
Some applications of the Stochastic Maximum Principle

Boualem Djehiche
KTH Royal Institute of Technology

Stockholm

Warwick, December 2, 2011

Boualem Djehiche KTH Royal Institute of Technology Stockholm Some applications of the Stochastic Maximum Principle



Outline

I. The pre-commitment case

II. The non-commitment case

Boualem Djehiche KTH Royal Institute of Technology Stockholm Some applications of the Stochastic Maximum Principle
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mean-field type. Applied Math. and Optimization.
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Part II is based on
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(Competing papers are by Y. Hu, H. Jin and X. Y. Zhou (2011) , and J.
Yong (2010,2011))

Boualem Djehiche KTH Royal Institute of Technology Stockholm Some applications of the Stochastic Maximum Principle



Part I. The pre-commitment case

The dynamics of the controlled SDE of mean-field type (through the expected
value) on R is{

dX (t) = b(t,X (t),E[X (t)], u(t))dt + σ(t,X (t),E[X (t)], u(t))dB(t).
X (0) = x0,

(1)
The cost functional is also of mean-field type:

J(u) =E
[∫ T

0

h (t,X (t),E[X (t)], u(t)) dt + g (X (T ),E[X (T )])

]
. (2)

We want to ”find” or characterize (through a Maximum Principle)

u∗ = arg min
u∈U [0,T ]

J(u). (3)

For 0 ≤ t ≤ T , U [t,T ] is the class ”admissible controls”: measurable, adapted
processes u : [t,T ]× Ω −→ U (non-convex in general) satisfying some
integrability conditions.
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Time inconsistent control problem

The fact that g is nonlinear in E (XT ) makes the problem time inconsistent.

The classical Bellman optimality principle based on the law of iterated
expectations on J does not hold.
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A classical example: Mean-variance portfolio selection

The dynamics of the self-financing portfolio is{
dX (t) = (ρX (t) + (α− ρ) u(t)) dt + σu(t)dB(t),
X (0) = x0.

(4)

All the coefficients are constant.

The control u(t) denotes the amount of money invested in the risky asset at
time t.

The cost functional, to be minimized, is given by

J(u) =
γ

2
Var(X (T ))− E[X (T )]. (5)

By rewriting it as

J(u) = E
(γ

2
X 2(T )− X (T )

)
− γ

2
(E[X (T )])2 ,

it becomes nonlinear in E[X (T )].
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The mean-field SDE is obtained as an L2-limit of an interacting particle system
of the form

dx i,n(t) = bi,n(t, ω, u(t))dt + σi,n(t, ω, u(t))dB i
t ,

when n→∞, where, the B i ’s are independent Brownian motions, and

bi,n(t, ω, u(t)) := b
(
t, x i,n(t), 1

n

∑n
j=1 x

j,n(t), u(t)
)

σi,n(t, ω, u(t)) := σ
(
t, x i,n(t), 1

n

∑n
j=1 x

j,n(t), u(t)
)
.

The classical example is the McKean-Vlasov model, in which the coefficients
are linear in the law of the process. (see e.g. Sznitman (1989) and the
references therein).

For the nonlinear case, see Jourdain, Mèlèard and Woyczynski (2008).
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Extending the HJB equation to the mean-field case

(1) Ahmed and Ding (2001) express the value function in terms of the Nisio
semigroup of operators and derive a (very complicated) HJB equation.

(2) Huang et al. (2006) use the Nash Certainty Equivalence Principle to solve
an extended HJB equation.

(3) Lasry and Lions (2007) suggest a new class of nonlinear HJB involving the
dynamics of the probability laws (µt)t .

(4) Björk and Murgoci (2008), Björk, Murgoci and Zhou(2011) use the notion
of Nash equilibrium to transform the time inconsistent control problem into a
standard one and derive an ”extended” HJB equation.
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Assumptions

I The action space U is a subset of R (not necessarily convex!).

I All the involved functions are sufficiently smooth:
- b, σ, g , h are twice continuously differentiable with respect to (x , y).
- b, σ, g , h and all their derivatives with respect to (x , y) are continuous in
(x , y , v), and bounded.

We let û denote an optimal control, and x̂ the corresponding state process.
Also, denote

δϕ(t) = ϕ(t, x̂(t),E [x̂(t)], u(t))− ϕ(t, x̂(t),E [x̂(t)], û(t)),

ϕx(t) = ∂ϕ
∂x

(t, x̂(t),E[x̂(t)], û(t)) ,

and similarly for higher derivatives.
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The Stochastic Maximum Principle Approach

Following Peng (1990), we derive the variational inequality (13) below, from
the fact that

J(uε(·))− J(û(·)) ≥ 0,

where, uε(·) is the so-called spike variation of û(·), defined as follows.

For ε > 0, pick a subset Eε ⊂ [0,T ] such that |Eε| = ε and consider the control
process (spike variation of u)

uε(t) :=

{
u(t), t ∈ Eε,
û(t), t ∈ E c

ε ,

where, u(·) ∈ U is an arbitrary admissible control.

Denote xε(·) := xuε(·) the corresponding state process which satisfies (1).
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The key relation between perfromance J and the Hamiltonian H is

J(uε)− J(û) = −E
[∫ T

0

(
δH(t) +

1

2
P(t)(δσ(t))2

)
11Eε(t) dt

]
+ R(ε), (6)

where,
|R(ε)| ≤ ερ̄(ε),

for some function ρ̄ : (0,∞)→ (0,∞) such that ρ̄(ε) ↓ 0 as ε ↓ 0.

This is a finer estimate than the standard one related to the original Peng’s
Stochastic Maximum Principle.
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Associated Hamiltonian

The Hamiltonian associated with the r.v. X :

H(t,X , u, p, q) := b(t,X ,E[X ], u)p +σ(t,X ,E[X ], u)q + h(t,X ,E[X ], u); (7)

Denote
δH(t) := p(t)δb(t) + q(t)δσ(t) + δh(t),

Hx(t) = bx(t)p + σx(t)q + hx(t),

Hxx(t) = bxx(t)p + σxx(t)q + hxx(t).

(8)
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Adjoint equations

(a) The first-order adjoint equation is of mean-field type:
dp(t) = − (bx(t)p(t) + σx(t)q(t) + hx(t)) dt + q(t)dB(t)

− (E[by (t)p(t)] + E[σy (t)q(t)] + E[hy (t)]) dt,

p(T ) = gx(T ) + E[gy (T )].

(9)

Under our assumptions, this is a linear mean-field backward SDE with bounded
coefficients. It has a unique adapted solution such that

E

[
sup

t∈[0,T ]

|p(t)|2 +

∫ T

0

|q(t)|2 dt

]
< +∞. (10)

(See Buckdahn et al. (2009), Theorem 3.1)
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(b) The second-order adjoint equation is ”standard”:
dP(t) = −

(
2bx(t)P(t) + σ2

x(t)P(t) + 2σx(t)Q(t) + Hxx(t)
)
dt

+Q(t) dB(t),

P(T ) = gxx(T ).

(11)

This is a standard linear backward SDE, whose unique adapted solution (P,Q)
satisfies the following estimate

E

[
sup

t∈[0,T ]

|P(t)|2 +

∫ T

0

|Q(t)|2 dt

]
<∞. (12)
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Necessary Conditions for Optimality

Theorem. Assume the above assumption hold. If (X̂ (·), û(·)) is an optimal
solution of the control problem (1)-(3), then there are pairs of F-adapted
processes (p(·), q(·)) and (P(·),Q(·)) that satisfy (9)-(10) and (11)-(12),
respectively, such that

H(t, X̂ (t), u, p(t), q(t))− H(t, X̂ (t), û(t), p(t), q(t))

+ 1
2
P(t)

(
σ(t, X̂ (t),E[X̂ (t)], u)− σ(t, X̂ (t),E[X̂ (t)], û(t))

)2

≤ 0,

∀u ∈ U, a.e. t ∈ [0,T ], P−a.s.
(13)

Boualem Djehiche KTH Royal Institute of Technology Stockholm Some applications of the Stochastic Maximum Principle



Sufficient Conditions for Optimality

Assuming convexity of the action space U and the coefficients, Condition (13)
is also sufficient (without the third term).

In this case Condition (13) is equivalent to

∂uH(t, X̂ (t), û(t), p(t), q(t)) = 0, 0 ≤ t ≤ T , P−a.s. (14)
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A worked out example- Mean-variance portfolio selection

The state process equation is

dX (t) = (ρX (t) + (α− ρ) u(t)) dt + σu(t)dB(t), X (0) = x0. (15)

The cost functional, to be minimized, is given by

J(u) = E
(γ

2
X (T )2 − X (T )

)
− γ

2
(E[X (T )])2 ,

The Hamiltonian for this system is

H(t, x , u, p, q) = (ρx + (α− ρ) u) p + σuq.
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The adjoint equation becomes
dp(t) = −ρp(t)dt + q(t)dBt ,

p(T ) = γ(X (T )− E[X (T )])− 1,

Try a solution of the form

pt = At(X (t)− E[X (t)])− Ct ,

with At ,Ct deterministic functions such that

AT = γ, CT = 1.

After easy manipulations, together with the first order condition for minimizing
the Hamiltonian yielding

(α− ρ) p(t) + σq(t) = 0, (16)

and

q(t) = Atσu(t), (17)
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we get {
(ρ− α)2 At − (2ρAt + A′t)σ

2 = 0, AT = γ,
ρCt + C ′t = 0, CT = 1.

The solutions to these equations are{
At = γe(2ρ−Λ)(T−t),

Ct = eρ(T−t),
(18)

where,

Λ =
(ρ− α)2

σ2
.
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The optimal control becomes

û(t, X̂ (t)) =
α− ρ
σ2

(
x0e

ρ(T−t) +
1

γ
e(Λ−ρ)(T−t) − X̂ (t)

)
, (19)

which is identical to the optimal control found in Zhou and Li (2000), obtained
by embedding the problem into a stochastic LQ problem.
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Part II. The non-commitment case

The dynamics of the controlled SDE is{
dX t,x(s) = b(t, x , s, ω)ds + σ(t, x , s, ω)dB(s), s > t,
X t,x(t) = x ,

(20)

where, 
b(t, s, u) := b(s,X t,x(s),E[X t,x(s)], u(s))

σ(t, s, u) := σ(s,X t,x(s),E[X t,x(s)], u(s)).

The cost functional is

J(t, x , u) = E
[∫ T

t

h
(
s,X t,x(s),E[X t,x(s)], u(s)

)
ds + g

(
X t,x(T ),E[X t,x(T )]

)]
.

(21)

We want to ”find” or characterize (through a Maximum Principle) the
t-optimal policy

u∗(t, x , ·) := ” arg min
u∈U [t,T ]

”J(t, x , u). (22)
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Failure to remain optimal across time!

A key-observation made by Ekeland, Lazrak and Pirvu (2007)-(2008) is that:

Time inconsistent optimal solutions (although they exist mathematically) are
irrelevant in practice, since the t-optimal policy may not be optimal after t:

u∗(t, x , ·) 6= arg min
u

J(t′, x ′, u)

The decision-maker would not implement the t-optimal policy at a later time, if
he/she is not force to do so.

Boualem Djehiche KTH Royal Institute of Technology Stockholm Some applications of the Stochastic Maximum Principle



Game theoretic approach

Following Ekeland, Lazrak and Pirvu (2007)-(2008), and Björk and Murgoci
(2008), we may view the problem as a game and look for a Nash subgame
perfect equilibrium point û in the following sense:

I Assume that all players (selves) s, such that s > t, use the control û(s).

I Then it is optimal for player (self) t to also use û(t).
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To characterize the equilibrium point û, Ekeland et al. suggest the following
definition that uses a ”local” spike variation in a natural way:

I Fix (t, x) and define the control law uε as the ”local” spike variation of û
over the set Et,ε := [t, t + ε], (note that |Et,ε| = ε),

uε(s) :=


u(s), s ∈ Et,ε,

û(s), s ∈ [t,T ] \ Et,ε,

where, u(·) ∈ U is an arbitrary admissible control (or simply any real
number).

Definition. The control law û is an equilibrium point if

lim
ε↓0

J(t, x , uε)− J(t, x , û)

ε
≥ 0, (23)

for all choices of t, x and u.
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A small adaptation of the results in Part I, by keeping track of the dependence
on (t, x), yields the key relation between the perfromance J and the
Hamiltonian H associated with (20):

J(t, x , uε)− J(t, x , û) = −E
[∫ t+ε

t
δH(t, s) + 1

2
P(t, s)(δσ(s))2 ds

]
+ R(ε),

(24)
where,

|R(ε)| ≤ ερ̄(ε),

for some function ρ̄ : (0,∞)→ (0,∞) such that ρ̄(ε) ↓ 0 as ε ↓ 0.

δH(t, s) := H(t, s, X̂ t,x(s), u, p, q)− H(t, s, X̂ t,x(s), û, p, q),
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where, the Hamiltonian associated with (20) reads

H(t, s,X t,x(s), u, p, q) := b(t, s, u)p + σ(t, s, u)q + h(t, s, u); (25)

where, for ϕ = b, σ or h, we use the notation

ϕ(t, s, u) := ϕ(s,X t,x(s),E[X t,x(s)], u(s)), s ≥ t.

In particular,
ϕ(t, t, u) := ϕ(t, x , x , u(t)),

and

H̄(t, u, p, q) := H(t, t, x , u, p, q) = b(t, x , x , u)p + σ(t, x , x , u)q + h(t, x , x , u);
(26)
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The first-order adjoint equation is similar to the previous one:
dp(t, s) = − (bx(t, s)p(t, s) + σx(t, s)q(t, s) + hx(t, s)) ds + q(t, s)dB(s)

− (E[by (t, s)p(t, s)] + E[σy (t, s)q(t, s)] + E[hy (t, s)]) ds,

p(t,T ) = gx(t,T ) + E[gy (t,T )],
(27)

which has a unique adapted solution such that

E

[
sup

s∈[t,T ]

|p(t, s)|2 +

∫ T

t

|q(t, s)|2 ds

]
< +∞, (28)
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The second-order adjoint equation is ”standard”:
dP(t, s) = −

(
2bx(t, s)P(t, s) + σ2

x(t, s)P(t, s) + 2σx(t, s)Q(t, s) + Hxx(t, s)
)
ds

+Q(t, s) dB(s),

P(t,T ) = gxx(t,T ),
(29)

which is a standard linear backward SDE, whose unique adapted solution
(P,Q) satisfies the following estimate

E

[
sup

s∈[t,T ]

|P(t, s)|2 +

∫ T

t

|Q(t, s)|2 ds

]
<∞. (30)
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Characterization of the equilibrium point- Necessary Conditions

Theorem. Assume the above assumption hold. If (X̂ (·), û(·)) is an equilibrium
solution of the problem (20)-(22), then there are pairs of F-adapted processes
(p(·), q(·)) and (P(·),Q(·)) that satisfy (27)-(28) and (29)-(30), respectively,
such that

H̄(t, u, p(t, t), q(t, t))− H̄(t, û(t), p(t, t), q(t, t))

+ 1
2
P(t, t) (σ(t, x , x , u)− σ(t, x , x , û(t)))2 ≤ 0,

∀u ∈ U, P−a.s.

(31)
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Characterization of the equilibrium point- Sufficient Conditions

Assuming convexity of the action space U and the coefficients, Condition (31)
is also sufficient (without the third term).

In this case Condition (31) is equivalent to

∂uH̄(t, û(t), p(t, t), q(t, t)) = 0, P−a.s. (32)
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A worked out example- Mean-variance portfolio selection

The state process equation is

dX t,x(s) =
(
ρX t,x(s) + (α− ρ) u(s)

)
ds + σu(s)dB(s), X t,x(t) = x , (33)

The cost functional, to be minimized, is given by

J(t, x , u) = E
(γ

2

(
X t,x(T )

)2 − X t,x(T )
)
− γ

2

(
E[X t,x(T )]

)2
,

The Hamiltonian for this system is

H(t, s,X t,x(s), u, p, q) :=
(
ρX t,x(s) + (α− ρ) u

)
p + σuq;

Hence,
H̄(t, u, p, q) = (ρx + (α− ρ) u) p + σuq.
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The adjoint equation becomes
dp(t, s) = −ρp(t, s)ds + q(t, s)dB(s),

p(t,T ) = γ(X̂ t,x(T )− E[X̂ t,x(T )])− 1,
(34)

Try a solution of the form

p(t, s) = As(X̂
t,x(s)− E[X̂ t,x(s)])− Cs , (35)

with As ,Cs deterministic functions such that

AT = γ, CT = 1.

Identifying the coefficients in (33) and (34), we get, for s ≥ t,

(2ρAs + A′s)(X̂ t,x(s)− E[X̂ t,x(s)]) + (α− ρ)(û(s)− E[û(s)])
= C ′s + ρCs ,

(36)

q(t, s) = Asσû(s). (37)
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Now, the first order condition (32) for minimizing the Hamiltonian yields

(α− ρ)p(t, t) + σq(t, t) = 0, (38)

But, from (35), we have
p(t, t) = −Ct , (39)

which is deterministic. Therefore, we get

q(t, t) =
ρ− α
σ

Ct . (40)

In view of 37, the value of the equilibrium point at time t is the deterministic
function

û(t) =
ρ− α
σ2

Ct

At
. (41)

Boualem Djehiche KTH Royal Institute of Technology Stockholm Some applications of the Stochastic Maximum Principle



Now, this suggests that at s > t, the player s, uses the deterministic function

û(s) =
(ρ− α)

σ2

Cs

As
. (42)

(this is the main point of the game theoretic approach!)

Hence, (36) reduces to

(2ρAs + A′s)(X̂ t,x(s)− E[X̂ t,x(s)]) = C ′s + ρCs , (43)

suggesting that {
(2ρAs + A′s) = 0, AT = γ,
ρCs + C ′s = 0, CT = 1.

The solutions to these equations are{
At = γe2ρ(T−t),

Ct = eρ(T−t),
(44)
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The equilibrium point is then

û(t) =
1

γ

ρ− α
σ2

e−ρ(T−t). (45)

which is identical to the equilibrium found in Björk and Murgoci (2008),
obtained by solving an extended HJB equation.
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Appendix
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Variational equations

Let y ε(·) and zε(·) be respectively the solutions of the following SDEs:
dy ε(t) = {bx(t)y ε(t) + by (t)E [y ε(t)] + δb(t)11Eε(t)} dt

+ {σx(t)y ε(t) + σy (t)E [y ε(t)] + δσ(t)11Eε(t)} dB(t),

y ε(0) = 0,

(46)


dzε(t) = {bx(t)zε(t) + by (t)E [zε(t)] + Lt(b, y

ε) + δbx(t)y ε(t)11Eε(t)} dt

+ {σx(t)zε(t) + σy (t)E [zε(t)] + Lt(b, y
ε) + δbx(t)y ε(t)11Eε(t)} dB(t),

zε(0) = 0.
(47)

Lt(ϕ, y) =
1

2
ϕxx(t, x̂(t),E [x̂(t)], û(t))y 2.
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Duality

Lemma. We have

E [p(T )y ε(T )] = E
[∫ T

0
y ε(t) (hx(t) + E [hy (t)]) dt

]
+E

[∫ T

0
(p(t)δb(t) + q(t)δσ(t)) IEε(t)dt

]
,

(48)

and

E [p(T )zε(T )] = E
[∫ T

0
zε(t)(hx(t) + E [hy (t)])dt

]
+E

[∫ T

0
(p(t)δbx(t) + q(t)δσx(t)) y ε(t)IEε(t)dt

]
+E

[∫ T

0
(p(t)L(b, y ε(t)) + q(t)Lt(σ, y

ε)) dt
]
.

(49)
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Taylor expansions and estimates

Let

dxε(t) = b(t, xε(t),E [xε(t)] , uεt )dt + σ(t, xε(t),E [xε(t)] , uεt )dB(t),

dx̂(t) = b(t, x̂(t),E [x̂(t)] , ût)dt + σ(t, x̂(t),E [x̂(t)] , ût)dB(t),

whith xε(0) = x̂(0) = x0.

Proposition. For any k ≥ 1,

E

[
sup

t∈[0,T ]

|xε(t)− x̂(t)|2k
]
≤ Ckε

k , (50)

E

[
sup

t∈[0,T ]

|y ε(t)|2k
]
≤ Ckε

k , (51)
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E

[
sup

t∈[0,T ]

|zε(t)|2k
]
≤ Ckε

2k , (52)

E

[
sup

t∈[0,T ]

|xε(t)− (x̂(t) + y ε(t)) |2k
]
≤ Ckε

2k , (53)

E

[
sup

t∈[0,T ]

|xε(t)− (x̂(t) + y ε(t) + zε(t)) |2k
]
≤ Ckε

2kρk(ε), (54)

where, ρk : (0,∞)→ (0,∞) is such that ρk(ε) ↓ 0 as ε ↓ 0.

sup
t∈[0,T ]

|E [y ε(t)] |2 ≤ ερ(ε), ε > 0, (55)

for some function ρ : (0,∞)→ (0,∞) such that ρ(ε) ↓ 0 as ε ↓ 0.

Estimate (55) is derived as a consequence of the following result.

Boualem Djehiche KTH Royal Institute of Technology Stockholm Some applications of the Stochastic Maximum Principle



Lemma. For any progressively measurable process (Φ(t))t∈[0,T ] for which, for
all p ≥ 1, there exists a positive constant Cp, such that

E [ sup
t∈[0,T ]

|Φ(t)|p] ≤ Cp, (56)

there exists a function ρ̃ : (0,∞)→ (0,∞) with ρ̃(ε)→ 0 as ε ↓ 0, such that

|E [Φ(T )y ε(T )]|2 +

∫ T

0

|E [Φ(s)y ε(s)]|2 ds ≤ ερ̃(ε), ε > 0. (57)
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