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The problem of DA

Given:

@ Observations n;,t € [ty, t;]

@ Model with output yr = h(xt) xi = f(Xt)
Objective: Find a trajectory {x; } so that

e =2 yr = h(xt) and Xt = f(%)

Problem:

Due to model error, there is no exact solution. We have to
trade—off between

@ Good model trajectories x; = f(x;)
@ Good tracking of the observations n; = y; = h(x;)
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Example: Variational approach

Xt = f(Xt) + Ut (1)

with perturbations u; to the model.
n = h(x) + 1t (2

with perturbations r; to the output.
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Example: Variational approach

Xt = f(Xt) + Ut (1)
with perturbations u; to the model.

n = h(x) + 1t (2
with perturbations r; to the output.
With
Tracking Error At = /rt2 dt, Dynamical Error Ap = /ut2 dt

minimize 1
(6% —

A, = =A
o 2 T + 2

AD ’ (3)

subject to conditions (1,2).
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Remarks

Remark 1: Error Covariance

In practice, we would use

1
AT = z/rtTert dt

1
AD = 2/utTQ_1ut dt
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Remarks

Remark 2: Background Error

There is often an additional Background Error

1 _
Ag = E(xt1 —%1)"B7(xt, — X1)

with

B = “Background error covariance”
X, = “first guess for xi,”



Data Assimilation

Remarks

Remark 3: White observational noise

The observations might contain a white noise component, i.e.

d?]t = Ctdt + det



Data Assimilation

Remarks

Remark 3: White observational noise

The observations might contain a white noise component, i.e.
d?]t = Ctdt + det

Then the tracking error is re—defined as

1 1
AT = 2/)2/h(Xt)2 dt — p/h(X[) d?’]t
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Remarks

Remark 4: Solution amounts to two point BVP

States and co-states (X, At) satisfy SDE

d)\t = (F(Xt))\t + aG(Xt)) dt + B(Xt)dnt
).(t = f(Xt) + Ut

-1
Q)\tv
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Remarks

Remark 4: Solution amounts to two point BVP

States and co-states (X, At) satisfy SDE

d)\t = (F(Xt))\t + aG(Xt)) dt + B(Xt)dnt
).(t = f(Xt) + Ut

-1
Q)\tv

Ui =
Y1 a

and there are boundary conditions, for example
Ay =AM, =0

for free ends.
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Remarks

Remark 5: Statistical interpretation

«Q 1-«o
Aazz/l’tzdt-i- 2 /Utzdt

xt = f(Xt) + ur, e = h(Xt) + It

Does the trajectory (Xi, (), t € [t1, tz] minimising the functional
A, have a statistical interpretation?
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Remarks

Remark 5: Statistical interpretation

Assume the observations come from

dXt = f(Xt)dt + O'th/

Then it is possible to define the

a posteriori

= "p(xt, t € [ty o] |, t € [ta, 12])”
= Onsager—Machlup—Functional
x exp(BA, + further terms),

Conditions [Zeitouni and Dembo(1987)]:
@OR=)p"p,Q=0'0
@ The mappings f, h have to be known exactly
@ All model error is attributed to W, W',
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Remarks

Remark 5: Statistical interpretation

Therefore, A, is not equal to the (negative log)
Onsager—Machlup functional.

The optimal orbit X, t € [t, t;] is in general not equal to the
maximum-—aposteriori estimator.
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Remarks

Remark 5: Statistical interpretation

Therefore, A, is not equal to the (negative log)
Onsager—Machlup functional.

The optimal orbit X, t € [t, t;] is in general not equal to the
maximum-—aposteriori estimator.

Exception

div(f) = const, and R, Q are not state—dependent
= A, = — log Onsager—Machlup functional.
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Numerical Example

Lorenz’63

o 1-«
Aazz/rtzdt—i—z/utzdt

Xt = f(xt) + ur, e = h(xt) +re

Lorenz’'63: Three dimensional chaotic dynamics. Model and
“Truth” were different, i.e. there was model error (and
observational error).
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Data Assimilation

Example: Errors

Similar results for Lorenz’'63, Lorenz’'96, and the Barotropic Vorticity Equation

s Tracking Error At = [(nx — yr)? dt
s Dynamical Error Ap = [ u? dt,
e Assimilation Error As = [(x; — X;)? dt.

10°%

mmmm 1 racking Error A
105; Dynamical Error AD 7

f| mmmmm True Assimilation Error
104§ E
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How do we choose « (or any other regularisation parameter)?




Out—of-sample error and sensitivity

10° —
mmm T12CKING EFrOT A

5
log(a /1 — &)

How do we choose « (or any other regularisation parameter)?

A small assimilation error is not an operational criterion since in
reality, there is no X!
We need a proxy for the assimilation error As.
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Alternative: the out—of—sample error

Assumption:

Tt G+ _n
~— ~—~— ~—
Observation  Real Signal Noise



Out—of-sample error and sensitivity

Alternative: the out—of—sample error

Assumption:

Tt G+ _n
Observation  Real Signal Noise

Imagine we could generate new observations
/ !/
n =Gt + Iy

with ry and r{ having the same statistical properties but being
uncorrelated.



Out—of-sample error and sensitivity

The out—of—-sample error

Robustness of data assimilation with respect to the noise.
Output y; should be close to n/ as well.
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Out—of-sample error and sensitivity

The out—of—-sample error

Motivation

Robustness of data assimilation with respect to the noise.
Output y; should be close to n/ as well.

The Out—-Of-Sample error
_ / 2
EOOS — /E(m - yt) dt

expected to behave like the assimilation error of the observed
degrees of freedom.



Out—of-sample error and sensitivity

The sensitivity

Proposition:

Eoos = /E(Ut, —yr)%dt = /E(m —yi)?dt +2S

——
Tracking Err. E(A7)

with
S —/Cov[yt,rt]dt

the Sensitivity.



Out—of-sample error and sensitivity

The sensitivity

Proposition:

Eoos = /E(Ut, —yr)%dt = /E(m —yi)?dt +2S

—_—
Tracking Err. E(A7)

with
S —/Cov[yt,rt]dt

the Sensitivity.
(Alternatively, we could call S/p? the sensitivity.)



Out—of-sample error and sensitivity

Variational Data Assimilation
Results for Lorenz’96 [B., Szendro(2011)]

Eoos = Tracking Err. 4+ 2Sensitivity

0.75 :
(b)
AX
A,
0.50 4ay
AAAAAAAAAAAA . ‘ EOOS
s S A Tracking Err. E(At)
0.251, ‘:‘: 1 e Sensitivity S
K3 g oY . . .
__*o.....,__.......ow‘ _,_..«f B True Assimilation Err.
N | |
0.001 .‘.'""“'“"" ......'....I. \

6
In[o/(1-0)]
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Out—of-sample error and sensitivity

Still needed:
A good guess of the observational noise.

We have translated the problem to a new one:

Make a decision what part of the observations you want to
model, and what part you don’t want to model.

In the presented examples, this was done by comparing the
spectrum of the observations with that of the model.
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Conclusions

Conclusions

@ There is a nontrivial trade—off between tracking error and
dynamical error (unless the model is perfect).

@ A minimum Eqos provides a self—consistent criterion to set
the weighting «, or more generally the sensitivity of data
assimilation algorithms.

@ Approx. to the Out—Of—-Sample error (the sensitivity) give
reasonable results in the studied examples.



Conclusions

Questions

Alternative approaches to determine regularisation parameters
should be applicable, too. How do they compare?



Conclusions

For Further Reading |
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