$v_t = e^{-\beta t} v_0 + \int_0^t e^{-\beta(t-u)} dB_u,$$

which is called Ornstein-Uhlenbeck velocity process, and

$$x_{t} = x_{0} + \int_{0}^{t} e^{-\beta s} v_{0} ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta s} e^{\beta u} dB_{u} ds,$$
(1)

which is called Ornstein-Uhlenbeck position process. The initial values are given by $(x_0, v_0) = (x(0), v(0))$ and $t \ge 0$.

In Nelson's notation the noise *B* is Gaussian with variance $2\beta^2 D$ with $2\beta^2 D = 2\frac{\beta kT}{m}$ and physical constants *k*, *T*, *m* in order to match Smolouchwsky's constants.

・ロット (母) ・ ヨ) ・ コ)

The OU-process

For the physical Ornstein Uhlenbeck theory of motion, given by a second order SDE on \mathbb{R}^d , the solution of the corresponding system on the cotangent bundle (\mathbb{R}^{2d}) is given by:

$$v_t = e^{-\beta t} v_0 + \int_0^t e^{-\beta(t-u)} dB_u,$$

which is called Ornstein-Uhlenbeck velocity process, and

$$x_{t} = x_{0} + \int_{0}^{t} e^{-\beta s} v_{0} ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta s} e^{\beta u} dB_{u} ds,$$
(1)

which is called Ornstein-Uhlenbeck position process. The initial values are given by $(x_0, v_0) = (x(0), v(0))$ and $t \ge 0$.

In Nelson's notation the noise *B* is Gaussian with variance $2\beta^2 D$ with $2\beta^2 D = 2\frac{\beta kT}{m}$ and physical constants *k*, *T*, *m* in order to match Smolouchwsky's constants.

The Smoluchowski-Kramers Limit

Let (x, v) be the solution of the system

 $dx(t) = v(t)dt, \quad x(0) = x_0,$ $dv(t) = -\beta v(t)dt + \beta b(x(t), t)dt + \beta dw_t, \quad v(0) = v_0.$

where w is standard Brownian motion in \mathbb{R}^{ℓ} .

Theorem Let (x, v) satisfy the equation above and assume that *b* is a function in \mathbb{R}^{ℓ} satisfying a global Lipschitz condition. Moreover assume that *w* is standard BM and *y* solves the equation

dy(t) = b(y(t), t)dt + dw(t)

Then for all x_0 with probability one

 $\lim_{\beta \to \infty} x(t) = y(t),$

uniformly for t in compact subintervals of $[0,\infty)$

Remark: Ramona Westermann: smoother noise $\frac{1}{\delta} \int_0^t \xi_{\frac{1}{\delta}} ds$, ξ Gaussian "Application to manifolds" D. Elworthy Abel Symposium 2005, $\frac{1}{\delta}$, $\frac{1}{$

Linnæus University School of Computer Science, Physics and Mathematics

The Smoluchowski-Kramers Limit

Let (x, y) be the solution of the system

 $dx(t) = v(t)dt, \qquad x(0) = x_0,$ $dv(t) = -\beta v(t)dt + \beta b(x(t), t)dt + \beta dw_t, \qquad v(0) = v_0.$

where w is standard Brownian motion in \mathbb{R}^{ℓ} .

Theorem Let (x, y) satisfy the equation above and assume that b is a function in \mathbb{R}^{ℓ} satisfying a global Lipschitz condition. Moreover assume that w is standard BM and y solves the equation

dy(t) = b(y(t), t)dt + dw(t) $y(0) = x_0$.

Then for all x_0 with probability one

 $\lim_{\beta \to \infty} x(t) = y(t),$

uniformly for t in compact subintervals of $[0,\infty)$.

"Application to manifolds" D. Elworthy Abel Symposium 2005, 💷 🚛 🛼

The Smoluchowski-Kramers Limit

Let (x, y) be the solution of the system

 $dx(t) = v(t)dt, \qquad x(0) = x_0,$ $dv(t) = -\beta v(t)dt + \beta b(x(t), t)dt + \beta dw_t, \qquad v(0) = v_0.$

where w is standard Brownian motion in \mathbb{R}^{ℓ} .

Theorem Let (x, y) satisfy the equation above and assume that b is a function in \mathbb{R}^{ℓ} satisfying a global Lipschitz condition. Moreover assume that w is standard BM and y solves the equation

dy(t) = b(y(t), t)dt + dw(t) $y(0) = x_0$.

Then for all x_0 with probability one

 $\lim_{\beta \to \infty} x(t) = y(t),$

uniformly for t in compact subintervals of $[0, \infty)$.

Remark: Ramona Westermann: smoother noise $\frac{1}{\delta} \int_0^t \xi_{\frac{\delta}{2}} ds$, ξ Gaussian "Application to manifolds" D. Elworthy Abel Symposium 2005

Linnæus University School of Computer Science, Physics and Mathematics

Modified OU-process

Here we introduce a modified Ornstein-Uhlenbeck position process driven by βX_t , where $\{X_t\}_{t\geq 0}$ is an α -stable Lévy process, $0 < \alpha < 2$ and $\beta > 0$ is a scaling parameter as above

$$x_{t} = x_{0} + \int_{0}^{t} e^{-\beta s} v_{0} ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta(s-u)} \beta b(x_{s}) du ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta(s-u)} \beta dX_{u} ds.$$
 (2)

For arbitrary Lévy processes *Y* the characteristic function is of the form $\phi_{Y_t}(u) = e^{t\eta(u)}$ for each $u \in \mathbb{R}$, $t \ge 0$, η being the Lévy-symbol of *Y*(1).

e.g. Applebaum, Samorodnitsky and Taqqu, Sato

We concentrate on α -stable Lévy processes with Lévy-symbol:

 $\eta(u) = -\sigma^{\alpha}|u|^{\alpha}$

for constant γ .

Modified OU-process

Here we introduce a modified Ornstein-Uhlenbeck position process driven by βX_t , where $\{X_t\}_{t\geq 0}$ is an α -stable Lévy process, $0 < \alpha < 2$ and $\beta > 0$ is a scaling parameter as above

$$x_{t} = x_{0} + \int_{0}^{t} e^{-\beta s} v_{0} ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta(s-u)} \beta b(x_{s}) du ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta(s-u)} \beta dX_{u} ds.$$
 (2)

For arbitrary Lévy processes *Y* the characteristic function is of the form $\phi_{Y_t}(u) = e^{t\eta(u)}$ for each $u \in \mathbb{R}$, $t \ge 0$, η being the Lévy-symbol of *Y*(1).

e.g. Applebaum, Samorodnitsky and Taqqu, Sato

We concentrate on α -stable Lévy processes with Lévy-symbol:

 $\eta(u) = -\sigma^{\alpha}|u|^{\alpha}$

for constant γ .

Time change

Proposition Assume that *Y* is an α -stable Lévy process, $0 < \alpha < 2$, and *g* is a continuous function on the interval $[s, t] \subset T \subsetneq R$.

Let η be the Lévy symbol of Y_1 and

 ξ be the Lévy symbol of $\psi(t) = \int_s^t g(r) \, dY_r$.

Then we have

$$\xi(u) = \int_s^t \eta(ug(r)) \, dr \, .$$

cf. Lukacs

For $g(\ell) = e^{\beta(\ell-t)}, \ell \ge 0$ and the α -stable process *X* as above the symbol of $Z_t = \int_s^t e^{\beta(r-t)} dX_r$ is:

$$\xi(u) = \int_{s}^{t} e^{\alpha\beta(r-t)} dr \cdot \eta(u) = \frac{1}{\alpha\beta} \left(1 - e^{-\alpha\beta t}\right) \eta(u)$$

with η as above, and $0 \le s \le t$.

Time Change - α -stable case

Recall: For the α -stable process X, $0 < \alpha < 2$, the symbol of $Z_t = \int_s^t e^{\beta(r-t)} dX_r$ is: $\frac{1}{\alpha\beta} (1 - e^{-\alpha\beta t}) \eta(u)$

with η , η_1 as above respectively, and $0 \le s \le t$.

We are thus lead to introduce the time change:

$$au^{-1}(t) = rac{1}{lphaeta} \left(1 - e^{-lphaeta t}
ight)$$

which is actually deterministic.

This means that X_t and $Z_{\tau^{-1}(t)}$ have the same distribution.

Time Change - α -stable case

Recall: For the α -stable process X, $0 < \alpha < 2$, the symbol of $Z_t = \int_s^t e^{\beta(r-t)} dX_r$ is: $\frac{1}{\alpha\beta} (1 - e^{-\alpha\beta t}) \eta(u)$

with η , η_1 as above respectively, and $0 \le s \le t$.

We are thus lead to introduce the time change:

$$au^{-1}(t) = rac{1}{lphaeta} \left(1 - e^{-lphaeta t}
ight)$$

which is actually deterministic.

This means that X_t and $Z_{\tau^{-1}(t)}$ have the same distribution.

・ロト ・雪 ・ ・ 画 ・ ・ 目 ・

Approximation Theorem

Theorem 1 Let *x* be the position process (2) and assume that *b* is a function in \mathbb{R}^{ℓ} satisfying a global Lipschitz condition. Moreover assume that *X* an α -stable and *y* solves the equation

dy(t) = b(y(t), t)dt + dX(t) $y(0) = x_0$.

Then for all x_0 with probability one

 $\lim_{\beta \to \infty} x(t) = y(t),$

uniformly for *t* in compact subintervals of $[0, \infty)$.

$$x_{t_2} - x_{t_1} = \int_{t_1}^{t_2} e^{-\beta s} v_0 ds + \int_{t_1}^{t_2} \int_0^s e^{-\beta s} e^{\beta u} \beta \, dX_u ds.$$
(3)

For the part of the double integral which reveals the limiting increment we use partial integration to have

$$e^{-\beta s}\beta \int_{t_1}^{t_2} \int_{t_1}^{s} e^{\beta u} dX_u ds = -e^{-\beta t_2} \int_{t_1}^{t_2} e^{\beta u} dX_u + (X_{t_2} - X_{t_1})$$
(4)

By introducing a time change, on the right hand side of (4) we obtain

$$-e^{-\beta t_2} \int_{t_1}^{t_2} e^{-\beta(t_2-u)} dX_u = Z_{\frac{1}{\alpha\beta}(1-e^{-\alpha\beta\Delta t})} = \frac{1}{\sqrt[\infty]{\beta}} Z_{\frac{1}{\alpha}(1-e^{-\alpha\beta\Delta t})}$$

The time changed process *Z* is an α -stable Lévy process. If $\beta \rightarrow 1$ then $e^{-\alpha\beta\Delta t}$ tends to zero and $Z_{\frac{1}{\alpha}(1-e^{-\alpha\beta\Delta t})}$ converges to $Z_{\frac{1}{\alpha}}$.

The product $\frac{1}{\sqrt{\beta}}Z_{\frac{1}{\alpha}(1-e^{-\beta\alpha\Delta t})}$ tends to zero almost surely for large β . The result also holds for $b(y(t), t) \neq 0$ e.g. by applying the technique of Nelson to the nonlinear term.

$$x_{t_2} - x_{t_1} = \int_{t_1}^{t_2} e^{-\beta s} v_0 ds + \int_{t_1}^{t_2} \int_0^s e^{-\beta s} e^{\beta u} \beta \, dX_u ds.$$
(3)

For the part of the double integral which reveals the limiting increment we use partial integration to have

$$e^{-\beta s}\beta \int_{t_1}^{t_2} \int_{t_1}^{s} e^{\beta u} dX_u ds = -e^{-\beta t_2} \int_{t_1}^{t_2} e^{\beta u} dX_u + (X_{t_2} - X_{t_1})$$
(4)

By introducing a time change, on the right hand side of (4) we obtain

$$-e^{-\beta t_2} \int_{t_1}^{t_2} e^{-\beta(t_2-u)} dX_u = Z_{\frac{1}{\alpha\beta}(1-e^{-\alpha\beta\Delta t})} = \frac{1}{\sqrt[\alpha]{\beta}} Z_{\frac{1}{\alpha}(1-e^{-\alpha\beta\Delta t})}$$

The time changed process Z is an α -stable Lévy process. If $\beta \to 1$ then $e^{-\alpha\beta\Delta t}$ tends to zero and $Z_{\frac{1}{\alpha}(1-e^{-\alpha\beta\Delta t})}$ converges to $Z_{\frac{1}{\alpha}}$.

The product $\frac{1}{\sqrt[\alpha]{\beta}}Z_{\frac{1}{\alpha}(1-e^{-\beta\alpha\Delta t})}$ tends to zero almost surely for large β . The result also holds for $b(y(t), t) \neq 0$ e.g. by applying the technique of Nelson to the nonlinear term.

$$x_{t_2} - x_{t_1} = \int_{t_1}^{t_2} e^{-\beta s} v_0 ds + \int_{t_1}^{t_2} \int_0^s e^{-\beta s} e^{\beta u} \beta \, dX_u ds.$$
(3)

For the part of the double integral which reveals the limiting increment we use partial integration to have

$$e^{-\beta s}\beta \int_{t_1}^{t_2} \int_{t_1}^{s} e^{\beta u} dX_u ds = -e^{-\beta t_2} \int_{t_1}^{t_2} e^{\beta u} dX_u + (X_{t_2} - X_{t_1})$$
(4)

By introducing a time change, on the right hand side of (4) we obtain

$$-e^{-\beta t_2} \int_{t_1}^{t_2} e^{-\beta(t_2-u)} dX_u = Z_{\frac{1}{\alpha\beta}(1-e^{-\alpha\beta\Delta t})} = \frac{1}{\sqrt[\alpha]{\beta}} Z_{\frac{1}{\alpha}(1-e^{-\alpha\beta\Delta t})}$$

The time changed process Z is an α -stable Lévy process. If $\beta \to 1$ then $e^{-\alpha\beta\Delta t}$ tends to zero and $Z_{\frac{1}{2}(1-e^{-\alpha\beta\Delta t})}$ converges to $Z_{\frac{1}{2}}$.

The product $\frac{1}{9/\beta} Z_{\frac{1}{2}(1-e^{-\beta\alpha\Delta t})}$ tends to zero almost surely for large β . The result also holds for $b(y(t), t) \neq 0$ e.g. by applying the technique of Nelson to the nonlinear term. Linnæus University 9/11 Astrid Hilbert xol of Computer Science, Physics and Mathematics

$$x_{t_2} - x_{t_1} = \int_{t_1}^{t_2} e^{-\beta s} v_0 ds + \int_{t_1}^{t_2} \int_0^s e^{-\beta s} e^{\beta u} \beta \, dX_u ds.$$
(3)

For the part of the double integral which reveals the limiting increment we use partial integration to have

$$e^{-\beta s}\beta \int_{t_1}^{t_2} \int_{t_1}^{s} e^{\beta u} dX_u ds = -e^{-\beta t_2} \int_{t_1}^{t_2} e^{\beta u} dX_u + (X_{t_2} - X_{t_1})$$
(4)

By introducing a time change, on the right hand side of (4) we obtain

$$-e^{-\beta t_2} \int_{t_1}^{t_2} e^{-\beta(t_2-u)} dX_u = Z_{\frac{1}{\alpha\beta}(1-e^{-\alpha\beta\Delta t})} = \frac{1}{\sqrt[\alpha]{\beta}} Z_{\frac{1}{\alpha}(1-e^{-\alpha\beta\Delta t})}$$

The time changed process Z is an α -stable Lévy process. If $\beta \to 1$ then $e^{-\alpha\beta\Delta t}$ tends to zero and $Z_{\frac{1}{2}(1-e^{-\alpha\beta\Delta t})}$ converges to $Z_{\frac{1}{2}}$.

The product $\frac{1}{9/\beta} Z_{\frac{1}{2}(1-e^{-\beta\alpha\Delta t})}$ tends to zero almost surely for large β . The result also holds for $b(y(t), t) \neq 0$ e.g. by applying the technique of Nelson to the nonlinear term. Linnæus University 9/11 Astrid Hilbert xol of Computer Science, Physics and Mathematics

Approximation Theorem - fractional BM

Recalling the scaled, modified Ornstein Uhlenbeck process:

$$x_{t} = x_{0} + \int_{0}^{t} e^{-\beta s} v_{0} ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta(s-u)} \beta b(x_{s}) du ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta s} e^{\beta u} \beta dB_{u}^{H} ds.$$
 (5)

where $\{B_t^H\}_{t\geq 0}$ is Fractional Brownian motion with index H, 0 < H < 1, $\beta > 0$, and b is a function in \mathbb{R}^{ℓ} satisfying a linear growth condition. Existence of a pathwise unique solution via a Girsanov theorem with the Ornstein Uhlenbeck process as reference plus Yamada Watanabe theorem.

Theorem 2 Let the position process *x* and *b* be as above. Moreover assume that $\{B_t^H\}_{t>0}$ is Fractional Brownian motion and *y* solves the equation

 $dy(t) = b(y(t), t)dt + dB_t^H(t) \qquad \qquad y(0) = x_0$

Then for all x_0 in probability

$$\lim_{\beta \to \infty} x(t) = y(t)$$

uniformly for t in compact subintervals of $[0,\infty)$.

Linnæus University School of Computer Science, Physics and Mathematics

10/11

Approximation Theorem - fractional BM

Recalling the scaled, modified Ornstein Uhlenbeck process:

$$x_{t} = x_{0} + \int_{0}^{t} e^{-\beta s} v_{0} ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta(s-u)} \beta b(x_{s}) du ds + \int_{0}^{t} \int_{0}^{s} e^{-\beta s} e^{\beta u} \beta dB_{u}^{H} ds.$$
 (5)

where $\{B_t^H\}_{t\geq 0}$ is Fractional Brownian motion with index H, 0 < H < 1, $\beta > 0$, and b is a function in \mathbb{R}^{ℓ} satisfying a linear growth condition. Existence of a pathwise unique solution via a Girsanov theorem with the Ornstein Uhlenbeck process as reference plus Yamada Watanabe theorem.

Theorem 2 Let the position process *x* and *b* be as above. Moreover assume that $\{B_t^H\}_{t>0}$ is Fractional Brownian motion and *y* solves the equation

 $dy(t) = b(y(t), t)dt + dB_t^H(t)$ $y(0) = x_0$.

Then for all x_0 in probability

 $\lim_{\beta \to \infty} x(t) = y(t),$

uniformly for t in compact subintervals of $[0, \infty)$. Linnæus University

School of Computer Science, Physics and Mathematics

10/11

<u>< □ > < 급 > < 들 > < 들 > _ Ξ</u>

Smoluchowski-Kramers for Fractional Brownian Noise

Incase b = 0 we have a Gaussian Process Do a change of measure – only the nonlinear part of the drift Ornstein Uhlenbeck part remains.

Existence of solutions Nualart and Ouknine resp. Rascanu. See also: Boufoussi and C.A.Tudor.

Incase b = 0 we have a Gaussian Process

Do a change of measure – only the nonlinear part of the drift Ornstein Uhlenbeck part remains.

Existence of solutions Nualart and Ouknine resp. Rascanu.

See also: Boufoussi and C.A.Tudor.

Incase b = 0 we have a Gaussian Process

Do a change of measure – only the nonlinear part of the drift Ornstein Uhlenbeck part remains.

Existence of solutions Nualart and Ouknine resp. Rascanu.

See also: Boufoussi and C.A.Tudor.

