New results on (F)BSDE of quadratic growth

U. Horst, Y. Hu, P. Imkeller, A. Réveillac, J. Zhang

HU Berlin, U Rennes

http://wws.mathematik.hu-berlin.de/~imkeller
Warwick, December 1, 2011

1 Cross hedging, optimal investment, exponential utility

for convex constraints: (N. El Karoui, R. Rouge '00; J. Sekine '02; J. Cvitanic, J. Karatzas '92, Kramkov, Schachermayer '99, Mania, Schweizer '05, Pham '07, Zariphopoulou '01,...)
maximal expected exponential utility from terminal wealth
$V(x)=\sup _{\pi \in \mathcal{A}} E U\left(x+X_{T}^{\pi}+H\right)=\sup _{\pi \in \mathcal{A}} E\left(-\exp \left(-\alpha\left(x+\int_{0}^{T} \pi_{s}\left[d W_{s}+\theta_{s} d s\right]+H\right)\right)\right)$
wealth on $[0, T]$ by investment strategy π :

$$
\int_{0}^{T}\left\langle\pi_{u}, \frac{d S_{u}}{S_{u}}\right\rangle=\int_{0}^{T} \pi_{u}\left[d W_{u}+\theta_{u} d u\right]=X_{T}^{\pi},
$$

H liability or derivative, correlated to financial market S
$\pi \in \mathcal{A}$ subject to π taking values in C closed
aim: use BSDE to represent optimal strategy π^{*}

2 Martingale optimality

Idea: Construct family of processes $Q^{(\pi)}$ such that

Then

$$
\begin{aligned}
E\left(-\exp \left(-\alpha\left[x+X_{T}^{\pi}+H\right]\right)\right) & =E\left(Q_{T}^{(\pi)}\right) \\
& \leq E\left(Q_{0}^{\pi}\right) \\
& =E\left(Q_{0}^{\left(\pi^{*}\right)}\right) \\
& =E\left(-\exp \left(-\alpha\left[x+X_{T}^{\left(\pi^{*}\right)}+H\right]\right)\right) .
\end{aligned}
$$

Hence π^{*} optimal strategy.

3 Solution method based on BSDE

Introduction of BSDE into problem

Find generator f of BSDE

$$
Y_{t}=H-\int_{t}^{T} Z_{s} d W_{s}-\int_{t}^{T} f\left(s, Z_{s}\right) d s, \quad Y_{T}=H,
$$

such that with

$$
Q_{t}^{(\pi)}=-\exp \left(-\alpha\left[x+X_{t}^{\pi}+Y_{t}\right]\right), \quad t \in[0, T],
$$

we have
(form 2)

$$
\begin{align*}
Q_{0}^{(\pi)}= & -\exp \left(-\alpha\left(x+Y_{0}\right)\right)=\text { constant }, \\
Q_{T}^{(\pi)}= & -\exp \left(-\alpha\left(x+X_{T}^{\pi}+H\right)\right) \tag{fulfilled}\\
Q^{(\pi)} & \text { supermartingale, } \quad \pi \in \mathcal{A}, \\
Q^{\left(\pi^{*}\right)} & \text { martingale, for (exactly) one } \pi^{*} \in \mathcal{A} .
\end{align*}
$$

This gives solution of valuation problem.

4 Construction of generator of BSDE

How to determine f :
Suppose f generator of BSDE. Then by Ito's formula

$$
\begin{aligned}
Q_{t}^{(\pi)} & =-\exp \left(-\alpha\left[x+X_{t}^{\pi}+Y_{t}\right]\right) \\
& =Q_{0}^{(\pi)}+M_{t}^{(\pi)}+\int_{0}^{t} \alpha Q_{s}^{(\pi)}\left[-\pi_{s} \theta_{s}-f\left(s, Z_{s}\right)+\frac{\alpha}{2}\left(\pi_{s}-Z_{s}\right)^{2}\right] d s,
\end{aligned}
$$

with a local martingale $M^{(\pi)}$.
$Q^{(\pi)}$ satisfies (form 2) iff for

$$
q(\cdot, \pi, z)=-f(\cdot, z)-\pi \theta+\frac{\alpha}{2}(\pi-z)^{2}, \quad \pi \in \mathcal{A}, z \in \mathbb{R},
$$

we have
(form 3)

$$
\begin{aligned}
q(\cdot, \pi, z) & \geq 0, \quad \pi \in \mathcal{A} \quad \text { (supermartingale) } \\
q\left(\cdot, \pi^{*}, z\right) & =0, \quad \text { for (exactly) one } \pi^{*} \in \mathcal{A} \quad \text { (martingale). }
\end{aligned}
$$

4 Construction of generator of BSDE

Now

$$
\begin{aligned}
q(\cdot, \pi, z) & =-f(\cdot, z)-\pi \theta+\frac{\alpha}{2}(\pi-z)^{2} \\
& =-f(\cdot, z)+\frac{\alpha}{2}(\pi-z)^{2}-(\pi-z) \cdot \theta+\frac{1}{2 \alpha} \theta^{2} \quad-z \theta-\frac{1}{2 \alpha} \theta^{2} \\
& =-f(\cdot, z)+\frac{\alpha}{2}\left[\pi-\left(z+\frac{1}{\alpha} \theta\right)\right]^{2} \quad-z \theta-\frac{1}{2 \alpha} \theta^{2} .
\end{aligned}
$$

Under non-convex constraint $p \in C$:

$$
\left[\pi-\left(z+\frac{1}{\alpha} \theta\right)\right]^{2} \geq \operatorname{dist}^{2}\left(C, z+\frac{1}{\alpha} \theta\right)
$$

with equality for at least one possible choice of π^{*} due to closedness of C. Hence (form 3) is solved by the choice (predictable selection)
(form 4)

$$
\begin{aligned}
f(\cdot, z) & =\frac{\alpha}{2} \operatorname{dist}^{2}\left(C, z+\frac{1}{\alpha} \theta\right)-z \cdot \theta-\frac{1}{2 \alpha} \theta^{2} \quad \text { (supermartingale) } \\
\pi^{*} & : \operatorname{dist}\left(C, z+\frac{1}{\alpha} \theta\right)=\operatorname{dist}\left(\pi^{*}, z+\frac{1}{\alpha} \theta\right) \quad \text { (martingale). }
\end{aligned}
$$

5 Summary of results, exponential utility

Solve utility optimization problem

$$
\sup _{\pi \in \mathcal{A}} E U\left(x+X_{T}^{\pi}+H\right)
$$

by considering FBSDE

$$
\begin{aligned}
d X_{t}^{\pi} & =\pi_{t}\left[d W_{t}+\theta_{t} d t\right], \quad X_{0}^{\pi}=x \\
d Y_{t} & =Z_{t} d W_{t}+f\left(t, Z_{t}\right) d t, \quad Y_{T}=H
\end{aligned}
$$

with generator as described before; determine π^{*} by previsible selection; coupling through requirement of martingale optimality

$$
\begin{aligned}
\sup _{\pi \in \mathcal{A}} E U\left(x+X_{T}^{\pi}+H\right)= & E U\left(x+X_{T}^{\pi^{*}}+H\right), \\
U^{\prime}\left(x+X_{t}^{\pi^{*}}+Y_{t}\right) \quad & \text { martingale. }
\end{aligned}
$$

for general U : forward part depends on π^{*}, get fully coupled FBSDE

6 Cross hedging, optimal investment, utility on \mathbb{R}

Lit: Mania, Tevzadze (2003)

$U: \mathbb{R} \rightarrow \mathbb{R}$ strictly increasing and concave; maximal expected utility from terminal wealth

$$
\text { (1) } V(x)=\sup _{\pi \in \mathcal{A}} E U\left(x+X_{T}^{\pi}+H\right)
$$

wealth on $[0, T]$ by investment strategy π :

$$
\int_{0}^{T}\left\langle\pi_{u}, \frac{d S_{u}}{S_{u}}\right\rangle=\int_{0}^{T} \pi_{u}\left[d W_{u}+\theta_{u} d u\right]=X_{T}^{\pi},
$$

H liability or derivative, correlated to financial market $S, W d$-dimensional Wiener process, W^{1} first d_{1} components of W
$\pi \in \mathcal{A}$ subject to convex constraint $\pi=\left(\pi^{1}, 0\right), \pi^{1} d_{1}$-dimensional, hence incomplete market
aim: use FBSDE system to describe optimal strategy π^{*}

7 Verification theorems

Thm 1

Assume U is three times differentiable, U^{\prime} regular enough. If there exists π^{*} solving (1), and Y is the predictable process for which $U^{\prime}\left(X^{\pi^{*}}+Y\right)$ is square integrable martingale, then with $Z=\frac{d}{d t}\langle Y, W\rangle$

$$
\left(\pi^{*}\right)^{1}=-\theta^{1} \frac{U^{\prime}}{U^{\prime \prime}}\left(X^{\pi^{*}}+Y\right)-Z^{1} .
$$

Pf:

$$
\alpha=\mathbb{E}\left(U^{\prime}\left(X_{T}^{\pi^{*}}+H\right) \mid \mathcal{F} .\right), Y=\left(U^{\prime}\right)^{-1}(\alpha)-X^{\pi^{*}} .
$$

Use Itô's formula and martingale property. Find

$$
Y=H-\int_{.}^{T} Z_{s} d W_{s}-\int_{0}^{T} f\left(s, X_{s}^{\pi^{*}}, Y_{s}, Z_{s}\right) d s
$$

with

$$
f\left(s, X_{s}^{\pi^{*}}, Y_{s}, Z_{s}\right)=-\frac{1}{2} \frac{U^{(3)}}{U^{\prime \prime}}\left(X^{\pi^{*}}+Y\right)\left|\pi_{s}^{*}+Z_{s}\right|^{2}-\pi_{s}^{*} \theta_{s}
$$

Use variational maximum principle to derive formula for π^{*}.

7 Verification theorems

From preceding theorem derive the FBSDE system

Thm 2

Assumptions of Thm 1; then optimal wealth process $X^{\pi^{*}}$ given as component X of solution (X, Y, Z) of fully coupled FBSDE system

$$
\begin{align*}
X= & x-\int_{0}^{r}\left(\theta_{s}^{1} \frac{U^{\prime}}{U^{\prime \prime}}\left(X_{s}+Y_{s}\right)+Z_{s}^{1}\right) d W_{s}^{1}-\int_{0}\left(\theta_{s}^{1} \frac{U^{\prime}}{U^{\prime \prime}}\left(X_{s}+Y_{s}\right)+Z_{s}^{1}\right) \theta_{s}^{1} d s, \\
Y= & H-\int_{0}^{T} Z_{s} d W_{s} \\
& -\int_{.}^{T}\left[\left|\theta_{s}^{1}\right|^{2}\left(\left(-\frac{1}{2} \frac{U^{(3)} U^{\prime 2}}{\left(U^{\prime \prime}\right)^{3}}+\frac{U^{\prime}}{U^{\prime \prime}}\right)\left(X_{s}+Y_{s}\right)+Z_{s}^{1} \cdot \theta_{s}^{1}\right)\right. \\
& \left.-\frac{1}{2}\left|Z_{s}^{2}\right|^{2} \frac{U^{(3)}}{U^{\prime \prime}}\left(X_{s}+Y_{s}\right)\right] d s . \tag{2}
\end{align*}
$$

Pf:

Use expression for f and formula for π^{*} from Thm 1.

8 Representation of optimal strategy

Invert conclusion of Thm 2 to give representation of optimal strategy

Thm 3

Let (X, Y, Z) be solution of (2), $U\left(X_{T}+H\right)$ integrable, $U^{\prime}\left(X_{T}+H\right)$ square integrable. Then

$$
\left(\pi^{*}\right)^{1}=-\theta^{1} \frac{U^{\prime}}{U^{\prime \prime}}(X+Y)+Z^{1}
$$

is optimal solution of (1).

Pf:

By concavity for any admissible π

$$
U\left(X^{\pi}+Y\right)-U(X+Y) \leq U^{\prime}(X+Y)\left(X^{\pi}-X\right) .
$$

Now prove that

$$
U^{\prime}(X+Y)\left(X^{\pi}-X\right)=U^{\prime}\left(X^{\pi^{*}}+Y\right)\left(X^{\pi}-X^{\pi^{*}}\right) \text { is a martingale! }
$$

9 Utility function on \mathbb{R}_{+}

Replace $U^{\prime}\left(X^{\pi^{*}}+Y\right)$ with $X^{\pi^{*}} U^{\prime}\left(X^{\pi^{*}}\right) \exp (\tilde{Y})$. Then (X, Y, Z) satisfies (3) if and only if $(X, \tilde{Y}, \tilde{Z})$ satisfies (4) ($\left.\tilde{Z}=\frac{d}{d t}\langle W, \tilde{Y}\rangle\right)$:

Thm 4

Let $(X, \tilde{Y}, \tilde{Z})$ be solution of the fully coupled FBSDE

$$
\begin{aligned}
X= & x-\int_{0}\left(\frac{U^{\prime}}{U^{\prime \prime}}\left(X_{s}\right)\left(\theta_{s}^{1}+\tilde{Z}_{s}^{1}\right) d W_{s}^{1}-\int_{0}\left(\frac{U^{\prime}}{U^{\prime \prime}}\left(X_{s}\right)\left(\theta_{s}^{1}+\tilde{Z}_{s}^{1}\right) \theta_{s}^{1} d s,\right.\right. \\
\tilde{Y}= & \ln \left(\frac{U^{\prime}\left(X_{T}+H\right)}{U^{\prime}\left(X_{T}\right)}\right)-\int^{T} \tilde{Z}_{s} d W_{s} \\
& -\int_{0}^{T}\left[| \tilde { Z } _ { s } ^ { 1 } + \theta _ { s } ^ { 1 } | ^ { 2 } \left(\left(1-\frac{1}{2} \frac{U^{(3)} U^{\prime}}{\left(U^{\prime \prime}\right)^{2}}\right)\left(X_{s}\right)-\frac{1}{2}\left[\left.\tilde{Z}_{s}\right|^{2}\right] d s .\right.\right. \text { (4) }
\end{aligned}
$$

such that $U\left(X_{T}^{\pi^{*}}+H\right)$ is integrable and $X^{\pi^{*}} U^{\prime}\left(X^{\pi^{*}}\right) \exp (\tilde{Y})$ is a true martingale. Then

$$
\left(\pi^{*}\right)^{1}=-\frac{U^{\prime}}{U^{\prime \prime}}(X)\left(Z^{1}+\theta^{1}\right)
$$

solves (1).

10 The incomplete case

$U(x)=\frac{1}{p} x^{p}$ for $x>0, p<1 ;\left(X^{\pi^{*}}, \tilde{Y}, \tilde{Z}\right)$ solution of (4)
then we saw that $G:=X^{\pi^{*}} U^{\prime}\left(X^{\pi^{*}}\right) \exp (\tilde{Y})$ is a martingale; $X^{\pi^{*}}$ supermartingale, hence $U\left(X^{\pi^{*}}\right)$ supermartingale; aim: use these two facts to construct solution by iteration

Notation: $\tilde{Z}_{t} d W_{t}:=\tilde{Z}_{t}^{1} d W_{t}^{1}, d N_{t}:=\tilde{Z}_{t}^{2} d W_{t}^{2}$; wlog: $\theta=0$ (otherwise measure change, drift θ)

Initialization: Set $\tilde{Z}^{0}:=0$ and

$$
X^{1}:=x \mathbb{E}\left(\frac{1}{1-p} \tilde{Z}^{0} * W\right)=x, \quad G_{T}^{1}:=\frac{X_{T}^{1}}{\left(X_{T}^{1}+H\right)^{1-p}} \leq C\left|X_{T}^{1}\right|^{p}=C x^{p} .
$$

Obtain $\left(Z^{1}, N^{1}\right) \in \mathcal{H}^{2}$ via the following consequence of martingale representation

$$
G_{t}^{1}=\mathbb{E}\left[G_{T}^{1} \mid \mathcal{F}_{t}\right]=G_{T}^{1}-\int_{t}^{T} G_{s}^{1}\left(\frac{1}{1-p} \tilde{Z}_{s}^{1} d W_{s}+d N_{s}^{1}\right)
$$

10 The incomplete case

n+1-st iteration

Z^{n} and N^{n} already obtained, define

$$
X^{n+1}:=x \mathbb{E}\left(\frac{1}{1-p} \tilde{Z}^{n} * W\right), \quad G_{T}^{n+1}:=\frac{X_{T}^{n+1}}{\left(X_{T}^{n+1}+H\right)^{1-p}} \leq C\left|X_{T}^{n+1}\right|^{p}
$$

with $\mathbb{E} G_{T}^{n+1} \leq C x^{p}<\infty$.
Obtain (Z^{n+1}, N^{n+1}) via the following consequence of martingale representation

$$
G_{t}^{n+1}=\mathbb{E}\left[G_{T}^{n+1} \mid \mathcal{F}_{t}\right]=G_{T}^{n+1}-\int_{t}^{T} G_{s}^{n+1}\left(\frac{1}{1-p} \tilde{Z}_{s}^{n+1} d W_{s}+d N_{s}^{n+1}\right)
$$

- we obtain sequence $\left(\int \tilde{Z}_{s}^{n} d W_{s}, N^{n}\right)_{n \in \mathbb{N}}$
- convergence (possibly along subsequence)?

10 The incomplete case

Thm 5

For $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\mathbb{E} & {\left[\frac{1}{2} \int_{0}^{T}\left|\frac{1}{1-p} \tilde{Z}_{s}^{n}\right|^{2} d s+\left\langle N^{n}\right\rangle_{T}\right] \leq \frac{1-p^{n}}{1-p}\left(2 \log C+\log x^{p}\right) } \\
& +\frac{p^{n-1}}{2} \mathbb{E}\left[\frac{1}{2} \int_{0}^{T}\left|\frac{1}{1-p} \tilde{Z}_{s}^{1}\right|^{2} d s+\left\langle N^{1}\right\rangle_{T}\right] \\
& <\infty .
\end{aligned}
$$

$\Longrightarrow\left(\int \tilde{Z}_{s}^{n} d W_{s}, N^{n}\right)_{n \in \mathbb{N}}$ bounded in \mathcal{H}^{2}
\Longrightarrow Delbaen \& Schachermayer (A compactness principle for bounded sequences of martingales with applications, 1996)

$$
\exists(\tilde{Z}, N) \text { such that } \tilde{Z}^{n} \rightarrow \tilde{Z} \text { and } N^{n} \rightarrow N
$$

Finally, obtain FBSDE solution ($X, \tilde{Y}, \tilde{Z}, N$) by using (\tilde{Z}, N) for solving for X and \tilde{Y}

