Optimal control of SDEs associated with general Lévy generators

Jiang-Lun Wu

Department of Mathematics, Swansea University, UK
EPSRC Workshop on Topics on Control Institute of Mathematics, Warwick University, UK 30th Nov. - 2nd Dec., 2011

Based on joint works with Jonathan Bennett
[1] Explicit construction of SDEs associated with polar-decomposed Lévy measures and application to stochastic optimization, Frontiers of Mathematics in China 2 (2007), 539-558.
[2] An optimal control problem associated with SDEs driven by Lévy-type processes, Stochastic Analysis and Applications, 26 (2008), 471-494.
[3] Stochastic control of SDEs associated with Lévy generators and application to financial optimization, Frontiers of Mathematics in China 5 (2010), 89-102.
and [4] JLW, Harry Zheng, On an optimal portfolio-comsumption problem associated with Lévy-type generators, in progress.

A fairly large class of Markov processes on \mathbb{R}^{d} are governed by Lévy generator, either via martingale problem (cf e.g. D W Stroock, "Markov Processes from K. Itô's Perspectives", Princeton Univ Press 2003 or V.N. Kolokoltsov, "Markov Processes, Semigroups and Generators", de Gruyter, 2011) or via Dirichlet form (cf e.g. N Jacob,"Pseudo-Differential Operators and Markov Processes III" Imperial College Press, 2005)

$$
\begin{aligned}
L f(t, x):= & \frac{1}{2} a^{i, j}(t, x) \partial_{i} \partial_{j} f(t, x)+b^{i}(t, x) \partial_{i} f(t, x) \\
& +\int_{\mathbb{R}^{d} \backslash\{0\}}\{f(t, x+z)-f(t, x) \\
& \left.\quad-\frac{z 1_{\{|z|<1\}} \cdot \nabla f(t, x)}{1+|z|^{2}}\right\} \nu(t, x, d z)
\end{aligned}
$$

where $a(t, x)=\left(a^{i, j}(t, x)\right)_{d \times d}$ is non-negative definite symmetric and $\nu(t, x, d z)$ is a Lévy kernel, i.e.,
$\forall(t, x) \in[0, \infty) \times \mathbb{R}^{d}, \nu(t, x, \cdot)$ is a σ-finite measure on $\left(\mathbb{R}^{d} \backslash\{0\}, \mathcal{B}\left(\mathbb{R}^{d} \backslash\{0\}\right)\right.$ such that

$$
\int_{\mathbb{R}^{d} \backslash\{0\}} \frac{|z|^{2}}{1+|z|^{2}} \nu(t, x, d z)<\infty
$$

For such L, in order to get rid of variable dependence on ν, NEI Karoui and J P Lepeltier (Z. Wahr. verw. Geb. 39 (1977)) construct a bimeasurable bijection

$$
c:[0, \infty) \times \mathbb{R}^{d} \times U \rightarrow \mathbb{R}^{d} \backslash\{0\}
$$

such that

$$
\int_{U} 1_{A}(c(t, x, y)) \lambda(d y)=\int_{\mathbb{R}^{d} \backslash\{0\}} 1_{A}(z) \nu(t, x, d z), \quad \forall(t, x)
$$

for $A \in \mathcal{B}\left(\mathbb{R}^{d} \backslash\{0\}\right)$. Where $(U, \mathcal{B}(U))$ is a Lusin space and λ is a σ-finite measure on it. Actually, we can construct c explicitly in case ν has a polar decomposition (with the stable-like case
as a concrete example). It is well-known (cf e.g. Theorem l.8.1 in N Ikeda and S Watanabe’s book): \exists a Poisson random measure

$$
N: \mathcal{B}([0, \infty)) \times \mathcal{B}(U) \times \Omega \rightarrow \mathbb{N} \cup\{0\} \cap\{\infty\}
$$

on any given probability set-up $\left(\Omega, \mathcal{F}, P ;\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$ with $\mathbf{E}(N(d t, d y, \cdot))=d t \lambda(d y)$, and

$$
\tilde{N}(d t, d y, \omega):=N(d t, d y, \omega)-d t \lambda(d y)
$$

being the associated compensating $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$-martingale measure.
We then can formulate a jump SDE associated with L

$$
d S_{t}=b\left(t, S_{t}\right) d t+\sigma\left(t, S_{t}\right) d W_{t}+\int_{U} c\left(t, S_{t-}, y\right) \tilde{N}(d t, d y)
$$

where $\sigma(t, x)$ is a $d \times m$-matrix such that

$$
\sigma(t, x) \sigma^{T}(t, x)=a(t, x)
$$

and $\left\{W_{t}\right\}_{t \in[0, \infty)}$ is an m-dimensional $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$-Brownian motion. We shall consider such equation in the following general formulation

$$
\begin{aligned}
d S_{t}=b\left(t, S_{t}\right) d t & +\sigma\left(t, S_{t}\right) d W_{t} \\
& +\int_{U \backslash U_{0}} c_{1}\left(t, S_{t-}, z\right) \tilde{N}(d t, d z) \\
& +\int_{U_{0}} c_{2}\left(t, S_{t-}, z\right) N(d t, d z)
\end{aligned}
$$

where $U_{0} \in \mathcal{B}(U)$ with $\lambda\left(U_{0}\right)<\infty$ is arbitrarily fixed.
Sufficient Maximum Principle
Framstad,Øksendal, Sulem (J Optim Theory Appl 121 (2004))
Øksendal, Sulem ("Applied Stochastic Control of Jump-Diffusions", Springer, 2005); Math Finance 19 (2009); SIAM J Control Optim 2010; Commun Stoch Anal 4 (2010)

Start with a controlled jump Markov process

$$
S_{t}=S_{t}^{(u)}, \quad t \in[0, T]
$$

for any arbitrarily fixed $T \in(0, \infty)$, by the following

$$
\begin{align*}
d S_{t}=b\left(t, S_{t}, u_{t}\right) & d t+\sigma\left(t, S_{t}, u_{t}\right) d W_{t} \tag{1}\\
& +\int_{U \backslash U_{0}} c_{1}\left(t, S_{t-}, u_{t-}, z\right) \tilde{N}(d t, d z) \\
& +\int_{U_{0}} c_{2}\left(t, S_{t-}, u_{t-}, z\right) N(d t, d z)
\end{align*}
$$

where the control process $u_{t}=u(t, \omega)$, taking values in a given Borel set $\mathcal{U} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, is assumed to be $\left\{\mathcal{F}_{t}\right\}$-predictable and cádlág.

The performance criterion is

$$
J(u):=\mathbf{E}\left(\int_{0}^{T} f\left(t, S_{t}, u_{t}\right) d t+g\left(S_{T}\right)\right), \quad u \in \mathcal{A}
$$

for \mathcal{A} the totality of all admissible controls, and for

$$
f:[0, T] \times \mathbb{R}^{d} \times \mathcal{U} \rightarrow \mathbb{R}
$$

being continuous, and for $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ being concave. The objective is to achieve the following

$$
J(\hat{u})=\sup _{u \in \mathcal{A}} J(u)
$$

referring \hat{u} being the optimal control of the system. Moreover, if $\hat{S}_{t}=S_{t}^{(\hat{u})}$ is the solution to the jump type SDE (1) corresponding to \hat{u}, then the pair (\hat{S}, \hat{u}) is called the optimal pair.

Now the Hamiltonian is defined

$$
H:[0, T] \times \mathbb{R}^{d} \times \mathcal{U} \times \mathbb{R}^{d} \times \mathbb{R}^{d \otimes m} \times \mathcal{R} \rightarrow \mathbb{R}
$$

via

$$
\begin{aligned}
& H\left(t, r, u, p, q, n^{(1)}, n^{(2)}\right) \\
= & f(t, r, u)+\mu(t, r, u) p+\frac{1}{2} \sigma^{T}(t, r, u) q \\
& +\int_{U \backslash U_{0}} n^{(1)}(t, z) c_{1}(t, r, u, z) \lambda(d z) \\
& +\int_{U_{0}}\left[n^{(2)}(t, z) c_{2}(t, r, u, z)+c_{2}(t, r, u, z) p\right] \lambda(d z)
\end{aligned}
$$

where \mathcal{R} is the collection of all $\mathbb{R}^{d \otimes d}$-valued processes $n:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{d \otimes d}$ such that the two integrals in the above formulation converge absolutely.

It is known that the adjoint equation corresponding to an admissible pair (S, u) is the BSDE

$$
\begin{aligned}
d p(t)= & -\nabla_{r} H\left(t, S_{t}, u_{t}, p(t), q(t), n^{(1)}(t, \cdot), n^{(2)}(t, \cdot)\right) d t \\
& +q(t) d W_{t}+\int_{U \backslash U_{0}} n^{(1)}(t-, z) \tilde{N}(d t, d z) \\
& +\int_{U_{0}} n^{(2)}(t-, z) N(d t, d z)
\end{aligned}
$$

with terminal condition

$$
p(T)=\nabla g\left(S_{T}\right)
$$

Theorem ([3])

Given an admissible pair (\hat{S}, \hat{u}). Suppose \exists an $\left\{\mathcal{F}_{t}\right\}$-adapted solution $(\hat{p}(t), \hat{q}(t), \hat{n}(t, z))$ to the BSDE s.t. for $u \in \mathcal{A}$

$$
\begin{gathered}
\mathbf{E}\left[\int _ { 0 } ^ { T } (\hat { S } _ { t } - S _ { t } ^ { (u) }) ^ { T } \left\{\hat{q}(t) \hat{q}(t)^{T}\right.\right. \\
\left.+\int_{U_{0}}\left[\operatorname{tr}\left(\hat{n}(t, z) \hat{n}(t, z)^{T}\right) \lambda(d z)\right]\right\} \\
\left.\times\left(\hat{S}_{t}-S^{(u)}(t)\right) d t\right]<\infty, \\
\mathbf{E}\left[\int _ { 0 } ^ { T } \hat { p } ^ { T } (t) \left\{\int_{U_{0}}\left[\operatorname{tr}\left(c\left(t, S_{t-}, u_{t}, z\right) c^{T}\left(t, S_{t-}, u_{t}, z\right)\right) \lambda(d z)\right]\right.\right. \\
\left.\left.+\sigma\left(t, S_{t}, u_{t}\right) \sigma^{T}\left(t, S_{t}, u_{t}\right)\right\} \hat{p}(t) d t\right]<\infty,
\end{gathered}
$$

Theorem (cont'd)

and $\forall t \in[0, T]$

$$
\begin{equation*}
H\left(t, \hat{S}_{t}, \hat{u}_{t}, \hat{p}(t), \hat{q}(t), \hat{n}(t, .)\right)=\sup _{u \in \mathcal{A}} H\left(t, \hat{S}_{t}, u_{t}, \hat{p}(t), \hat{q}(t), \hat{n}(t, .)\right) \tag{2}
\end{equation*}
$$

If $\hat{H}(r):=\max _{u \in \mathcal{A}} H(t, r, u, \hat{p}(t), \hat{q}(t), \hat{n}(t, \cdot))$ exists and is a concave function of r, then (\hat{S}, \hat{u}) is an optimal pair.

Remark For (2), it suffices that the function

$$
(r, u) \rightarrow H(t, r, u, \hat{p}(t), \hat{q}(t), \hat{n}(t, \cdot))
$$

is concave, $\forall t \in[0, T]$.

Optimal control problem
Benth, Karlsen, Reikvam (Finance Stoch 5 (2001); Stochastics Stochastics Rep 74(2002))
Ishikawa (Appl Math Optim 50 (2004)) Jakobsen, Karlsen (JDE 212 (2005); NoDEA 13 (2006))
Start with a Lévy type process

$$
\begin{gathered}
Z_{t}=\mu t+\int_{0}^{t} \theta(s) d W_{s}+\int_{0}^{t} \int_{U \backslash U_{0}} c_{1}(z) \tilde{N}(d s, d z) \\
+\int_{0}^{t} \int_{U_{0}} c_{2}(z) N(d s, d z)
\end{gathered}
$$

where μ is a constant, $\theta:[0, T] \rightarrow \mathbb{R}$ and $c_{1}, c_{2}: U \rightarrow \mathbb{R}$ are measurable. Here assume that

$$
\int_{U_{0}}\left(e^{c_{2}(z)}-1\right) \lambda(d z)<\infty .
$$

We are concerned with the following 1-dimensional linear SDE

$$
\begin{aligned}
d S_{t} & =b(t) S_{t} d t+\frac{1}{2} \sigma(t)^{2} S_{t} d t+\sigma(t) S_{t} d W_{t} \\
& +S_{t} \int_{U}\left(e^{c_{1}(z)}-1-c_{1}(z) 1_{\left\{U \backslash U_{0}\right\}}(z)\right) \lambda(d z) d t \\
& +S_{t-} \int_{U}\left(e^{c_{1}(z)}-1\right) \tilde{N}(d t, d z)
\end{aligned}
$$

Based on the driving processes Z_{t} and S_{t}, we construct two processes X_{t} and Y_{t} with $X_{0}=x, Y_{0}=y$, via

$$
\begin{aligned}
& X_{t}=x-G_{t}+\int_{0}^{t} \sigma(s) \pi_{s} X_{s} d W_{s}+L_{t} \\
& +\int_{0}^{t}\left(r+\left(\left[b(s)+\frac{1}{2} \sigma(s)^{2}+\int_{U \backslash U_{0}}\left(e^{c_{1}(z)}\right.\right.\right.\right. \\
& \left.\left.\left.\left.-1-c_{1}(z)\right) \lambda(d z)\right]-r\right) \pi_{s}\right) X_{s} d s \\
& +\int_{0}^{t} \pi_{s-} X_{s-} \int_{U \backslash U_{0}}\left(e^{c_{1}(z)}-1\right) \tilde{N}(d s, d z) \\
& +\int_{0}^{t} \pi_{s-} X_{s-} \int_{U_{0}}\left(e^{c_{2}(z)}-1\right) N(d s, d z)
\end{aligned}
$$

and

$$
Y_{t}=y e^{-\beta t}+\beta \int_{0}^{t} e^{-\beta(t-s)} d G_{s}
$$

respectively, where

$$
G_{t}:=\int_{0}^{t} g_{s} d s
$$

with $\left(g_{t}\right)_{t \geq 0}$ being a nondecreasing $\left\{\mathcal{F}_{t}\right\}$-adapted cádlág process of finite variation such that $0 \leq \sup _{t \geq 0} g_{t}<\infty, L_{t}$ is a nondecreasing, nonnegative, and $\left\{\mathcal{F}_{t}\right\}$-adapted cádlág process, and $\pi_{t} \in[0,1]$ is $\left\{\mathcal{F}_{t}\right\}$-adapted cádlág. The triple $\left(G_{t}, L_{t}, \pi_{t}\right)$ is referred as the parameter process.

Remark The background for X_{t} being the self-financing investment policy according to the portfolio π_{t} :

$$
\frac{d X_{t}}{X_{t-}}=\left(1-\pi_{t}\right) \frac{d B_{t}}{B_{t}}+\pi_{t} \frac{d S_{t}}{S_{t-}}
$$

with B_{t} standing for the riskless bond $d B_{t}=r B_{t} d t$.

By Itô formula, the generator A to $\left(X_{t}, Y_{t}\right)$ is

$$
\begin{aligned}
A v(x, y)=- & \alpha v-\beta y v_{y}+\sigma(t) \pi x v_{x x} \\
& +\left\{\left(r+\pi\left(\left[b(t)+\frac{1}{2} \sigma(t)^{2}\right.\right.\right.\right. \\
& \left.\left.\left.+\int_{U \backslash U_{0}}\left(e^{c_{1}(z)}-1-c_{1}(z)\right) \lambda(d z)\right]-r\right)\right) x v_{x} \\
& +\int_{U \backslash U_{0}}\left(v\left(x+\pi x\left(e^{c_{1}(z)}-1\right), y\right)\right. \\
& \left.\quad-v(x, y)-\pi x v_{x}\left(e^{c_{1}(z)}-1\right)\right) \lambda(d z) \\
& \left.+\int_{U_{0}}\left(v\left(x+\pi x\left(e^{c_{2}(z)}-1\right), y\right)-v(x, y)\right) \lambda(d z)\right\} \\
& +u(g)-g\left(v_{x}-\beta v_{y}\right)
\end{aligned}
$$

for any $v \in C^{2,2}(\mathbb{R} \times \mathbb{R})$ and for $\pi \in[0,1], g \in\left[0, M_{1}\right]$.

Now we define the value function

$$
v(x, y):=\sup _{\left(\pi ., g_{., L .}\right) \in \mathcal{A}} \mathbf{E}^{\left(X^{(\pi,, g, t, L .)}, Y^{(\pi, ., g ., L .)}\right)}\left[\int_{0}^{\infty} e^{-\alpha s} u\left(g_{s}\right) d s\right]
$$

where the supremum is taken over all admissible controls and u is a utility function, i.e., u is strictly increasing, differential, and concave on $[0, \infty)$ such that

$$
u(0)=u^{\prime}(\infty)=0, \quad u(\infty)=u^{\prime}(0)=\infty .
$$

We also denote that

$$
\begin{aligned}
& k(\gamma, \rho):= \max _{\pi}\left\{\gamma \left(r+\pi\left(\left[b(t)+\frac{1}{2} \sigma(t)^{2}\right.\right.\right.\right. \\
&\left.\left.\left.+\int_{U \backslash U_{0}}\left(e^{c_{1}(z)}-1-c_{1}(z)\right) \lambda(d z)\right]-r\right)\right) \\
&+\sigma(t) \pi \rho+\int_{U \backslash U_{0}}\left[\left(1+\pi\left(e^{c_{1}(z)}-1\right)\right)^{\gamma}\right. \\
&\left.\quad-1-\gamma \pi\left(e^{c_{1}(z)}-1\right)\right) \\
&\left.\left.+\int_{U_{0}}\left(1+\pi\left(e^{c_{2}(z)}-1\right)\right)^{\gamma}-1\right] \lambda(d z)\right\}
\end{aligned}
$$

Theorem ([2])

$[i]($ Existence) v is well-defined, i.e., there exists an optimal control $\left(\pi^{*}, g^{*}, L^{*}\right) \in \mathcal{A}$ such that

$$
v(x, y)=\mathbf{E}^{\left(X^{\left(\pi^{*}, g^{*}, L^{*}\right)}, Y^{\left(\pi^{*}, g^{*}, L^{*}\right)}\right)}\left[\int_{0}^{\infty} e^{-\alpha s} u\left(g_{s}^{*}\right) d s\right]
$$

Furthermore, v is a constrained viscosity solution to the following Hamilton-Jacobi-Bellman integro-variational inequality

$$
\max \left\{v_{x} 1_{\{x \leq 0\}}, \sup _{(\pi, g) \in \mathcal{A}}\{A v\},\left(\beta v_{y}-v_{x}\right) 1_{\{x \geq 0\}}\right\}=0
$$

in $D_{\beta}:=\{(x, y): y>0, y+\beta x>0\}$, and

$$
v=0 \quad \text { outside of } \quad D_{\beta}
$$

Theorem (cont'd)

[ii] (Uniqueness) For $\gamma>0$ and each $\rho \geq 0$ choose $\alpha>0$ s.t. $k(\gamma, \rho)<\alpha$. Then the HJB integro-variational inequality admits at most one constrained viscosity solution.

Theorem (JLW and H. Zheng [4])

Assume the following dynamic programming principle hold for the value function $v: \forall t \geq 0$ and for any stopping time τ

$$
\begin{array}{r}
v(x, y)=\sup _{(\pi, g, L) \in \mathcal{A}} \mathbf{E}\left[\int_{0}^{t \wedge \tau} e^{-\alpha s} u\left(g_{s}^{*}\right) d s\right. \\
\left.+e^{-\alpha(t \wedge \tau)} v\left(X_{t \wedge \tau}^{(\pi, g, L)}, Y_{t \wedge \tau}^{(\pi, g, L)}\right)\right] .
\end{array}
$$

Then, v is the unique, constrained (subject to a gradient constraint) viscosity solution of the following integro-differential HJB equation

$$
\max \left\{\beta v_{y}-v_{x}, \sup _{(\pi, g) \in \mathcal{A}}\{A v\}\right\}=0
$$

in $D:=\{(x, y): x>0, y>0\}$.

Further discussion on the properties of v is under way.

The case of polar-decomposed Lévy measures
Recall the Lévy generator

$$
\begin{aligned}
L f(t, x):= & \frac{1}{2} a^{i, j}(t, x) \partial_{i} \partial_{j} f(t, x)+b^{i}(t, x) \partial_{i} f(t, x) \\
& +\int_{\mathbb{R}^{d} \backslash\{0\}}\{f(t, x+z)-f(t, x) \\
& \left.\quad-\frac{z 1_{\{|z|<1\}} \cdot \nabla f(t, x)}{1+|z|^{2}}\right\} \nu(t, x, d z)
\end{aligned}
$$

and the associated SDE

$$
d S_{t}=b\left(t, S_{t}\right) d t+\sigma\left(t, S_{t}\right) d W_{t}+\int_{U} c\left(t, S_{t-}, y\right) \tilde{N}(d t, d y)
$$

Here we consider a special case: ν admits a polar-decomposition.

$$
(U, \mathcal{B}(U), \lambda)=\left(S^{d-1} \times(0, \infty), \lambda\right)
$$

where λ is σ-finite. Now let
m : a finite Borel measure on S^{d-1}
$z: \mathbb{R}^{d} \times \mathrm{S}^{d-1} \times(0, \infty) \rightarrow \mathbb{R}^{d} \backslash\{0\}$ bimeasurable bijection $g: \mathbb{R}^{d} \times S^{d-1} \times \mathcal{B}((0, \infty)) \rightarrow(0, \infty)$ is a positive kernel
Our ν is then taken the form

$$
\nu(x, d z)=\int_{\mathrm{S}^{d-1}} \int_{0}^{\infty} 1_{d z}(z(x, \theta, r) g(x, \theta, d r)
$$

M Tsuchiya, Stoch Stoch Reports 38 (1992)
V. Kolkoltsov, Proc London Maths Soc 80 (2000)
V. Kolkoltsov, Nonlinear Markov Processes and Kinetic Equations. (CUP, 2010)
Example (Bass, PTRF (1988); Kolkoltsov) Take

$$
z(x, \theta, r)=r \theta \quad \text { and } \quad g(x, \theta, d r)=\frac{d r}{r^{1+\alpha(x)}}
$$

then

$$
\nu(x, d z)=\frac{d r}{r^{1+\alpha(x)}} m(d \theta)
$$

Theorem ([1])

(i) For $d \geq 2$, i.e., for the case that the given σ-finite measure space

$$
U=\left(S^{d-1} \times(0, \infty)\right)
$$

the coefficient of the jump term in the SDE associated to $\nu(x, d z)$ is given by $c(t, x,(r, \theta))=r \theta$;
(ii) For the case when $d=1$, namely, for the case that the given σ-finite measure space

$$
(U, \mathcal{B}(U), \lambda)=((0, \infty), \mathcal{B}((0, \infty)), \lambda)
$$

the coefficient of the jump term in the SDE associated to $\nu(x, d z)$ defined by

$$
\nu(x, d z)=\frac{d r}{r^{1+\alpha(x)}} \quad \alpha(x) \in(0,2), \quad x \in \mathbb{R}
$$

is given by $|c(t, x,(r, \theta))|=r$.

As an application, we consider a consumption-portfolio optimzation problem. The wealth process is modelled via

$$
\begin{aligned}
d S(t)= & \left\{\rho_{t} S(t)+\left(b(t)-\rho_{t}\right) u(t)-w(t)\right\} d t \\
& +\sigma(t) w(t) d W(t) \\
& +w(t-) \int_{0<|r|<1} r \theta \tilde{N}(d t, d r d \theta) \\
& +w(t-) \int_{|r| \geq 1} r \theta N(d t, d r d \theta)
\end{aligned}
$$

Our objective is to solve the following consumption-portfolio optimization problem:

$$
\begin{equation*}
\sup _{(w, u) \in \mathcal{A}} \mathbf{E}\left[\int_{0}^{T} \exp \left(-\int_{0}^{t} \delta(s) d s\right)\left[\frac{w(t)^{\gamma}}{\gamma}\right] d t\right] \tag{3}
\end{equation*}
$$

subject to the terminal wealth constraint

$$
S(T) \geq 0 \quad \text { a.s. }
$$

where \mathcal{A} is the set of predictable consumption-portfolio pairs (w, u) with the control u being tame and the consumption w being nonnegative, such that the above SDE has a strong solution over $[0, T]$.

Theorem ([1])

An optimal control $\left(u^{*}, w^{*}\right)$ is given by

$$
u^{*}(t, x)=\exp \left\{\int_{0}^{t} \frac{\delta(s)}{\gamma-1} d s\right\} f(t)^{\frac{1}{\gamma-1}} x
$$

and

$$
w^{*}(t, x)=\hat{\pi} x
$$

with $f(t)$ and $\hat{\pi}$ being explicitly constructed.

Thank You!

