Game theoretic analysis of incomplete markets ${ }^{1}$

Vassili N. Kolokoltsov ${ }^{2}$

November 30, 2011
${ }^{1}$ Warwick, November 2011
${ }^{2}$ Department of Statistics, University of Warwick, Coventry CV4 7AL UK, Email: v.kolokoltsov@warwick.ac.uk

Highlights

- Generalizations of classical BS and CRR formulae with more rough assumptions on the underlying assets evolution: interval model.
- Transaction costs included.
- Emergence of risk neutral probabilities in minmax (robust control) evaluations.
- A natural unique selection among multiple risk neutral measures arising in incomplete markets for options specified by sub-modular functions.
- Continuous time limit leading to nonlinear degenerate and/or fractional Black-Scholes type equations.
- Explicit formulae and new numeric schemes. Identification of pre-Markov models.

Geometric risk-neutral laws, I

Def. A probability law $\mu \in \mathcal{P}(E)$ on $E \subset \mathbf{R}^{d}$ is risk-neutral if the origin is its barycenter: $\int_{E} \xi \mu(d \xi)=0$. Denote $\mathcal{P}_{r n}(E)$ the set of risk-neutral laws.
More generally: for a compact $E \subset \mathbf{R}^{n}$ and a continuous $F: E \rightarrow \mathbf{R}^{d}$ let

$$
\mathcal{P}(E ; F)=\left\{\mu \in \mathcal{P}(E):(F, \mu)=\int F(x) \mu(d x)=0\right\} .
$$

$\mathcal{P}_{r n}(E)=\mathcal{P}(E ; I d)$.
Def. E is called weakly (resp. strongly) positively complete, if there exists no $\omega \in \mathbf{R}^{\boldsymbol{d}}$ such that $(\omega, \xi)>0($ resp. $(\omega, \xi) \geq 0)$ for all $\xi \in E$.
Geometrically: E does not belong to any open (respectively closed) half-space of \mathbf{R}^{d}.
If $E \subset \mathbf{R}^{d}$ is a compact convex set, then E is weakly positively complete if and only if it contains the origin.

Geometric risk-neutral laws, II

Proposition

Let $E \subset \mathbf{R}^{n}$ be compact and a mapping $F: E \rightarrow \mathbf{R}^{d}$ continuous.
(i) The set $\mathcal{P}(E ; F)$ is not empty if and only if $F(E)$ is weakly positively complete in \mathbf{R}^{d}.
(ii) Let E^{\prime} be the support of a measure $\mu \in \mathcal{P}(E ; F)$. If $F\left(E^{\prime}\right)$ does not coincide with the origin, then it is strongly positively complete in the subspace $\mathbf{R}^{m} \subset \mathbf{R}^{d}$ generated by $F\left(E^{\prime}\right)$.

Proposition

Let $E \subset \mathbf{R}^{n}$ be compact, a mapping
$F=\left(F^{1}, \cdots, F^{d}\right): E \rightarrow \mathbf{R}^{d}$ be continuous and μ be an extreme point of the set $\mathcal{P}(E ; F)$. Then μ is a linear combination of not more than $d+1$ Dirac measures.

Geometric risk-neutral laws, III

Proposition

Example. Let $E=\left\{\xi_{1}, \cdots, \xi_{d+1}\right\}$ be strongly positively complete in \mathbf{R}^{d}. Then there exists a unique risk-neutral probability law $\left\{p_{1}, \cdots, p_{d+1}\right\}$ on $\left\{\xi_{1}, \cdots, \xi_{d+1}\right\}$: p_{i} equals the ratio of the volume of the pyramids $\Pi\left[\left\{0 \cup\left\{\hat{\xi}_{i}\right\}\right\}\right]$ to the whole volume $\Pi\left[\xi_{1}, \cdots, \xi_{d+1}\right]$.
($\left\{\hat{\xi}_{i}\right\}$ denotes the family $\xi_{1}, \cdots, \xi_{d+1}$ with ξ taken out).

Theorem

Let a compact set $E \subset \mathbf{R}^{d}$ be strongly positively complete. Then the extreme points of the set of risk-neutral probabilities on E are the Dirac mass at zero (only when E contains the origin) and the risk-neutral measures with support on families of size $m+1,0<m \leq d$, that generate a subspace of dimension m and are strongly positively complete in this subspace.

Underlying Game, I

$$
\begin{equation*}
\Pi\left[\xi_{1}, \cdots, \xi_{d+1}\right](f)=\min _{\gamma \in \mathbf{R}^{d}} \max _{i}\left[f\left(\xi_{i}\right)-\left(\xi_{i}, \gamma\right)\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{\Pi}\left[\xi_{1}, \cdots, \xi_{d+1}\right](f)=\max _{\gamma \in \mathbf{R}^{d}} \min _{i}\left[f\left(\xi_{i}\right)+\left(\xi_{i}, \gamma\right)\right], \tag{2}
\end{equation*}
$$

where $\xi_{1}, \cdots, \xi_{d+1}$ are $d+1$ vectors in \mathbf{R}^{d} in general position (origin is in the interior of their convex hull).
A remarkable fact: expressions (1) and (2) are linear in f and the minimizing γ is unique and also depends linearly on f.

Underlying Game II

Proposition

$\xi_{1}, \cdots, \xi_{d+1}$ are $d+1$ vectors in \mathbf{R}^{d} in general position. Then

$$
\begin{equation*}
\Pi\left[\xi_{1}, \cdots, \xi_{d+1}\right](f)=\underline{\Pi}\left[\xi_{1}, \cdots, \xi_{d+1}\right](f)=\mathbf{E} f(\xi), \tag{3}
\end{equation*}
$$

where \mathbf{E} is with respect to the unique risk neutral law on $\left\{\xi_{i}\right\}$, and the minimum in (1) is attained on the single γ_{0} :

$$
\begin{equation*}
\gamma_{0}=\mathbf{E}[f(\xi) r(\xi)] \tag{4}
\end{equation*}
$$

with explicitly defined vectors $r(\xi)$,

$$
\begin{equation*}
\left|\gamma_{0}\right| \leq\|f\| \frac{1}{d} \frac{S\left(\xi_{1}, \cdots, \xi_{d+1}\right)}{V\left(\xi_{1}, \cdots, \xi_{d+1}\right)} \tag{5}
\end{equation*}
$$

where $S\left(\xi_{1}, \cdots, \xi_{d+1}\right)$ is the surface volume of the pyramid $\Pi\left[\xi_{1}, \cdots, \xi_{d+1}\right]$ and $V\left(\xi_{1}, \cdots, \xi_{d+1}\right)$ is its volume.

Underlying Game III

For a compact E and a continuous function f define

$$
\begin{equation*}
\Pi[E](f)=\inf _{\gamma \in \mathbf{R}^{d}} \max _{\xi \in E}[f(\xi)-(\xi, \gamma)] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{\Pi}[E](f)=\sup _{\gamma \in \mathbf{R}^{d}} \min _{\xi \in E}[f(\xi)-(\xi, \gamma)] \text {. } \tag{7}
\end{equation*}
$$

Theorem
Let a compact set $E \subset \mathbf{R}^{d}$ be strongly positively complete. Then

$$
\begin{equation*}
\Pi[E](f)=\max _{\mu} \mathbf{E}_{\mu} f(\xi), \quad \underline{\Pi}[E](f)=\min _{\mu} \mathbf{E}_{\mu} f(\xi) \tag{8}
\end{equation*}
$$

where max (resp. min) is taken over all extreme points μ of risk-neutral laws on E given by Proposition 1, inf in (6) is attained on some γ (satisfying the estimates above).

Underlying Game: nonlinear extension

$$
\begin{equation*}
\Pi\left[\xi_{1}, \cdots, \xi_{k}\right](f)=\min _{\gamma \in \mathbf{R}^{d}} \max _{\xi_{1}, \cdots, \xi_{k}}\left[f\left(\xi_{i}, \gamma\right)-\left(\xi_{i}, \gamma\right)\right] . \tag{9}
\end{equation*}
$$

Theorem
Let $\left\{\xi_{1}, \cdots, \xi_{k}\right\} \subset \mathbf{R}^{d}, k>d$, in general position.
Let the function $f(\xi, \gamma)$ be bounded below and Lipshitz continuous in γ with a Lipschitz constant \varkappa, which is small enough.
Then the minimum in (9) is finite, is attained on some γ_{0} and

$$
\begin{equation*}
\Pi\left[\xi_{1}, \cdots, \xi_{k}\right](f)=\max _{l} \mathbf{E}_{l} f\left(\xi, \gamma_{l}\right), \tag{10}
\end{equation*}
$$

where max as above and γ_{1} is the corresponding (unique) optimal value (solving a fixed point equation).
Other extensions: infinite-dimensional setting with one-dimensional projections, random geometry.

Mixed strategies with linear constraints, I

Equivalent form of the result above:

$$
\begin{equation*}
\Pi[E](f)=\inf _{\gamma \in \mathbf{R}^{d}} \max _{\mu \in \mathcal{P}(E)} \mathbf{E}_{\mu}[f(\xi)-(\gamma, \xi)]=\max _{\mu \in \mathcal{P}_{r n}(E)} \mathbf{E}_{\mu} f(\xi) \tag{11}
\end{equation*}
$$

Let $E \subset \mathbf{R}^{d}$ be a compact set and $\tilde{\mathcal{P}}(E)$ a closed convex subset of $\mathcal{P}(E)$ (the main example is a set of type $\mathcal{P}(E ; F)$). Let

$$
\begin{align*}
\tilde{\Pi}[E](f)=\inf _{\gamma \in \mathbf{R}^{d}} \max _{\mu \in \mathcal{P}(E)} \mathbf{E}_{\mu}[f(\xi)-(\gamma, \xi)] \\
=\inf _{\gamma \in \mathbf{R}^{d}} \max _{\mu \in \tilde{\mathcal{P}}(E)}\left[\int f(\xi) \mu(d \xi)-\left(\gamma, \int \xi \mu(d \xi)\right)\right] . \tag{12}
\end{align*}
$$

Let B denote the linear mapping $\tilde{\mathcal{P}}(E) \rightarrow \mathbf{R}^{d}$ given by

$$
B \mu=\mathbf{E}_{\mu} \xi=\int \xi \mu(d \xi)
$$

(barycenter or the center of mass).

Mixed strategies with linear constraints, II

The following main result extends Theorem 2 to the case of mixed strategies with constraints.
Theorem
The set $\tilde{\mathcal{P}}(E) \cap \mathcal{P}_{r n}(E)$ is empty if and only if the set $\underset{\sim}{B}(\tilde{\mathcal{P}}(E))$ is not weakly positively complete, in which case $\tilde{\Pi}[E](f)=-\infty$. Otherwise

$$
\begin{aligned}
\tilde{\Pi}[E](f) & =\inf _{\gamma \in \mathbb{R}^{d}} \max _{\mu \in \mathcal{P}(E)} \mathbf{E}_{\mu}[f(\xi)-(\gamma, \xi)] \\
& =\max _{\mu \in \tilde{\mathcal{P}}(E) \cap \mathcal{P}_{r r}(E)} \mathbf{E}_{\mu} f(\xi) .
\end{aligned}
$$

Interval model for a market

Market with several securities in discrete time $k=1,2, \ldots$:
The risk-free bonds (bank account), priced B_{k}, and J common stocks, $J=1,2 \ldots$, priced $S_{k}^{i}, i \in\{1,2, \ldots, J\}$.
$B_{k+1}=\rho B_{k}, \rho \geq 1$ is a constant interest rate, $S_{k+1}^{i}=\xi_{k+1}^{i} S_{k}^{i}$, where $\xi_{k}^{i}, i \in\{1,2, \ldots, J\}$, are unknown sequences taking values in some fixed intervals $M_{i}=\left[d_{i}, u_{i}\right] \subset \mathbf{R}$ (interval model).
This model generalizes the colored version of the classical CRR model in a natural way.
In the latter a sequence ξ_{k}^{i} is confined to take values only among two boundary points d_{i}, u_{i}, and it is supposed to be random with some given distribution.

Rainbow (or colored) European Call Options

 A premium function f of J variables specifies the type of an option.Standard examples $\left(S^{1}, S^{2}, \ldots, S^{J}\right.$ represent the expiration values of the underlying assets, and K, K_{1}, \ldots, K_{J} represent the strike prices):
Option delivering the best of J risky assets and cash

$$
\begin{equation*}
f\left(S^{1}, S^{2}, \ldots, S^{J}\right)=\max \left(S^{1}, S^{2}, \ldots, S^{J}, K\right) \tag{13}
\end{equation*}
$$

Calls on the maximum of J risky assets

$$
\begin{equation*}
f\left(S^{1}, S^{2}, \ldots, S^{J}\right)=\max \left(0, \max \left(S^{1}, S^{2}, \ldots, S^{J}\right)-K\right) \tag{14}
\end{equation*}
$$

Multiple-strike options

$$
\begin{equation*}
f\left(S^{1}, S^{2}, \ldots, S^{J}\right)=\max \left(0, S^{1}-K_{1}, S^{2}-K_{2}, \ldots, S^{J}-K_{J}\right) \tag{15}
\end{equation*}
$$

Portfolio options

$$
\begin{equation*}
f\left(S^{1}, S^{2}, \ldots, S^{J}\right)=\max \left(0, n_{1} S^{1}+n_{2} S^{2}+\ldots+n_{J} S^{J}-K\right) \tag{16}
\end{equation*}
$$

Spread options: $f\left(S^{1}, S^{2}\right)=\max \left(0,\left(S^{2}-S^{1}\right)-K\right)$.

Investor's (seller of an option) control: one step

 X_{k} the capital of the investor at the time $k=1,2, \ldots$. At each time $k-1$ the investor determines his portfolio by choosing the numbers γ_{k}^{i} of common stocks of each kind to be held so that the structure of the capital is represented by the formula$$
X_{k-1}=\sum_{i=1}^{J} \gamma_{k}^{i} S_{k-1}^{i}+\left(X_{k-1}-\sum_{i=1}^{J} \gamma_{k}^{i} S_{k-1}^{i}\right),
$$

where the expression in bracket corresponds to the part of his capital laid on the bank account. The control parameters γ_{k}^{i} can take all real values, i.e. short selling and borrowing are allowed. The value ξ_{k} becomes known in the moment k and thus the capital at the moment k becomes

$$
X_{k}=\sum_{i=1}^{J} \gamma_{k}^{i} \xi_{k}^{i} S_{k-1}^{i}+\rho\left(X_{k-1}-\sum_{i=1}^{J} \gamma_{k}^{i} S_{k-1}^{i}\right)
$$

Investor's control: n step game

If n is the maturity date, this procedures repeats n times starting from some initial capital $X=X_{0}$ (selling price of an option) and at the end the investor is obliged to pay the premium f to the buyer.
Thus the (final) income of the investor equals

$$
\begin{equation*}
G\left(X_{n}, S_{n}^{1}, S_{n}^{2}, \ldots, S_{n}^{J}\right)=X_{n}-f\left(S_{n}^{1}, S_{n}^{2}, \ldots, S_{n}^{J}\right) \tag{17}
\end{equation*}
$$

The evolution of the capital can thus be described by the dynamic n-step game of the investor (strategies are sequences of real vectors $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ (with $\left.\gamma_{j}=\left(\gamma_{j}^{1}, \ldots, \gamma_{j}^{J}\right)\right)$) with the Nature (characterized by unknown parameters ξ_{k}^{i}).
A position of the game at any time k is characterized by $J+1$ non-negative numbers $X_{k}, S_{k}^{1}, \ldots, S_{k}^{J}$ with the final income specified by the function

$$
\begin{equation*}
G\left(X, S^{1}, \ldots, S^{J}\right)=X-f\left(S^{1}, \ldots, S^{J}\right) \tag{18}
\end{equation*}
$$

Robust control (guaranteed payoffs, worst case

 scenario)Minmax payoff (guaranteed income) with the final income G in a one step game with the initial conditions X, S^{1}, \ldots, S^{J} is given by the Bellman operator

$$
\begin{gathered}
\mathbf{B} G\left(X, S^{1}, \ldots, S^{J}\right) \\
=\max _{\gamma} \min _{\xi} G\left(\rho X+\sum_{i=1}^{J} \gamma^{i} \xi^{i} S^{i}-\rho \sum_{i=1}^{J} \gamma^{i} S^{i}, \xi^{1} S^{1}, \ldots, \xi^{J} S^{J}\right),
\end{gathered}
$$

and the guaranteed income in the n step game with the initial conditions $X_{0}, S_{0}^{1}, \ldots, S_{0}^{J}$ is

$$
\mathbf{B}^{n} G\left(X_{0}, S_{0}^{1}, \ldots, S_{0}^{J}\right)
$$

Reduced Bellman operator

Clearly for G of form $G\left(X, S^{1}, \cdots, S^{J}\right)=X-f\left(S^{1}, \cdots, S^{J}\right)$,

$$
\mathbf{B} G\left(X, S^{1}, \ldots, S^{J}\right)
$$

$=X-\frac{1}{\rho} \min _{\gamma} \max _{\xi}\left[f\left(\xi^{1} S^{1}, \xi^{2} S^{2}, \cdots, \xi^{J} S^{J}\right)-\sum_{j=1}^{J} \gamma^{j} S^{j}\left(\xi^{j}-\rho\right)\right]$,
and hence

$$
\mathbf{B}^{n} G\left(X, S^{1}, \cdots, S^{J}\right)=X-\left(\mathcal{B}^{n} f\right)\left(S^{1}, \cdots, S^{J}\right)
$$

where the reduced Bellman operator is defined as:

$$
\begin{equation*}
(\mathcal{B} f)(z)=\frac{1}{\rho} \min _{\gamma} \max _{\left\{\xi j \in\left[d_{j}, u_{j}\right]\right\}}[f(\xi \circ z)-(\gamma, \xi \circ z-\rho z)] . \tag{19}
\end{equation*}
$$

Here $(\xi \circ z)^{i}=\xi^{i} z^{i}$ - Hadamard product.

Hedging

Main definition. A strategy $\gamma_{1}^{i}, \ldots, \gamma_{n}^{i}, i=1, \ldots, J$, of the investor is called a hedge, if for any sequence $\left(\xi_{1}, \ldots, \xi_{n}\right)$ (with $\left.\xi_{j}=\left(\xi_{j}^{1}, \ldots, \xi_{j}^{J}\right)\right)$ the investor is able to meet his obligations, i.e.

$$
G\left(X_{n}, S_{n}^{1}, \ldots, S_{n}^{J}\right) \geq 0
$$

The minimal value of the capital X_{0} for which the hedge exists is called the hedging price H of an option.
Theorem (Game theory for option pricing.)
The minimal value of X_{0} for which the income of the investor is not negative (and which by definition is the hedge price H) is given by

$$
\begin{equation*}
H^{n}=\left(\mathcal{B}^{n} f\right)\left(S_{0}^{1}, \ldots, S_{0}^{J}\right) \tag{20}
\end{equation*}
$$

Risk-neutral evaluation for options: setting

A linear change of variables yields
$(\mathcal{B} f)\left(z^{1}, \ldots, z^{J}\right)=\frac{1}{\rho} \min _{\gamma} \max _{\left\{\eta \in\left[z^{i}\left(d_{i}-\rho\right), z^{i}\left(u_{i}-\rho\right)\right]\right\}}[f(\eta+\rho z)-(\gamma, \eta)]$.
(21)

Assuming f is convex, we are in the setting above with

$$
\Pi=\Pi_{z, \rho}=\times_{i=1}^{J}\left[z^{i}\left(d_{i}-\rho\right), z^{i}\left(u_{i}-\rho\right)\right]
$$

with vertices

$$
\eta_{I}=\xi_{I} \circ z-\rho z, \quad \xi_{I}=\left\{\left.d_{i}\right|_{i \in I},\left.u_{j}\right|_{j \neq I}\right\}
$$

parametrized by all subsets (including the empty one) $I \subset\{1, \ldots, J\}$.
Above theory reduces our dynamic game to a controlled Markov jump problem:

Risk-neutral evaluation for options: result

Theorem

suppose the vertices ξ_{I} are in general position: for any J subsets I_{1}, \cdots, I_{J}, the vectors $\left\{\xi_{l_{k}}-\rho \mathbf{1}\right\}_{k=1}^{J}$ are independent in \mathbf{R}^{J}. Then

$$
\begin{equation*}
(\mathcal{B} f)(z)=\max _{\{\Omega\}} \mathbf{E}_{\Omega} f(\xi \circ z), \quad z=\left(z^{1}, \cdots, z^{J}\right) \tag{22}
\end{equation*}
$$

where $\{\Omega\}$ is the collection of subsets $\Omega=\xi_{l_{1}}, \cdots, \xi_{I_{+1}}$ of the set of vertices of Π, of size $J+1$, such that their convex hull contains $\rho \mathbf{1}$ as an interior point, and where \mathbf{E}_{Ω} denotes the expectation with respect to the unique probability law $\left\{p_{l}\right\}$, $\xi_{I} \in \Omega$, on the set of vertices of Π, which is supported on Ω and is risk neutral with respect to $\rho \mathbf{1}$, that is

$$
\begin{equation*}
\sum_{I \subset\{1, \ldots, J\}} p_{l} \xi_{I}=\rho \mathbf{1} \tag{23}
\end{equation*}
$$

Sub-modular payoffs

A function $f: \mathbf{R}_{+}^{2} \rightarrow \mathbf{R}_{+}$is called sub-modular, if the inequality

$$
f\left(x_{1}, y_{2}\right)+f\left(x_{2}, y_{1}\right) \geq f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}\right)
$$

holds whenever $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$. A function $f: \mathbf{R}_{+}^{d} \rightarrow \mathbf{R}_{+}$ is called sub-modular if

$$
f(x \bigvee y)+f(x \bigwedge y) \leq f(x)+f(y)
$$

where \bigvee (respectively \bigwedge) denotes the Pareto (coordinate-wise) maximum (respectively minimum).

Remark

If f is twice continuously differentiable, then it is sub-modular if and only if $\frac{\partial^{2} f}{\partial z_{i} \partial z_{j}} \leq 0$ for all $i \neq j$.
As one easily sees, the payoffs of the first three examples of rainbow options, given at the beginning, are sub-modular.

Example J=2 (two colors)

The polyhedron Π is then a rectangle. From sub-modularity of f it follows that the maximum is always achieved either on

$$
\Omega_{d}=\left\{\left(d_{1}, d_{2}\right),\left(d_{1}, u_{2}\right),\left(u_{1}, d_{2}\right)\right\},
$$

or on

$$
\Omega_{u}=\left\{\left(d_{1}, u_{2}\right),\left(u_{1}, d_{2}\right),\left(u_{1}, u_{2}\right)\right\}
$$

and $\mathcal{B} f$ reduces either to $\mathbf{E}_{\Omega_{u}}$ or to $\mathbf{E}_{\Omega_{d}}$ depending on a certain 'correlation coefficient' of possible jumps.

Example J=2 (two colors) continued

Theorem

Let $J=2$, f be convex sub-modular, and denote

$$
\begin{equation*}
\kappa=\frac{\left(u_{1} u_{2}-d_{1} d_{2}\right)-\rho\left(u_{1}-d_{1}+u_{2}-d_{2}\right)}{\left(u_{1}-d_{1}\right)\left(u_{2}-d_{2}\right)} \tag{24}
\end{equation*}
$$

If $\kappa \geq 0$, then $(\mathcal{B} f)\left(z_{1}, z_{2}\right)$ equals
$\frac{\rho-d_{1}}{u_{1}-d_{1}} f\left(u_{1} z_{1}, d_{2} z_{2}\right)+\frac{\rho-d_{2}}{u_{2}-d_{2}} f\left(d_{1} z_{1}, u_{2} z_{2}\right)+\kappa f\left(d_{1} z_{1}, d_{2} z_{2}\right)$,
If $\kappa \leq 0$, the $(\mathcal{B} f)\left(z_{1}, z_{2}\right)$ equals
$\frac{u_{1}-\rho}{u_{1}-d_{1}} f\left(d_{1} z_{1}, u_{2} z_{2}\right)+\frac{u_{2}-\rho}{u_{2}-d_{2}} f\left(u_{1} z_{1}, d_{2} z_{2}\right)+|\kappa| f\left(u_{1} z_{1}, u_{2} z_{2}\right)$,

Example J=2 (two colors) completed

By linearity, the powers of \mathcal{B} can be found. Say, if $\kappa=0$,

$$
\begin{gathered}
C_{h}=\rho^{-n} \sum_{k=0}^{n} C_{n}^{k} \\
\left(\frac{\rho-d_{1}}{u_{1}-d_{1}}\right)^{k}\left(\frac{\rho-d_{2}}{u_{2}-d_{2}}\right)^{n-k} f\left(u_{1}^{k} d_{1}^{n-k} S_{0}^{1}, d_{2}^{k} u_{2}^{n-k} S_{0}^{2}\right) .
\end{gathered}
$$

(two-dimensional version of CRR formula).
Important: risk neutral selector.

$J>2$ colors: reduction to a linear Bellman

Notation: for a set $I \subset\{1,2, \ldots, J\}, f_{l}(z)$ (resp. $\left.\tilde{f}_{l}(z)\right)$ is $f\left(\xi^{1} z_{1}, \cdots, \xi^{J} z_{J}\right)$ with $\xi^{i}=d_{i}$ for $i \in I$ and $\xi_{i}=u_{i}$ for $i \notin I$ (resp. $\xi^{i}=u_{i}$ for $i \in I$ and $\xi_{i}=d_{i}$ for $i \notin I$).
Theorem
Let f be convex and sub-modular. If $\sum_{i=1}^{J} \frac{\rho-d_{i}}{u_{i}-d_{i}}<1$ or $\sum_{i=1}^{J} \frac{u_{i}-\rho}{u_{i}-d_{i}}<1$, then respectively

$$
\begin{align*}
& (\mathcal{B} f)(z)=\frac{1}{\rho}\left[\tilde{f}_{\emptyset}(z)+\sum_{j=1}^{J} \frac{\rho-d_{j}}{u_{j}-d_{j}}\left(\tilde{f}_{j}(z)-\tilde{f}_{\not 匕}\right)\right], \tag{25}\\
& (\mathcal{B} f)(z)=\frac{1}{\rho}\left[f_{\emptyset}(z)+\sum_{j=1}^{J} \frac{u_{j}-\rho}{u_{j}-d_{j}}\left(f_{j}(z)-f_{\emptyset}\right)\right] . \tag{26}
\end{align*}
$$

Again \mathcal{B} is linear implying a multi-color extension of CRR formula.

Example J=3 (three colors), I

When conditions of the above theorem do not hold the reduced Bellman operator does not turn to a linear form, even though essential simplifications still have place for submodular payoffs. Introduce the following coefficients:

$$
\alpha_{I}=1-\sum_{j \in I} \frac{u_{j}-r}{u_{j}-d_{j}}, \text { where } \quad I \subset\{1,2, \ldots, J\}
$$

In particular, in case $J=3$

$$
\begin{align*}
& \alpha_{12}=\left(1-\frac{u_{1}-r}{u_{1}-d_{1}}-\frac{u_{2}-r}{u_{2}-d_{2}}\right) \\
& \alpha_{13}=\left(1-\frac{u_{1}-r}{u_{1}-d_{1}}-\frac{u_{3}-r}{u_{3}-d_{3}}\right) \tag{27}\\
& \alpha_{23}=\left(1-\frac{u_{2}-r}{u_{2}-d_{2}}-\frac{u_{3}-r}{u_{3}-d_{3}}\right) .
\end{align*}
$$

Example J=3 (three colors), II

Theorem
Conditions of Theorem 8 do not hold. If $\alpha_{12} \geq 0, \alpha_{13} \geq 0$ and $\alpha_{23} \geq 0$, then

$$
\begin{gathered}
(\mathcal{B} f)(\mathbf{z})=\frac{1}{r} \max (I, I I, I I), \\
I=-\alpha_{123} f_{\{1,2\}}(\mathbf{z})+\alpha_{13} f_{\{2\}}(\mathbf{z})+\alpha_{23} f_{\{1\}}(\mathbf{z})+\frac{u_{3}-r}{u_{3}-d_{3}} f_{\{3\}}(\mathbf{z}), \\
I I=-\alpha_{123} f_{\{1,3\}}(\mathbf{z})+\alpha_{12} f_{\{3\}}(\mathbf{z})+\alpha_{23} f_{\{1\}}(\mathbf{z})+\frac{u_{2}-r}{u_{2}-d_{2}} f_{\{2\}}(\mathbf{z}), \\
I I I=-\alpha_{123} f_{\{2,3\}}(\mathbf{z})+\alpha_{12} f_{\{3\}}(\mathbf{z})+\alpha_{13} f_{\{2\}}(\mathbf{z})+\frac{u_{1}-r}{u_{1}-d_{1}} f_{\{1\}}(\mathbf{z}) .
\end{gathered}
$$

For the cases (i) $\alpha_{i j} \leq 0, \alpha_{j k} \geq 0, \alpha_{i k} \geq 0$, and (ii) $\alpha_{i j} \geq 0$, $\alpha_{j k} \leq 0, \alpha_{i k} \leq 0$, where $\{i, j, k\}$ is an arbitrary permutation of the set $\{1,2,3\}$, similar explicit formulae are available.

Transaction costs

Extended state space (at time $m-1$):

$$
X_{m-1}, S_{m-1}^{j}, v_{m-1}=\gamma_{m-1}^{j}, \quad j=1, \cdots, J
$$

New state at time m becomes

$$
\begin{gather*}
X_{m}, \quad S_{m}^{j}=\xi_{m}^{j} S_{m-1}^{j}, \quad v_{m}=\gamma_{m}^{j}, \quad j=1, \cdots, J \\
X_{m}=\sum_{j=1}^{J} \gamma_{m}^{j} \xi_{m}^{j} S_{m-1}^{j}+\rho\left(X_{m-1}-\sum_{j=1}^{J} \gamma_{m}^{j} S_{m-1}^{j}\right)-g\left(\gamma_{m}-v_{m-1}, S_{m-1}\right) \tag{28}
\end{gather*}
$$

New reduced Bellman operator:
$(\mathcal{B} f)(z, v)=\min _{\gamma} \max _{\xi}[f(\xi \circ z, \gamma)-(\gamma, \xi \circ z-\rho z)+g(\gamma-v, z)]$.

Other extensions

American and real options,
Path dependent payoffs,
Time dependent data
Nonlinear jump pattern, where the reduced Bellman operator becomes
$(\mathcal{B} f)(z)=\min _{\gamma} \max _{i \in\{1, \cdots, k\}}\left[f\left(g_{i}(z)\right)-\left(\gamma, g_{i}(z)-\rho z\right)\right], \quad z=\left(z^{1}, \ldots, z^{J}\right)$,
(30)
or equivalently

$$
\begin{equation*}
(\mathcal{B} f)(z)=\min _{\gamma} \max _{\eta_{i} \in\left\{g_{i}(z)\right\}, i=1, \cdots, k}\left[f\left(\eta_{i}+\rho z\right)-\left(\gamma, \eta_{i}\right)\right] \tag{31}
\end{equation*}
$$

Upper and Lower values; intrinsic risk I

The upper value (or the upper expectation) $\overline{\mathbf{E}} f$ of a random variable f is defined as the minimal capital of the investor such that he/she has a strategy that guarantees that at the final moment of time, his capital is enough to buy f, i.e.

$$
\overline{\mathbf{E}} f=\inf \left\{\alpha: \exists \gamma: \forall \xi, X_{\gamma}^{\alpha}(\xi)-f(\xi) \geq 0\right\} .
$$

Dually, the lower value (or the lower expectation) $\underline{E} f$ of a random variable f is defined as the maximum capital of the investor such that he/she has a strategy that guarantees that at the final moment of time his capital is enough to sell f, i.e.

$$
\underline{\mathbf{E}} f=\sup \left\{\alpha: \exists \gamma: \forall \xi, X_{\gamma}^{\alpha}(\xi)+f(\xi) \geq 0\right\} .
$$

One says that the prices are consistent if $\overline{\mathbf{E}} f \geq \underline{\mathbf{E}} f$. If these prices coincide, we are in a kind of abstract analog of a complete market. In the general case, upper and lower prices are also referred to as a seller and buyer prices respectively.

Upper and Lower values; intrinsic risk II

Our setting:

$$
\begin{gather*}
\left(\mathcal{B}_{\text {low }} f\right)(z)=\max _{\gamma} \min _{\left\{\xi^{j} \in\left\{d_{j}, u_{j}\right\}\right\}}[f(\xi \circ z)-(\gamma, \xi \circ z-\rho z)], \tag{32}\\
\left(\mathcal{B}_{\text {low }} f\right)(z)=\min _{\{\Omega\}} \mathbf{E}_{\Omega} f(\xi \circ z), \quad z=\left(z^{1}, \cdots, z^{J}\right) \tag{33}
\end{gather*}
$$

The difference between lower and upper prices can be considered as a measure of intrinsic risk of an incomplete market.
Cash-back methodology for dealing with intrinsic risk. Link with coherent measure of risk.

Identification of pre-Markov chains, I

Example: multi-nomial model of stock prices: in each period the price is multiplied by one of n given positive numbers $a_{1}<\cdots<a_{n}$.
Risk-neutrality for a probability law $\left\{p_{1}, \cdots, p_{n}\right\}$ on these multipliers: $\sum_{i=1}^{n} p_{i} a_{i}=\rho$.
Suppose the prices of certain contingent claims specified by payoffs f from a family F are given yielding

$$
\sum_{i=1}^{n} p_{i} f\left(a_{i}\right)=\omega(f), \quad f \in F
$$

If the family F is rich enough, one can expect to be able to identify a unique eligible risk-neutral probability law, so that max in the r.h.s. of (??) disappears.

Identification of pre-Markov chains, II

Assume $n-2$ premia of European calls (with different strike prices) are given. Choose a_{2}, \cdots, a_{n-1} to coincide with strike prices of these call options. Then

$$
\left\{\begin{array}{l}
p_{1}+\cdots+p_{n}=1 \tag{34}\\
a_{1} p_{1}+\cdots+a_{n} p_{n}=\rho \\
\left(a_{3}-a_{2}\right) p_{3}+\left(a_{4}-a_{2}\right) p_{4}+\cdots\left(a_{n}-a_{2}\right) p_{n}=\omega_{3} \\
\quad \cdots \\
\left(a_{n-1}-a_{n-2}\right) p_{n-1}+\left(a_{n}-a_{n-2}\right) p_{n}=\omega_{n-1} \\
\left(a_{n}-a_{n-1}\right) p_{n}=\omega_{n}
\end{array}\right.
$$

with certain ω_{j}.
The determinant of this system is $\prod_{k=2}^{n}\left(a_{k}-a_{k-1}\right)$. The system is of triangular type, and thus explicitly solvable.

Identification of pre-Markov chains, III

To simplify further: assume equal spacing: $a_{k}-a_{k-1}=\Delta$ for all $k=2, \cdots, n$ and $\Delta>0$. Then system (34) reduces to the system of type

$$
\left\{\begin{array}{l}
x_{1}+\cdots+x_{n}=b_{1} \\
x_{2}+2 x_{3}+\cdots+(n-1) x_{n}=b_{2} \\
x_{3}+2 x_{4}+\cdots+(n-2) x_{n}=b_{3} \tag{35}\\
\quad \cdots \\
\quad x_{n-1}+2 x_{n}=b_{n-1} \\
x_{n}=b_{n}
\end{array}\right.
$$

(where $x_{k}=\Delta p_{k}, b_{1}=\Delta, b_{2}=\rho-1, b_{j}=\omega_{j}$ for $j>2$).

Identification of pre-Markov chains, IV

Explicit solution

$$
\left\{\begin{array}{l}
x_{n}=b_{n} \tag{36}\\
x_{n-1}=b_{n-1}-2 b_{n} \\
x_{k}=b_{k}-2 b_{k+1}+b_{k+2}, \quad k=2, \cdots, n-2 \\
x_{1}=b_{1}-b_{2}+b_{3}
\end{array}\right.
$$

Similarly with colored options or interest rate models.

Continuous time limit

$$
\begin{equation*}
g_{i}(z)=z+\tau^{\alpha} \phi_{i}(z), \quad i=1, \cdots, k \tag{37}
\end{equation*}
$$

with some functions ϕ_{i} and a constant $\alpha \in[1 / 2,1]$.
Introducing

$$
p_{i}^{\prime}(z)=\lim _{\tau \rightarrow 0} p_{i}^{\prime}(z, \tau)
$$

yields

$$
\begin{equation*}
r f=\frac{\partial f}{\partial t}+r\left(z, \frac{\partial f}{\partial z}\right)+\frac{1}{2} \max _{I} \sum_{i \in I} p_{i}^{\prime}(z)\left(\frac{\partial^{2} f}{\partial z^{2}} \phi_{i}(z), \phi_{i}(z)\right) \tag{38}
\end{equation*}
$$

in case $\alpha=1 / 2$, and the trivial first order equation

$$
\begin{equation*}
r f=\frac{\partial f}{\partial t}+r\left(z, \frac{\partial f}{\partial z}\right) \tag{39}
\end{equation*}
$$

in case $\alpha>1 / 2$.

Continuous time limit: $J=2$

$$
\begin{equation*}
u_{i}=1+\sigma_{i} \sqrt{\tau}, \quad d_{i}=1-\sigma_{i} \sqrt{\tau}, \quad i=1,2 \tag{40}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\frac{u_{i}-\rho}{u_{i}-d_{i}} & =\frac{1}{2}-\frac{r}{2 \sigma_{i}} \sqrt{\tau}, \quad i=1,2 \\
\kappa & =-\frac{1}{2} r \sqrt{\tau}\left(\frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2}}\right)
\end{aligned}
$$

The upper price equation
$r f=\frac{\partial f}{\partial t}+r\left(z, \frac{\partial f}{\partial z}\right)+\frac{1}{2}\left[\sigma_{1}^{2} z_{1}^{2} \frac{\partial^{2} f}{\partial z_{1}^{2}}-2 \sigma_{1} \sigma_{2} z_{1} z_{2} \frac{\partial^{2} f}{\partial z_{1} \partial z_{2}}+\sigma_{2}^{2} z_{2}^{2} \frac{\partial^{2} f}{\partial z_{2}^{2}}\right]$.
(41)

The lower price equation
$r f=\frac{\partial f}{\partial t}+r\left(z, \frac{\partial f}{\partial z}\right)+\frac{1}{2}\left[\sigma_{1}^{2} z_{1}^{2} \frac{\partial^{2} f}{\partial z_{1}^{2}}+2 \sigma_{1} \sigma_{2} z_{1} z_{2} \frac{\partial^{2} f}{\partial z_{1} \partial z_{2}}+\sigma_{2}^{2} z_{2}^{2} \frac{\partial^{2} f}{\partial z_{2}^{2}}\right]$.
(42)

Fractional dynamics, I

Example: $J=2$, sub-modular payoffs.

$$
X_{n+1}^{\tau}(z)=X_{n}^{\tau}(z)+\sqrt{\tau} \phi\left(X_{n}^{\tau}(z)\right), \quad X_{0}^{\tau}(z)=z
$$

where $\phi(z)$ is one of three points
$\left(z^{1} d_{1}, z^{2} u_{2}\right),\left(z^{1} u_{1}, z^{2} d_{2}\right),\left(z^{1} u_{1}, z^{2} u_{2}\right)$ that are chosen with the corresponding risk neutral probabilities. As was shown above, this Markov chain converges, as $\tau \rightarrow 0$ and $n=[t / \tau]$ (where [s] denotes the integer part of a real number s), to the diffusion process X_{t} solving the Black-Scholes type (degenerate) equation (41), i.e. a sub-Markov process with the generator $L f(x)$ being
$-r f+r\left(z, \frac{\partial f}{\partial z}\right)+\frac{1}{2}\left[\sigma_{1}^{2} z_{1}^{2} \frac{\partial^{2} f}{\partial z_{1}^{2}}-2 \sigma_{1} \sigma_{2} z_{1} z_{2} \frac{\partial^{2} f}{\partial z_{1} \partial z_{2}}+\sigma_{2}^{2} z_{2}^{2} \frac{\partial^{2} f}{\partial z_{2}^{2}}\right]$.

Fractional dynamics, II

Assume now that the times between jumps T_{1}, T_{2}, \cdots are i.i.d.:

$$
\mathbf{P}\left(T_{i} \geq t\right) \sim \frac{1}{\beta t^{\beta}}
$$

with $\beta \in(0,1)$. It is well known that such T_{i} belong to the domain of attraction of the β-stable law:

$$
\Theta_{t}^{\tau}=\tau^{1 / \beta}\left(T_{1}+\cdots+T_{[t / \tau]}\right)
$$

converge, as $\tau \rightarrow 0$, to a β-stable Lévy motion Θ_{t}, which is a Lévy process on \mathbf{R}_{+}with the fractional derivative of order β as the generator:
$A f(t)=-\frac{d^{\beta}}{d(-t)^{\beta}} f(t)=-\frac{1}{\Gamma(-\beta)} \int_{0}^{\infty}(f(t+r)-f(t)) \frac{d r}{r^{1+\beta}}$.

Fractional dynamics, III

We are now interested in the process

$$
Y_{t}^{\tau}(z)=X_{N_{t}^{\tau}}^{\tau}(z)
$$

where

$$
N_{t}^{\tau}=\max \left\{u: \Theta_{u}^{\tau} \leq t\right\}
$$

The limiting process

$$
N_{t}=\max \left\{u: \Theta_{u} \leq t\right\}
$$

is therefore the inverse (or hitting time) process of the β-stable Lévy motion Θ_{t}.

Fractional dynamics, IV

Theorem

The process Y_{t}^{τ} converges to $Y_{t}=X_{N_{t}}$, whose averages $f(T-t, x)=\mathbf{E} f\left(Y_{T-t}(x)\right)$ have explicit representation
$f(T-t, x)=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} G_{u}^{-}\left(z_{1}, z_{2} ; w_{1}, w_{2}\right) Q(T-t, u) d u d w_{1} d w_{2}$,
where G^{-}, the transition probabilities of $X_{t}, Q(t, u)$ denotes the probability density of the process N_{t}.
Moreover, for $f \in C_{\infty}^{2}\left(\mathbf{R}^{d}\right), f(t, x)$ satisfy the (generalized) fractional evolution equation (of Black-Scholes type)

$$
\frac{d^{\beta}}{d t^{\beta}} f(t, x)=L f(t, x)+\frac{t^{-\beta}}{\Gamma(1-\beta)} f(t, x) .
$$

General case leads to fractional extension of nonlinear Black-Scholes type equation (not worked out rigorously yet).

Selected bibliography

[1] V. N. Kolokoltsov. Non expansive maps and option pricing theory. Kibernetica 34:6 (1998), 713-724.
[2] Z. Hucki, V. Kolokoltsov. Pricing of rainbow options: game theoretic approach. International Game Theory Review 9:2 (2007), 215-242.
[3] V. N. Kolokoltsov, O.A. Malafeyev. Understanding Game Theory. World Scientific, 2010.
[4] V. N. Kolokoltsov. Game theoretic analysis of incomplete markets: emergence of probabilities, nonlinear and fractional Black-Scholes equations. http://arxiv.org/abs/1105.3053. To appear in 'Risk and decision analysis'.
[5] Pierre Bernhard, Jean-Pierre Aubin, Patrick Saint-Pierre, Jacob Engwerda, and Vassili Kolokoltsov. Game Theoretic Methods and the Interval Market Model in Mathematical
Finance. To appear in Birkhäuser, 2011.

