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Highlights

• Generalizations of classical BS and CRR formulae with more
rough assumptions on the underlying assets evolution:
interval model.
• Transaction costs included.
• Emergence of risk neutral probabilities in minmax
(robust control) evaluations.
• A natural unique selection among multiple risk neutral
measures arising in incomplete markets for options specified
by sub-modular functions.
• Continuous time limit leading to nonlinear degenerate
and/or fractional Black-Scholes type equations.
• Explicit formulae and new numeric schemes. Identification
of pre-Markov models.



Geometric risk-neutral laws, I
Def. A probability law µ ∈ P(E ) on E ⊂ Rd is risk-neutral if
the origin is its barycenter:

∫
E

ξµ(dξ) = 0. Denote Prn(E ) the
set of risk-neutral laws.
More generally: for a compact E ⊂ Rn and a continuous
F : E → Rd let

P(E ; F ) = {µ ∈ P(E ) : (F , µ) =

∫
F (x)µ(dx) = 0}.

Prn(E ) = P(E ; Id).
Def. E is called weakly (resp. strongly) positively complete, if
there exists no ω ∈ Rd such that (ω, ξ) > 0 (resp. (ω, ξ) ≥ 0)
for all ξ ∈ E .
Geometrically: E does not belong to any open (respectively
closed) half-space of Rd .
If E ⊂ Rd is a compact convex set, then E is weakly positively
complete if and only if it contains the origin.



Geometric risk-neutral laws, II

Proposition
Let E ⊂ Rn be compact and a mapping F : E → Rd

continuous.
(i) The set P(E ; F ) is not empty if and only if F (E ) is weakly
positively complete in Rd .
(ii) Let E ′ be the support of a measure µ ∈ P(E ; F ). If F (E ′)
does not coincide with the origin, then it is strongly positively
complete in the subspace Rm ⊂ Rd generated by F (E ′).

Proposition
Let E ⊂ Rn be compact, a mapping
F = (F 1, · · · , F d) : E → Rd be continuous and µ be an
extreme point of the set P(E ; F ). Then µ is a linear
combination of not more than d + 1 Dirac measures.



Geometric risk-neutral laws, III

Proposition
Example. Let E = {ξ1, · · · , ξd+1} be strongly positively
complete in Rd . Then there exists a unique risk-neutral
probability law {p1, · · · , pd+1} on {ξ1, · · · , ξd+1}: pi equals
the ratio of the volume of the pyramids Π[{0 ∪ {ξ̂i}}] to the
whole volume Π[ξ1, · · · , ξd+1].

({ξ̂i} denotes the family ξ1, · · · , ξd+1 with ξ taken out).

Theorem
Let a compact set E ⊂ Rd be strongly positively complete.
Then the extreme points of the set of risk-neutral probabilities
on E are the Dirac mass at zero (only when E contains the
origin) and the risk-neutral measures with support on families
of size m + 1, 0 < m ≤ d, that generate a subspace of
dimension m and are strongly positively complete in this
subspace.



Underlying Game, I

Π[ξ1, · · · , ξd+1](f ) = min
γ∈Rd

max
i

[f (ξi)− (ξi , γ)], (1)

and
Π[ξ1, · · · , ξd+1](f ) = max

γ∈Rd
min

i
[f (ξi) + (ξi , γ)], (2)

where ξ1, · · · , ξd+1 are d + 1 vectors in Rd in general position
(origin is in the interior of their convex hull).
A remarkable fact: expressions (1) and (2) are linear in f and
the minimizing γ is unique and also depends linearly on f .



Underlying Game II
Proposition
ξ1, · · · , ξd+1 are d + 1 vectors in Rd in general position. Then

Π[ξ1, · · · , ξd+1](f ) = Π[ξ1, · · · , ξd+1](f ) = Ef (ξ), (3)

where E is with respect to the unique risk neutral law on {ξi},
and the minimum in (1) is attained on the single γ0:

γ0 = E[f (ξ)r(ξ)] (4)

with explicitly defined vectors r(ξ),

|γ0| ≤ ‖f ‖ 1

d

S(ξ1, · · · , ξd+1)

V (ξ1, · · · , ξd+1)
, (5)

where S(ξ1, · · · , ξd+1) is the surface volume of the pyramid
Π[ξ1, · · · , ξd+1] and V (ξ1, · · · , ξd+1) is its volume.



Underlying Game III
For a compact E and a continuous function f define

Π[E ](f ) = inf
γ∈Rd

max
ξ∈E

[f (ξ)− (ξ, γ)] (6)

and
Π[E ](f ) = sup

γ∈Rd

min
ξ∈E

[f (ξ)− (ξ, γ)]. (7)

Theorem
Let a compact set E ⊂ Rd be strongly positively complete.
Then

Π[E ](f ) = max
µ

Eµf (ξ), Π[E ](f ) = min
µ

Eµf (ξ) (8)

where max (resp. min) is taken over all extreme points µ of
risk-neutral laws on E given by Proposition 1, inf in (6) is
attained on some γ (satisfying the estimates above).



Underlying Game: nonlinear extension

Π[ξ1, · · · , ξk ](f ) = min
γ∈Rd

max
ξ1,··· ,ξk

[f (ξi , γ)− (ξi , γ)]. (9)

Theorem
Let {ξ1, · · · , ξk} ⊂ Rd , k > d, in general position.
Let the function f (ξ, γ) be bounded below and Lipshitz
continuous in γ with a Lipschitz constant κ, which is small
enough.
Then the minimum in (9) is finite, is attained on some γ0 and

Π[ξ1, · · · , ξk ](f ) = max
I

EI f (ξ, γI ), (10)

where max as above and γI is the corresponding (unique)
optimal value (solving a fixed point equation).

Other extensions: infinite-dimensional setting with
one-dimensional projections, random geometry.



Mixed strategies with linear constraints, I
Equivalent form of the result above:

Π[E ](f ) = inf
γ∈Rd

max
µ∈P(E)

Eµ[f (ξ)− (γ, ξ)] = max
µ∈Prn(E)

Eµf (ξ).

(11)
Let E ⊂ Rd be a compact set and P̃(E ) a closed convex
subset of P(E ) (the main example is a set of type P(E ; F )).
Let

Π̃[E ](f ) = inf
γ∈Rd

max
µ∈P̃(E)

Eµ[f (ξ)− (γ, ξ)]

= inf
γ∈Rd

max
µ∈P̃(E)

[∫
f (ξ)µ(dξ)− (γ,

∫
ξµ(dξ))

]
. (12)

Let B denote the linear mapping P̃(E ) → Rd given by

Bµ = Eµξ =

∫
ξµ(dξ)

(barycenter or the center of mass).



Mixed strategies with linear constraints, II

The following main result extends Theorem 2 to the case of
mixed strategies with constraints.

Theorem
The set P̃(E ) ∩ Prn(E ) is empty if and only if the set
B(P̃(E )) is not weakly positively complete, in which case
Π̃[E ](f ) = −∞. Otherwise

Π̃[E ](f ) = inf
γ∈Rd

max
µ∈P̃(E)

Eµ[f (ξ)− (γ, ξ)]

= max
µ∈P̃(E)∩Prn(E)

Eµf (ξ).



Interval model for a market

Market with several securities in discrete time k = 1, 2, ...:
The risk-free bonds (bank account), priced Bk ,
and J common stocks, J = 1, 2..., priced S i

k , i ∈ {1, 2, ..., J}.
Bk+1 = ρBk , ρ ≥ 1 is a constant interest rate,
S i

k+1 = ξi
k+1S

i
k , where ξi

k , i ∈ {1, 2, ..., J}, are unknown
sequences taking values in some fixed intervals
Mi = [di , ui ] ⊂ R (interval model).
This model generalizes the colored version of the classical CRR
model in a natural way.
In the latter a sequence ξi

k is confined to take values only
among two boundary points di , ui , and it is supposed to be
random with some given distribution.



Rainbow (or colored) European Call Options
A premium function f of J variables specifies the type of an
option.
Standard examples (S1, S2, ..., SJ represent the expiration
values of the underlying assets, and K , K1, ..., KJ represent the
strike prices):
Option delivering the best of J risky assets and cash

f (S1, S2, ..., SJ) = max(S1, S2, ..., SJ , K ), (13)

Calls on the maximum of J risky assets

f (S1, S2, ..., SJ) = max(0, max(S1, S2, ..., SJ)− K ), (14)

Multiple-strike options

f (S1, S2, ..., SJ) = max(0, S1−K1, S
2−K2, ...., S

J−KJ), (15)

Portfolio options

f (S1, S2, ..., SJ) = max(0, n1S
1 +n2S

2 + ...+nJS
J−K ), (16)

Spread options: f (S1, S2) = max(0, (S2 − S1)− K ).



Investor’s (seller of an option) control: one step
Xk the capital of the investor at the time k = 1, 2, .... At each
time k − 1 the investor determines his portfolio by choosing
the numbers γ i

k of common stocks of each kind to be held so
that the structure of the capital is represented by the formula

Xk−1 =
J∑

i=1

γ i
kS

i
k−1 + (Xk−1 −

J∑
i=1

γ i
kS

i
k−1),

where the expression in bracket corresponds to the part of his
capital laid on the bank account. The control parameters γ i

k

can take all real values, i.e. short selling and borrowing are
allowed. The value ξk becomes known in the moment k and
thus the capital at the moment k becomes

Xk =
J∑

i=1

γ i
kξ

i
kS

i
k−1 + ρ(Xk−1 −

J∑
i=1

γ i
kS

i
k−1).



Investor’s control: n step game
If n is the maturity date, this procedures repeats n times
starting from some initial capital X = X0 (selling price of an
option) and at the end the investor is obliged to pay the
premium f to the buyer.
Thus the (final) income of the investor equals

G (Xn, S
1
n , S2

n , ..., SJ
n ) = Xn − f (S1

n , S2
n , ..., SJ

n ). (17)

The evolution of the capital can thus be described by the
dynamic n-step game of the investor (strategies are sequences
of real vectors (γ1, ..., γn) (with γj = (γ1

j , ..., γ
J
j ))) with the

Nature (characterized by unknown parameters ξi
k).

A position of the game at any time k is characterized by J + 1
non-negative numbers Xk , S

1
k , ..., SJ

k with the final income
specified by the function

G (X , S1, ..., SJ) = X − f (S1, ..., SJ) (18)



Robust control (guaranteed payoffs, worst case

scenario)

Minmax payoff (guaranteed income) with the final income G
in a one step game with the initial conditions X , S1, ..., SJ is
given by the Bellman operator

BG (X , S1, ..., SJ)

= max
γ

min
ξ

G (ρX +
J∑

i=1

γ iξiS i − ρ

J∑
i=1

γ iS i , ξ1S1, ..., ξJSJ),

and the guaranteed income in the n step game with the initial
conditions X0, S

1
0 , ..., SJ

0 is

BnG (X0, S
1
0 , ..., SJ

0 ).



Reduced Bellman operator
Clearly for G of form G (X , S1, · · · , SJ) = X − f (S1, · · · , SJ),

BG (X , S1, ..., SJ)

= X − 1

ρ
min

γ
max

ξ
[f (ξ1S1, ξ2S2, · · · , ξJSJ)−

J∑
j=1

γjS j(ξj − ρ)],

and hence

BnG (X , S1, · · · , SJ) = X − (Bnf )(S1, · · · , SJ),

where the reduced Bellman operator is defined as:

(Bf )(z) =
1

ρ
min

γ
max

{ξj∈[dj ,uj ]}
[f (ξ ◦ z)− (γ, ξ ◦ z − ρz)]. (19)

Here (ξ ◦ z)i = ξiz i - Hadamard product.



Hedging

Main definition. A strategy γ i
1, ..., γ

i
n, i = 1, ..., J , of the

investor is called a hedge, if for any sequence (ξ1, ..., ξn) (with
ξj = (ξ1

j , ..., ξ
J
j )) the investor is able to meet his obligations,

i.e.
G (Xn, S

1
n , ..., SJ

n ) ≥ 0.

The minimal value of the capital X0 for which the hedge exists
is called the hedging price H of an option.

Theorem (Game theory for option pricing.)
The minimal value of X0 for which the income of the investor
is not negative (and which by definition is the hedge price H)
is given by

Hn = (Bnf )(S1
0 , ..., SJ

0 ). (20)



Risk-neutral evaluation for options: setting
A linear change of variables yields

(Bf )(z1, ..., zJ) =
1

ρ
min

γ
max

{η∈[z i (di−ρ),z i (ui−ρ)]}
[f (η +ρz)− (γ, η)].

(21)
Assuming f is convex, we are in the setting above with

Π = Πz,ρ = ×J
i=1[z

i(di − ρ), z i(ui − ρ)],

with vertices

ηI = ξI ◦ z − ρz , ξI = {di |i∈I , uj |j /∈I},

parametrized by all subsets (including the empty one)
I ⊂ {1, . . . , J}.
Above theory reduces our dynamic game to a controlled
Markov jump problem:



Risk-neutral evaluation for options: result
Theorem
suppose the vertices ξI are in general position: for any J
subsets I1, · · · , IJ , the vectors {ξIk − ρ1}J

k=1 are independent
in RJ . Then

(Bf )(z) = max
{Ω}

EΩf (ξ ◦ z), z = (z1, · · · , zJ), (22)

where {Ω} is the collection of subsets Ω = ξI1 , · · · , ξIJ+1
of the

set of vertices of Π, of size J + 1, such that their convex hull
contains ρ1 as an interior point, and where EΩ denotes the
expectation with respect to the unique probability law {pI},
ξI ∈ Ω, on the set of vertices of Π, which is supported on Ω
and is risk neutral with respect to ρ1, that is

∑

I⊂{1,...,J}
pI ξI = ρ1. (23)



Sub-modular payoffs
A function f : R2

+ → R+ is called sub-modular, if the
inequality

f (x1, y2) + f (x2, y1) ≥ f (x1, y1) + f (x2, y2)

holds whenever x1 ≤ x2 and y1 ≤ y2. A function f : Rd
+ → R+

is called sub-modular if

f (x
∨

y) + f (x
∧

y) ≤ f (x) + f (y),

where
∨

(respectively
∧

) denotes the Pareto
(coordinate-wise) maximum (respectively minimum).

Remark
If f is twice continuously differentiable, then it is sub-modular
if and only if ∂2f

∂zi∂zj
≤ 0 for all i 6= j .

As one easily sees, the payoffs of the first three examples of
rainbow options, given at the beginning, are sub-modular.



Example J=2 (two colors)

The polyhedron Π is then a rectangle. From sub-modularity of
f it follows that the maximum is always achieved either on

Ωd = {(d1, d2), (d1, u2), (u1, d2)},

or on
Ωu = {(d1, u2), (u1, d2), (u1, u2)}.

and Bf reduces either to EΩu or to EΩd
depending on a certain

’correlation coefficient’ of possible jumps.



Example J=2 (two colors) continued

Theorem
Let J = 2, f be convex sub-modular, and denote

κ =
(u1u2 − d1d2)− ρ(u1 − d1 + u2 − d2)

(u1 − d1)(u2 − d2)
. (24)

If κ ≥ 0, then (Bf )(z1, z2) equals

ρ− d1

u1 − d1
f (u1z1, d2z2) +

ρ− d2

u2 − d2
f (d1z1, u2z2) + κf (d1z1, d2z2),

If κ ≤ 0, the (Bf )(z1, z2) equals

u1 − ρ

u1 − d1
f (d1z1, u2z2) +

u2 − ρ

u2 − d2
f (u1z1, d2z2) + |κ|f (u1z1, u2z2),



Example J=2 (two colors) completed

By linearity, the powers of B can be found. Say, if κ = 0,

Ch = ρ−n
n∑

k=0

C k
n

(
ρ− d1

u1 − d1

)k (
ρ− d2

u2 − d2

)n−k

f (uk
1dn−k

1 S1
0 , dk

2 un−k
2 S2

0 ).

(two-dimensional version of CRR formula).
Important: risk neutral selector.



J > 2 colors: reduction to a linear Bellman
Notation: for a set I ⊂ {1, 2, ..., J}, fI (z) (resp. f̃I (z)) is
f (ξ1z1, · · · , ξJzJ) with ξi = di for i ∈ I and ξi = ui for i /∈ I
(resp. ξi = ui for i ∈ I and ξi = di for i /∈ I ).

Theorem
Let f be convex and sub-modular. If

∑J
i=1

ρ−di

ui−di
< 1 or∑J

i=1
ui−ρ
ui−di

< 1, then respectively

(Bf )(z) =
1

ρ

[
f̃∅(z) +

J∑
j=1

ρ− dj

uj − dj
(f̃j(z)− f̃∅)

]
, (25)

(Bf )(z) =
1

ρ

[
f∅(z) +

J∑
j=1

uj − ρ

uj − dj
(fj(z)− f∅)

]
. (26)

Again B is linear implying a multi-color extension of CRR
formula.



Example J=3 (three colors), I

When conditions of the above theorem do not hold the reduced
Bellman operator does not turn to a linear form, even though
essential simplifications still have place for submodular payoffs.
Introduce the following coefficients:

αI = 1−
∑

j∈I

uj − r

uj − dj
, where I ⊂ {1, 2, ..., J}.

In particular, in case J = 3

α12 =
(
1− u1−r

u1−d1
− u2−r

u2−d2

)

α13 =
(
1− u1−r

u1−d1
− u3−r

u3−d3

)

α23 =
(
1− u2−r

u2−d2
− u3−r

u3−d3

)
.

(27)



Example J=3 (three colors), II

Theorem
Conditions of Theorem 8 do not hold.
If α12 ≥ 0, α13 ≥ 0 and α23 ≥ 0, then

(Bf )(z) =
1

r
max(I , II , II ),

I = −α123f{1,2}(z) + α13f{2}(z) + α23f{1}(z) +
u3 − r

u3 − d3
f{3}(z),

II = −α123f{1,3}(z) + α12f{3}(z) + α23f{1}(z) +
u2 − r

u2 − d2
f{2}(z),

III = −α123f{2,3}(z) + α12f{3}(z) + α13f{2}(z) +
u1 − r

u1 − d1
f{1}(z).

For the cases (i) αij ≤ 0, αjk ≥ 0, αik ≥ 0, and (ii) αij ≥ 0,
αjk ≤ 0, αik ≤ 0, where {i , j , k} is an arbitrary permutation of
the set {1, 2, 3}, similar explicit formulae are available.



Transaction costs

Extended state space (at time m − 1):

Xm−1, S
j
m−1, vm−1 = γj

m−1, j = 1, · · · , J .

New state at time m becomes

Xm, S j
m = ξj

mS j
m−1, vm = γj

m, j = 1, · · · , J ,

Xm =
J∑

j=1

γj
mξj

mS j
m−1+ρ(Xm−1−

J∑
j=1

γj
mS j

m−1)−g(γm−vm−1, Sm−1).

(28)
New reduced Bellman operator:

(Bf )(z , v) = min
γ

max
ξ

[f (ξ ◦z , γ)−(γ, ξ ◦z−ρz)+g(γ−v , z)].

(29)



Other extensions

American and real options,
Path dependent payoffs,
Time dependent data
Nonlinear jump pattern, where the reduced Bellman operator
becomes

(Bf )(z) = min
γ

max
i∈{1,··· ,k}

[f (gi(z))−(γ, gi(z)−ρz)], z = (z1, ..., zJ),

(30)
or equivalently

(Bf )(z) = min
γ

max
ηi∈{gi (z)},i=1,··· ,k

[f (ηi + ρz)− (γ, ηi)]. (31)



Upper and Lower values; intrinsic risk I
The upper value (or the upper expectation) Ef of a random
variable f is defined as the minimal capital of the investor such
that he/she has a strategy that guarantees that at the final
moment of time, his capital is enough to buy f , i.e.

Ef = inf{α : ∃γ : ∀ξ, Xα
γ (ξ)− f (ξ) ≥ 0}.

Dually, the lower value (or the lower expectation) Ef of a
random variable f is defined as the maximum capital of the
investor such that he/she has a strategy that guarantees that
at the final moment of time his capital is enough to sell f , i.e.

Ef = sup{α : ∃γ : ∀ξ, Xα
γ (ξ) + f (ξ) ≥ 0}.

One says that the prices are consistent if Ef ≥ Ef . If these
prices coincide, we are in a kind of abstract analog of a
complete market. In the general case, upper and lower prices
are also referred to as a seller and buyer prices respectively.



Upper and Lower values; intrinsic risk II

Our setting:

(Blow f )(z) = max
γ

min
{ξj∈{dj ,uj}}

[f (ξ ◦ z)− (γ, ξ ◦ z − ρz)], (32)

(Blow f )(z) = min
{Ω}

EΩf (ξ ◦ z), z = (z1, · · · , zJ). (33)

The difference between lower and upper prices can be
considered as a measure of intrinsic risk of an incomplete
market.
Cash-back methodology for dealing with intrinsic risk.
Link with coherent measure of risk.



Identification of pre-Markov chains, I

Example: multi-nomial model of stock prices: in each period
the price is multiplied by one of n given positive numbers
a1 < · · · < an.
Risk-neutrality for a probability law {p1, · · · , pn} on these
multipliers:

∑n
i=1 piai = ρ.

Suppose the prices of certain contingent claims specified by
payoffs f from a family F are given yielding

n∑
i=1

pi f (ai) = ω(f ), f ∈ F .

If the family F is rich enough, one can expect to be able to
identify a unique eligible risk-neutral probability law, so that
max in the r.h.s. of (??) disappears.



Identification of pre-Markov chains, II

Assume n − 2 premia of European calls (with different strike
prices) are given. Choose a2, · · · , an−1 to coincide with strike
prices of these call options. Then





p1 + · · ·+ pn = 1,

a1p1 + · · ·+ anpn = ρ

(a3 − a2)p3 + (a4 − a2)p4 + · · · (an − a2)pn = ω3

...

(an−1 − an−2)pn−1 + (an − an−2)pn = ωn−1

(an − an−1)pn = ωn

(34)

with certain ωj .
The determinant of this system is

∏n
k=2(ak − ak−1). The

system is of triangular type, and thus explicitly solvable.



Identification of pre-Markov chains, III

To simplify further: assume equal spacing: ak − ak−1 = ∆ for
all k = 2, · · · , n and ∆ > 0. Then system (34) reduces to the
system of type





x1 + · · ·+ xn = b1,

x2 + 2x3 + · · ·+ (n − 1)xn = b2

x3 + 2x4 + · · ·+ (n − 2)xn = b3

...

xn−1 + 2xn = bn−1

xn = bn

(35)

(where xk = ∆pk , b1 = ∆, b2 = ρ− 1, bj = ωj for j > 2).



Identification of pre-Markov chains, IV

Explicit solution





xn = bn,

xn−1 = bn−1 − 2bn

xk = bk − 2bk+1 + bk+2, k = 2, · · · , n − 2,

x1 = b1 − b2 + b3.

(36)

Similarly with colored options or interest rate models.



Continuous time limit

gi(z) = z + ταφi(z), i = 1, · · · , k , (37)

with some functions φi and a constant α ∈ [1/2, 1].
Introducing

pI
i (z) = lim

τ→0
pI

i (z , τ)

yields

rf =
∂f

∂t
+ r(z ,

∂f

∂z
) +

1

2
max

I

∑

i∈I

pI
i (z)

(
∂2f

∂z2
φi(z), φi(z)

)

(38)
in case α = 1/2, and the trivial first order equation

rf =
∂f

∂t
+ r(z ,

∂f

∂z
) (39)

in case α > 1/2.



Continuous time limit: J = 2

ui = 1 + σi

√
τ , di = 1− σi

√
τ , i = 1, 2. (40)

Hence
ui − ρ

ui − di
=

1

2
− r

2σi

√
τ , i = 1, 2,

κ = −1

2
r
√

τ(
1

σ1
+

1

σ2
).

The upper price equation

rf =
∂f

∂t
+r(z ,

∂f

∂z
)+

1

2

[
σ2

1z
2
1

∂2f

∂z2
1

− 2σ1σ2z1z2
∂2f

∂z1∂z2
+ σ2

2z
2
2

∂2f

∂z2
2

]
.

(41)
The lower price equation

rf =
∂f

∂t
+r(z ,

∂f

∂z
)+

1

2

[
σ2

1z
2
1

∂2f

∂z2
1

+ 2σ1σ2z1z2
∂2f

∂z1∂z2
+ σ2

2z
2
2

∂2f

∂z2
2

]
.

(42)



Fractional dynamics, I

Example: J = 2, sub-modular payoffs.

X τ
n+1(z) = X τ

n (z) +
√

τφ(X τ
n (z)), X τ

0 (z) = z ,

where φ(z) is one of three points
(z1d1, z

2u2), (z
1u1, z

2d2), (z
1u1, z

2u2) that are chosen with the
corresponding risk neutral probabilities. As was shown above,
this Markov chain converges, as τ → 0 and n = [t/τ ] (where
[s] denotes the integer part of a real number s), to the
diffusion process Xt solving the Black-Scholes type
(degenerate) equation (41), i.e. a sub-Markov process with
the generator Lf (x) being

−rf +r(z ,
∂f

∂z
)+

1

2

[
σ2

1z
2
1

∂2f

∂z2
1

− 2σ1σ2z1z2
∂2f

∂z1∂z2
+ σ2

2z
2
2

∂2f

∂z2
2

]
.

(43)



Fractional dynamics, II

Assume now that the times between jumps T1, T2, · · · are
i.i.d.:

P(Ti ≥ t) ∼ 1

βtβ

with β ∈ (0, 1). It is well known that such Ti belong to the
domain of attraction of the β-stable law:

Θτ
t = τ 1/β(T1 + · · ·+ T[t/τ ])

converge, as τ → 0, to a β-stable Lévy motion Θt , which is a
Lévy process on R+ with the fractional derivative of order β as
the generator:

Af (t) = − dβ

d(−t)β
f (t) = − 1

Γ(−β)

∫ ∞

0

(f (t + r)− f (t))
dr

r 1+β
.



Fractional dynamics, III

We are now interested in the process

Y τ
t (z) = X τ

Nτ
t
(z),

where
Nτ

t = max{u : Θτ
u ≤ t}.

The limiting process

Nt = max{u : Θu ≤ t}

is therefore the inverse (or hitting time) process of the
β-stable Lévy motion Θt .



Fractional dynamics, IV
Theorem
The process Y τ

t converges to Yt = XNt , whose averages
f (T − t, x) = Ef (YT−t(x)) have explicit representation

f (T−t, x) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

G−
u (z1, z2; w1, w2)Q(T−t, u) dudw1dw2,

where G−, the transition probabilities of Xt , Q(t, u) denotes
the probability density of the process Nt .
Moreover, for f ∈ C 2

∞(Rd), f (t, x) satisfy the (generalized)
fractional evolution equation (of Black-Scholes type)

dβ

dtβ
f (t, x) = Lf (t, x) +

t−β

Γ(1− β)
f (t, x).

General case leads to fractional extension of nonlinear
Black-Scholes type equation (not worked out rigorously yet).
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