Suppression of bad news in markets:
 Equilibrium analysis of correlated optimal data censors

Adam Ostaszewski, Mathematics Dept., London School of Economics.

Joint work with:

> Miles Gietzmann, Cass Business School, London.

30th Nov. 2011, Topics on Control (EPSRC Workshop), Inst. Mathematics, Warwick University

Alternative Subtitle:

Filtering with selectively censored data (news)

Averaging, bandwagon and quality effects from correlation

Motivation: a disclosure game

1. At the first 'ex-ante date' Nature selects a probabilistic strategy ('action') X from a known space of actions. Actions are represented by a family of distributions.
2. At the interim date (a known later date), as a result of an independent draw with some probability q, this action is observed noisily by an agent ('observer').
3. At the 'terminal date' (a still later date), there is a publicly observed vector of outcomes F_{i} dependent on the action X.

The 'public' comprises the agents and a disjoint set of principals (e.g. investors).

At the interim date a pre-assessment/evaluation of the outcome F_{i} may be formed from the observation.

What is the disclosure game? What is news? Answer (T for a transform):

$$
T_{i}=T\left(X, Y_{i}\right)=\text { private signal about } X \text { involving the observer's noise } Y_{i},
$$ received at the 'interim date' prior to public (common) knowledge of X at the terminal date.

The effect of X is to yield an outcome, e.g. via

$$
F_{i}:=f_{i} \cdot T\left(X, Z_{i}\right)=\text { effect of } X \text { with uncertainties from } Z_{i} \text {. }
$$

Leads to a public interim re-assessment of any disclosed signals from the agents.
This could be the evaluation of some underlying complex system based on partial noisy observation.

The ex-ante assessment is modelled as

$$
\mathbb{E}\left[F_{i}\right]=f_{i} \cdot \mathbb{E}\left[T\left(X, Z_{i}\right)\right]
$$

Game objective: maximization at the interim date of the re-assessment of F_{i}.

Disclosure option: opportunity to suppress the reporting of the signal T_{i}, if

$$
\mathbb{E}\left[F_{i} \mid \text { report } T_{i}\right]<\mathbb{E}\left[F_{i} \mid \text { no report } / \text { no disclosure }\right]
$$

equivalently, on using $F_{i}=f_{i} \cdot T\left(X, Z_{i}\right)$,

$$
\mathbb{E}\left[T\left(X, Z_{i}\right) \mid \text { report } T_{i}\right]<\mathbb{E}\left[T\left(X, Z_{i}\right) \mid \mathrm{ND}\right]
$$

assuming there is a positive probability that the observer is unable to observe T_{i}.

A basic question: When is a censor γ optimal?

Answer: it is the 'indifferent censor' γ : indifference as to reporting when $T=\gamma$.

Note for later that

$$
\mathbb{E}[T \mid \text { ND using } \gamma]:=\frac{(1-q) \mathbb{E}[T]+q \mathbb{E}\left[T \cdot 1_{T<\gamma}\right]}{(1-q)+q \mathbb{E}\left[1_{T<\gamma}\right]}
$$

We assume:
(i) $0<q<1$ and q is public (common) knowledge,
(ii) the observer does not lie, and cannot directly announce credibly absence of an observation.

The Equity-valuation model

Take $X=Y_{0}, Y_{i}, Z_{i}$ all log-normal with unit-mean, so in sttochastic-exponential format:

$$
Y_{i}=e^{\sigma_{i} v_{i}-\frac{1}{2} \sigma_{i}^{2}}, \text { for } i=0,1,2, \ldots, n
$$

with v_{i} all independent, standard normal, and

$$
T_{i}=X Y_{i} \text { and } F_{i}=f_{i} X Z_{i}
$$

The observers are called firm-managers and identified with Y_{i}.

Easy to include individual dependency loading index α_{i} of firm i on X :

$$
T_{i}=X Y_{i} \text { and } F_{i}=f_{i} X^{\alpha_{i}} Z_{i}
$$

Corollaries of the model:

1. $T_{i}=e^{\sigma_{0 i} w_{i}-\frac{1}{2} \sigma_{0 i}^{2}}$, with $\sigma_{0 i} w_{i}=\sigma_{0} v_{0}+\sigma_{i} v_{i}$ and $\sigma_{0 i}^{2}=\sigma_{0}^{2}+\sigma_{i}^{2}$.

So v_{0} is the only source of all the correlation.

Useful to refer to $p_{i}=1 / \sigma_{i}^{2}$, the precision of Y_{i}.
2.

$$
\mathbb{E}\left[F_{i} \mid \text { data }\right]=f_{i} \mathbb{E}[X \mid \text { data }] .
$$

Noiseless Dye Cutoff: the Censor equation

For $T=X$, i.e. true value rather than a nosiy signal is observed

Dye indifference equation, or Dye Censor Equation is

$$
\gamma=\mathbb{E}[X \mid N D(\gamma)]
$$

It is equivalent to:

$$
\lambda\left(m_{X}-\gamma\right)=\mathbb{E}\left[(\gamma-X)^{+}\right], \text {with odds } \lambda=\frac{1-q}{q}
$$

where

$$
\mathbb{E}\left[(\gamma-X)^{+}\right]=\int(\gamma-t)^{+} d F_{X}(t)=\int_{t \leq \gamma} F_{X}(t) d t
$$

Alternative characterizations of the Dye censor: Minimized valuation consistent with available information:

$$
\gamma=\arg \min _{\gamma} \mathbb{E}[X \mid N D(\gamma)]
$$

No-arbitrage valuation: γ such that $\mathbb{E}[X]$ values X consistently with the possibility of further γ-censored information becoming available later.

The hemi-mean function

This put-payoff is valued under an expectation, and we call

$$
H_{X}(\gamma):=\int_{t \leq \gamma} F_{X}(t) d t
$$

the hemi-mean function of X. Since $H^{\prime \prime}=f_{X} \geq 0$ that itself is an increasing convex function of γ and so has a smoothed out hockey-stick shape: it looks like the valuation of a call (dual to the put). Examples below! Dye equation standardizes to:

$$
\lambda(1-\gamma)=H_{X}(\gamma)
$$

The Normal Censor

The pink/red intersection identifies the normal Dye censor (here $\lambda=1$).
A corresponding dual call payoff $(X-x)^{+}$is in green.

Location-scale cutoff standardization theorem. For the location and scale family of distributions $\boldsymbol{\Phi}_{F}\left(\frac{x-\mu}{\sigma}\right)$, with mean μ and variance σ^{2}, the Dye cutoff $\gamma(\mu, \sigma, \lambda)$ satisfies

$$
\gamma(\mu, \sigma, \lambda)=\mu-\sigma \xi(\lambda)
$$

So:

$$
p_{\text {Low }}<p_{\text {High }} \Longrightarrow \gamma\left(p_{\text {Low }}\right)<\gamma\left(p_{\text {High }}\right),
$$

i.e. more disclosure from the low-precision firm.

This will be altered by the pressence of additional information sources.
*Location-scale cutoff standardization theorem. Let $\Phi_{F}(x)$ be an arbitrary zeromean, unit-variance, cumulative distribution for F defined on \mathbb{R}. For the location and scale family of distributions $\Phi_{F}\left(\frac{x-\mu}{\sigma}\right)$, with mean μ and variance σ^{2}, the Dye cutoff $\gamma(\mu, \sigma, \lambda)$ satisfies

$$
\gamma(\mu, \sigma, \lambda)=\mu-\sigma \xi(\lambda), \text { where } \lambda=\frac{1-q}{q}
$$

so that

$$
\xi(\lambda)=-\gamma(0,1, \lambda)<0
$$

is the cutoff when standardizing to zero mean and unit variance and is a function only of the odds λ. The standardized cutoff $\xi(\lambda)$ is a convex and decreasing function of λ satisfying

$$
\lambda=H_{F}(-\xi) / \xi
$$

where $H_{F}(x)=\int_{-\infty}^{x} \Phi_{F}(t) d t$ is the corresponding hemi-mean function.

Black-Scholes Censor

The red-pink intersection identifies the log-normal Dye

$$
\text { censor }(\text { for } \lambda=1)
$$

Green indicates the dual call
payoff.

Noisy Dye Cutoff: Estimator-Censor equation

For $T=T(X, Y)$, put

$$
\begin{aligned}
\mu_{X}(t) & :=\mathbb{E}[X \mid T=t], \text { the regression function, } \\
S & :=\mu_{X}(T), \text { the estimator, or } X^{\mathrm{est}}
\end{aligned}
$$

Since

$$
\mathbb{E}[F]=f_{i} \mathbb{E}[X]
$$

then, provided $\mu_{X}($.$) is strictly increasing, the Dye Equation holds in the form:$

$$
\mu_{X}\left(\gamma_{T}\right)=\gamma_{S}=E\left[S \mid N D\left(\gamma_{S}\right)\right]
$$

where γ_{S} is the censor for S and γ_{T} is the equivalent censor for T.

Equivalently, as S is an unbiased estimator of X one has

$$
\lambda\left(m_{X}-\gamma_{S}\right)=H_{S}(\gamma)
$$

By the conditional mean formula (tower law/iterated expecation):

$$
\mathbb{E}[S]=\mathbb{E}[\mathbb{E}[X \mid T]]=\mathbb{E}[X]=m_{X}
$$

So the hemi-mean function rules OK.

Multi-Censor Equilibrium equation

One has n simultaneous equations corresponding to a simultaneous interim-report date:

$$
\begin{aligned}
\mathbb{E}\left[X \mid T_{j}\right. & \left.=\gamma_{j} \text { for all } j\right]=\mathbb{E}\left[X \mid N D_{i}(\gamma)\right] \\
\text { with } \gamma & =\left(\gamma_{1}, \ldots, \gamma_{n}\right) \text { and } N D_{i}=\text { only } i \text { makes no disclosure. }
\end{aligned}
$$

We call these the Marginal Dye equations.

Log-normal Marginal Dye equations

Recall the Estimator version of the Dye equation:

$$
\lambda\left(m_{X}-\gamma_{S}\right)=H_{S}(\gamma)
$$

Conditioning on the other disclosures, yields for some K and $\kappa_{i}=p_{i} / p$

$$
\mu_{X}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=E\left[X \mid T_{i}=\gamma_{i} \text { all } i\right]=K \gamma_{1}^{\kappa_{1}} \ldots . \gamma_{n}^{\kappa_{n}}
$$

(see below). Change of random variable, and change of variable:

$$
S:=\mu_{X}\left(T_{1}, \gamma_{2}, \ldots, \gamma_{n}\right), \text { and } s=\mu_{X}\left(\gamma, \gamma_{2}, \ldots ., \gamma_{n}\right)
$$

yields a conditioned format, in which $m_{S \mid \gamma_{2} \ldots}$ replaces m_{S} :

$$
\lambda\left(\mathbb{E}\left[S \mid \gamma_{2}, \ldots, \gamma_{n}\right]-s\right)=H_{S}\left(s \mid \gamma_{2}, \ldots ., \gamma_{n}\right)
$$

Principal findings for the Equity Valuation case:

Preparatory Step. Replace the n firm-managers Y_{i} by n hypothetical observers/managers \hat{Y}_{i} which are uncoupled - acting as though all the competitors had vanished - but with refined precision parameters

$$
\kappa_{i} \sigma_{0 i} \sqrt{1-\rho_{i}^{2}}, \text { with } \kappa_{i}:=\frac{p_{i}}{p} \text { and } \sigma_{0 i}^{2}=\sigma_{0}^{2}+\sigma_{i}^{2}
$$

and

$$
p=p_{0}+\ldots+p_{n}, \text { total precision }
$$

Here ρ_{i} measures the dependence of T_{i} on the remaining T_{j} (more properly: partial co-variance of w_{i} on the remaining w_{j}).

Conclusion. If the corresponding Dye censors for $\hat{T}_{i}=X \hat{Y}_{i}$ are $\hat{\gamma}_{i}$, then the true managers have censors γ_{i} given by the weighted average:

$$
\log \gamma_{i}=\frac{\log g_{i}}{\kappa_{-i}}+\frac{1}{\kappa_{0}}\left(\frac{\kappa_{1}}{\kappa_{-1}} \log g_{1}+\frac{\kappa_{2}}{\kappa_{-2}} \log g_{2}+\ldots+\frac{\kappa_{n}}{\kappa_{-n}} \log g_{n}\right)
$$

with

$$
\kappa_{-i}=p_{i} /\left(p-p_{i}\right)
$$

and where g_{j} is the hypothetical firm- j censor.

In fact

$$
\begin{aligned}
g_{i} & =\log \left(\hat{\gamma}_{\mathrm{LN}}\left(\lambda_{i}, \kappa_{i} \sigma_{0 i} \sqrt{1-\rho_{i}^{2}}\right) L_{-i}\right), \lambda_{i}=\frac{1-q_{i}}{q_{i}} \\
L_{-i} & =\exp \left(\frac{n-1}{2\left(p-p_{i}\right)}-\frac{1}{2} \frac{n}{p}\right)=\exp \frac{1}{2}\left(\frac{1}{p_{\mathrm{av},-i}}-\frac{1}{p_{\mathrm{av}}}\right)
\end{aligned}
$$

where L_{-i} is a mean adjustment.

Bandwagon effect

Bandwagon Inflator Theorem. The presence of correlation increases the precision parameter of the cutoff and hence raises the cutoff:

$$
\hat{\gamma}_{\mathrm{LN}}\left(\lambda_{i}, \sigma_{0 i}\right)<\hat{\gamma}_{\mathrm{LN}}\left(\lambda_{i}, \kappa_{i} \sigma_{0 i}\right)<\hat{\gamma}_{\mathrm{LN}}\left(\lambda_{i}, \kappa_{i} \sigma_{0 i} \sqrt{1-\rho_{i}^{2}}\right) .
$$

Proof. Clear since $\hat{\gamma} \mathrm{LN}(\lambda,$.$) is increasing in precsioin, and also \rho_{i}^{2}$ is increasing in p_{i}.

Estimator-quality effect

Estimator-Quality Theorem. The mean-adjustor for firm i is increasing in p_{i} with

$$
\exp \left(-\frac{1}{2\left(p-p_{i}\right)}\right)<L_{-i}<\exp \left(+\frac{1}{2 p_{\mathrm{av},-i}}\right)
$$

and in particular

$$
L_{-i}<L_{-j} \text { iff } p_{i}<p_{j}
$$

The adjustor is a strict deflator, i.e. $L_{-i}<1$, iff p_{i} is below the sector average, equivalently below the competitor average, i.e.

$$
p_{i}<\frac{p}{n}, \text { equivalently } p_{i}<\frac{p-p_{i}}{n-1} .
$$

Tools:

Basic Tools: Isomorphism. Equity a log-normal variate, but it is easy to move back and forth from log-normal to normal via the isomorphism $\exp :(\mathbb{R},+) \rightarrow\left(\mathbb{R}_{+}, \cdot\right)$

Explicit Normal and Black-Scholes put-option formulas.

Main Tools: Linear regression easily computed via a Hilbert space approach: view $\mathbb{E}[.$.$] as a projection and use P$ the precision matrix.

Strategy: Uncoupling the co-dependency and solving the uncoupled censor equations via P.

Some simple algebra: the precision matrix

Put

$$
P_{n}:=\left[\begin{array}{cccc}
p_{1} & p_{2} & \cdots & p_{n} \\
p_{1} & p_{2} & & p_{n} \\
\vdots & & \ddots & \vdots \\
p_{1} & p_{2} & \cdots & p_{n}
\end{array}\right] .
$$

and

$$
P_{n}(x)=P_{n}-x I .
$$

Recall that for σ_{i}^{2} a variance parameter, $p_{i}=1 / \sigma_{i}^{2}$ is the precision parameter.

Proposition 1. For any n, the characteristic function of the matrix P_{n} is

$$
\operatorname{det}\left(P_{n}-x I\right)=(-1)^{n} x^{n-1}\left(x-p_{1}-\ldots-p_{n}\right)
$$

Proof. Easy exercise. [Hint: P_{n} has nullity $n-1$.]

Proposition 2. For any non-zero parameter q such that $p_{q}:=q+p_{1}+\ldots+p_{n} \neq 0$, the simultaneous system of equations

$$
\left(P_{n}+q I\right) x=s
$$

i.e.

$$
p_{1} x_{1}+\ldots+\left(p_{i}+q\right) x_{i}+\ldots+p_{n} x_{n}=s_{i}
$$

has the unique solution

$$
x_{i}=\frac{s_{i}}{q}+c, \text { with } c=\frac{1}{q p_{q}}\left(p_{1} s_{1}+\ldots+p_{n} s_{n}\right) .
$$

Proof. Easily checked; by Prop. 1, $\operatorname{det}\left(P_{n}+q I\right)=q^{n-1}\left(p_{1}+\ldots+p_{n}+q\right) \neq 0$, so the solution is unique. \square

*Example 1: Normal put-option formula

Notation

$$
F_{X}(t):=\operatorname{Pr}[X \leq t]
$$

Cases: $X=u \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ normal

$$
\Phi(t)=F_{u}(t):=\operatorname{Pr}[u \leq t] .
$$

with density $\varphi(t)=\Phi^{\prime}(t)$. Here

$$
\mathbb{E}\left[(t-X)^{+}\right]=t \Phi\left(\frac{t+\frac{1}{2} \sigma^{2}}{\sigma}\right)+\varphi\left(t / \sigma^{2}\right)
$$

*Example 2: Black-Scholes put-option formula

For X log-normal

$$
\begin{aligned}
X & =e^{\sigma u-\frac{1}{2} \sigma^{2}} \text { with } u \sim N(0,1) \\
\mathbb{E}\left[(t-X)^{+}\right] & =t \Phi\left(\frac{\log t+\frac{1}{2} \sigma^{2}}{\sigma}\right)-\Phi\left(\frac{\log t-\frac{1}{2} \sigma^{2}}{\sigma}\right) .
\end{aligned}
$$

Simplification:

Again use the conditional mean formula:

$$
\begin{aligned}
\mathbb{E}\left[S \mid \gamma_{2}, \ldots, \gamma_{n}\right] & =\mathbb{E}\left[\mathbb{E}\left[X \mid \gamma_{2}, \ldots \gamma_{n}\right] \mid \gamma_{2}, \ldots \gamma_{n}\right], \text { defn of } S \\
& \left.\left.=\mathbb{E}\left[\mathbb{E}\left[\mathbb{E}\left[X \mid T_{1}, \gamma_{2}, \ldots \gamma_{n}\right]\right] \mid \gamma_{2}, \ldots \gamma_{n}\right]\right] \mid \gamma_{2}, \ldots \gamma_{n}\right], \text { refine } \\
& =\mathbb{E}\left[K T_{1}^{\kappa_{1}} \gamma_{2}^{\kappa_{2}} \ldots \gamma_{n}^{\kappa_{n}} \mid \gamma_{2}, \ldots \gamma_{n}\right], \text { apply formula } \\
& =K \gamma_{2}^{\kappa_{2}} \ldots \gamma_{n}^{\kappa_{n}} \cdot \mathbb{E}\left[T_{1}^{\kappa_{1}} \mid \gamma_{2}, \ldots \gamma_{n}\right] .
\end{aligned}
$$

Theorem (Conditional hemi-mean formula).

$$
\mathbb{E}\left[T_{1}^{\kappa_{1}} \mid T_{2}, \ldots, T_{n}\right]=L_{-1} T_{2}^{\bar{h}_{2}-\kappa_{2}} \ldots T_{n}^{\bar{h}_{n}-\kappa_{n}}
$$

where, with $p=p_{0}+\ldots+p_{n}$ the total precision,

$$
L_{-1}=\exp \left(\frac{n-1}{2\left(p-p_{1}\right)}\right) \exp \left(-\frac{n}{2 p}\right), \text { and } \bar{h}_{j}=\frac{p_{j}}{p-p_{1}}, \text { for } j>1
$$

Proof uses conditional mean formula and yields $L_{-1}=K_{-1} / K$.

Uncoupling Theorem

Uncoupling Theorem. The substitution

$$
y_{1}=\gamma_{1}^{\kappa_{1}} / L_{-1} \gamma_{2}^{\bar{h}_{2}^{1}-\kappa_{2}} . . \gamma_{n}^{\bar{h}_{n}^{1}-\kappa_{n}}
$$

reduces the marginal Dye equation, namely

$$
\begin{aligned}
& \lambda_{1}\left(\mathbb{E}\left[X \mid \gamma_{2}, \ldots, \gamma_{n}\right]-\mu_{X}\left(\gamma, \gamma_{2}, \ldots, \gamma_{n}\right)\right) \\
= & \int_{t_{1}<\gamma_{1}}\left[\mu_{X}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)-\mu_{X}\left(t_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)\right] d F_{T_{1}}\left(t_{1} \mid \gamma_{2}, \ldots, \gamma_{n}\right),
\end{aligned}
$$

to the standard form

$$
\lambda_{1}\left(1-y_{1}\right)=H_{\mathrm{LN}}\left(y_{1}, \kappa_{1} \sigma_{01} \sqrt{1-\rho_{1}^{2}}\right)
$$

where $1-\rho_{1}^{2}$ is the partial covariance, or Schur complement, of w_{1} given w_{1}, \ldots, w_{n}.

Notational convention for shifting from LN to N
$\eta_{i}=\log Y_{i}+\frac{1}{2} \sigma_{i}^{2}=\sigma_{i} v_{i}$ the underlying normal variate, etc

Background: a little linear regression

Proposition (Geometric weighted-average)

$$
\begin{aligned}
E\left[X \mid T_{1}\right. & \left.=t_{1}, \ldots, T_{n}=t_{n}\right]=K t_{1}^{\kappa_{1}} \ldots t_{n}^{\kappa_{n}}, \text { with } \kappa_{i}=\frac{p_{i}}{p}, \text { and } \\
K & =e^{\frac{n}{2 p}}=\exp \left(\frac{1}{2 p_{\mathrm{av}}}\right) t_{1}^{\kappa_{1}} \ldots t_{n}^{\kappa_{n}}, \text { with } p_{\mathrm{av}}:=\frac{p_{0}+\ldots+p_{n}}{n}
\end{aligned}
$$

Sketch Proof. Put $\xi=\log X, \tau_{i}=\log T_{i}$ (+ take off constants), do classical linear regrssion with normal variates, transform back via exp, finally compute the constant K using the tower law.

Remarks. 1. The preceding shows why log-normals are as easy as normals.
2. The normal regression arguments need only P, so some simple algebra.

Reprise: a little linear regression

Lemma (Arithmetic weighted-average). One has

$$
\mathbb{E}\left[\xi \mid \tau_{1}, \tau_{2}\right]=\kappa_{1} \tau_{1}+\ldots+\kappa_{n} \tau_{n}, \text { with } \kappa_{i}=\frac{p_{i}}{p} .
$$

Proof. Method: write

$$
\xi^{\mathrm{est}}=\mathbb{E}\left[\xi \mid \tau_{1}, \ldots, \tau_{n}\right]=\kappa_{1} \tau_{1}+\ldots+\kappa_{n} \tau_{n}
$$

By the conditional mean formula,

$$
\begin{aligned}
\mathbb{E}\left[\tau_{1} \xi^{\mathrm{est}}\right] & =\mathbb{E}\left[\tau_{1} \mathbb{E}\left[\xi \mid \tau_{1}, \ldots, \tau_{n}\right]\right]=\mathbb{E}\left[\mathbb{E}\left[\tau_{1} \xi \mid \tau_{1}, \ldots, \tau_{n}\right]\right] \\
& =\mathbb{E}\left[\tau_{1} \xi\right]
\end{aligned}
$$

Recall, v_{i} independent so $E\left[v_{i} v_{j}\right]=\delta_{i j}$ and

$$
\tau_{i}=\left(v_{0}+v_{i}\right)
$$

Compute to obtain

$$
\mathbb{E}\left[\tau_{1} \xi^{\mathrm{est}}\right]=\mathbb{E}\left[\tau_{1} \xi\right]
$$

equivalent to:

$$
\kappa_{1}\left(\sigma_{0}^{2}+\sigma_{1}^{2}\right)+\kappa_{2} \sigma_{0}^{2}+\ldots+\kappa_{n} \sigma_{0}^{2}=\sigma_{0}^{2}
$$

Setting $k_{i}=\kappa_{i} / p_{i}$, obtain

$$
k_{1}\left(p_{0}+p_{1}\right)+k_{2} p_{2}+\ldots+k_{n} p_{n}=1 .
$$

More generally,

$$
k_{1} p_{1}+\ldots+k_{i}\left(p_{0}+p_{i}\right)+\ldots+k_{n} p_{n}=1
$$

Solution now obviously: $k_{i}=1 /\left(p_{0}+\ldots+p_{n}\right)$.

Covariance: the Hilbert space view

Recall that each w_{i} has mean-zero and that

$$
\mathbb{E}\left[w_{i} w_{i}\right]=1, \text { and } \mathbb{E}\left[w_{i} w_{j}\right]=\frac{\sigma_{0}^{2}}{\sigma_{0 i} \sigma_{0 j}}>0
$$

So any combination of w_{1}, \ldots, w_{n} has mean zero, i.e. they span a vector space W. For $w, w^{\prime} \in W$ write

$$
\left\langle w, w^{\prime}\right\rangle:=\operatorname{cov}\left(w, w^{\prime}\right)=\mathbb{E}\left[w w^{\prime}\right] .
$$

This is an inner product (so W is a Hilbert space under $\langle.,$.$\rangle) iff the following$ covariance matrix is non-singular

$$
Q=\left(\rho_{i j}\right) \text { where } \rho_{i j}=\mathbb{E}\left[w_{i} w_{j}\right]
$$

It turns out that Q is related to the precision matrix.

Theorem. For $p_{i}>0$ the covariance matrix is non-singular and

$$
\begin{aligned}
\operatorname{det} Q & =\left(p_{0}+p_{1}\right) \ldots\left(p_{0}+p_{m}\right) \operatorname{det}\left[P+p_{0} I\right] \\
& =\bar{p} p_{0}^{m-1}\left(p_{0}+p_{1}\right) \ldots\left(p_{0}+p_{m}\right)
\end{aligned}
$$

Appendix: the Schur complement: 1

Aim: find the variance of $\mathbb{E}\left[w_{i} \mid w_{j} \forall j \neq i\right]$. NB. Requires first to solve e.g.

$$
\mathbb{E}\left[w_{n} \mid w_{1}, \ldots, w_{n-1}\right]=\sum_{j<n} \beta_{j} w_{j}
$$

Answer: put $\bar{Q}_{i}=Q$ omitting the i-th row and column; likewise,
$\vec{\rho}_{i}=i$-th row $\left(\rho_{i 1}, \ldots, \rho_{i, n}\right)$ omitting i-th entry.

The Schur complement (of \bar{Q}_{i} in Q) is given by

$$
\rho_{i i}-\vec{\rho}_{i} \bar{Q}_{i}^{-1} \vec{\rho}_{i}^{T} .
$$

Putting

$$
\rho_{i}:=\sqrt{\vec{\rho}_{i} \bar{Q}_{i}^{-1} \vec{\rho}_{i}^{T}},
$$

the Schur complement becomes

$$
1-\rho_{i}^{2}
$$

(This notation permits specialization to the $n=2$ case to yield $\bar{Q}_{i}=(1)$ and $\vec{\rho}_{i}=(\rho)$, so that $\rho_{i}=\rho=\rho_{12}$.)

The conditional distribution of w_{i} given all the w_{j} for $j \neq i$ is normal with variance given by the Schur complement.

The Schur complement: 2

Consider the distribution of $\mathbb{E}\left[T_{n} \mid T_{1}, \ldots, T_{n-1}\right]$, or equivalently that of $E\left[w_{n} \mid w_{1}, \ldots, w_{n-1}\right]$. Recall that

$$
T_{i}=e^{\sigma_{0 i} w_{i}-\frac{1}{2} \sigma_{0 i}^{2}}, \text { with } \sigma_{0 i} w_{i}=\sigma_{0} w_{0}+\sigma_{i} v_{i}
$$

Put

$$
w_{n}^{n-1}=\mathbb{E}\left[w_{n} \mid w_{1}, \ldots, w_{n-1}\right]=\sum_{j<n} \beta_{j} w_{j}
$$

Then, by definition and by the conditional mean formula,

$$
\rho_{i n}=\mathbb{E}\left[w_{i} w_{n}\right]=\mathbb{E}\left[w_{i} w_{n}^{n-1}\right]=\sum_{j<n} \beta_{j} \rho_{i j} .
$$

We solve the system of $m:=n-1$ equations for $i<n$

$$
\sum_{j<n} \rho_{i j} \beta_{j}=\rho_{i n}
$$

or, in matrix form with $\vec{\rho}_{n}:=\left(\rho_{1 n}, \ldots, \rho_{n-1, n}\right)$

$$
Q_{n-1} \beta=\vec{\rho}_{n}
$$

by computing explicitly $\beta=Q_{n-1}^{-1} \vec{\rho}_{n}$. Here we have denoted the principal submatrix of the covariance matrix Q_{n} by:

$$
Q_{n-1}=\left(\rho_{i j}\right)_{i, j<n}
$$

Using the precision matrix one may easily find the β_{j} explicitly. WE have an important corollary.

Monotonicity Theorem (Own precision refined by presence of others) The Schur complement

$$
1-\rho_{n}^{2}
$$

corresponding to conditioning w_{n} on $w_{1}, . ., w_{n-1}$ as a factor in the conditional variance, acts to increase the precision; increasing the precision of the competitors refines one's own conditional precision. Indeed, one has the explicit formula with $m=n-1$ and $\bar{p}=p-p_{n}=p_{0}+\ldots+p_{n-1}$,
$\rho_{n}^{2}=\frac{p_{m}}{p_{0} \bar{p}\left(p_{0}+p_{m}\right)}\left[\sum_{i=1}^{m} p_{i}\left(\bar{p}-p_{i}\right)+\sum_{i<j \leq m}\left(p_{i}+p_{j}\right) \sqrt{\frac{p_{i} p_{j}}{\left(p_{0}+p_{i}\right)\left(p_{0}+p_{j}\right)}}\right]$,
which is increasing in p_{i} for each $i<n$, and so the Schur complement itself decreases with p_{i}.

In fact one has:

Theorem 1. Provided all the precisions p_{i} are finite and positive, the regression equations

$$
\mathbb{E}\left[w_{n} \mid w_{1}, \ldots, w_{n-1}\right]=\beta_{1} w_{1}+\ldots+\beta_{n-1} w_{n-1}
$$

which are equivalent to the solution of the system $Q_{n-1} \beta=\vec{\rho}_{n}$, have non-singular matrix Q_{n-1} and the equivalent system of equations, for $i=1,2, \ldots, m=: n-1$,

$$
\rho_{i 1} \beta_{1}+\ldots+\beta_{i}+\ldots=\rho_{i n}
$$

has the unique solution:

$$
\beta_{i}=\frac{p_{i}+p_{0}}{p} \rho_{i n} .
$$

Proof of the averaging effect

In the setting of the Uncoupling Theorem, the equations

$$
\gamma_{i}^{\kappa_{i}}=\hat{\gamma}_{i} L_{-i} \prod_{j \neq i} \bar{h}_{j}^{i-\kappa_{j}},
$$

imply

$$
x_{i}-\sum_{j \neq i} \bar{h}_{j}^{i} x_{j}=B_{i}:=\frac{1}{\kappa_{i}} \log \left(\hat{\gamma}_{i} L_{-i}\right)=\frac{p}{p_{i}} \log \left(\hat{\gamma}_{i} L_{-i}\right),
$$

with

$$
x_{i}=\log \gamma_{i}
$$

Proof. Cross-multiply take logs and note

$$
\begin{aligned}
\bar{h}_{j}^{i} \kappa_{i} & =\bar{h}_{j}^{i}-\kappa_{j} \\
& =\frac{p_{j}}{p-p_{i}}-\frac{p_{j}}{p}=p_{j} \frac{p-\left(p-p_{i}\right)}{p\left(p-p_{i}\right)}=\frac{p_{i}}{p} \frac{p_{j}}{\left(p-p_{i}\right)} .
\end{aligned}
$$

The more revealing re-statement is

$$
\left(\kappa_{i}-1\right) x_{i}+\sum_{j \neq i} \kappa_{j} x_{j}=b_{i}:=\frac{\left(p_{i}-p\right)}{p_{i}} \log \left(\hat{\gamma}_{i} L_{-i}\right)
$$

Conditional hemi-mean formula

The following identifies the hemi-mean function.

Theorem (Conditional hemi-mean formula).

$$
\begin{aligned}
\mathbb{E}\left[T_{1}^{\kappa_{1}} \mid T_{2}, \ldots, T_{n}\right] & =L_{-1} T_{2}^{\bar{h}_{2}-\kappa_{2}} \ldots T_{n}^{\bar{h}_{n}-\kappa_{n}}, \text { where } L_{-1}=\exp \left(\frac{n-1}{2\left(p-p_{1}\right)}\right) \exp \left(-\frac{n}{2 p}\right) \\
\text { and } \bar{h}_{j} & =\frac{p_{j}}{p-p_{1}}, \text { for } j>1 .
\end{aligned}
$$

Hence, for any γ,

$$
\mathbb{E}\left[T_{1}^{\kappa_{1}} 1_{T_{1}<\gamma} \mid(T)_{-1}\right]=L_{-1} \prod_{j>1} T_{j}^{\bar{h}_{j}-\kappa_{j}} \Phi_{\mathrm{LN}}\left(\gamma^{\kappa_{1}} / L_{-1} \prod_{j>1} T_{j}^{\bar{h}_{j}-\kappa_{j}}, \kappa_{1} \sigma_{01} \sqrt{1-\rho_{1}^{2}}\right)
$$

Proof. The random variable $S=T_{1}^{\kappa_{1}}$ has mean $m=m\left(\kappa_{1}, \sigma_{01}\right)$ and volatility $\kappa_{1} \sigma_{01}$. Hence, by the Exponent Effect Theorem,

$$
H_{S}\left(\gamma^{\kappa}\right)=m H_{\mathrm{LN}}\left(\gamma^{\kappa_{1}} / m, \kappa_{1} \sigma_{01}\right)
$$

The distribution of S conditional on $T_{2}=t_{2}, \ldots, T_{2}=t_{n}$ (for any t_{2}, \ldots, t_{n}) has a mean $\xi=\xi_{-1}$ (depending on t_{2}, \ldots, t_{n} to be determined below) and a volatility $\kappa_{1} \sigma_{01} \sqrt{1-\rho_{n}^{2}}$, with $1-\rho_{n}^{2}$ the 'Schur complement' of T_{n} in $\left(T_{2}, . ., T_{n}\right)$, because that is the effect on normal variates of conditioning (see Bingham \& Fry (2010)).

Thus putting $\eta=\eta_{-1}:=m \xi_{-1}$ we have for any $\gamma>0$ that

$$
\begin{align*}
H_{S \mid t_{2} \ldots}\left(\gamma^{\kappa_{1}}\right)= & E\left[\left(\gamma^{\kappa_{1}}-T_{1}^{\kappa_{1}}\right) 1_{T_{1}<\gamma} \mid T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right] \\
= & m \xi H_{\mathrm{LN}}\left(\gamma^{\kappa_{1}} / m \xi, \kappa_{1} \sigma_{01} \sqrt{1-\rho_{n}^{2}}\right) \\
= & \gamma^{\kappa_{1}} \Phi_{\mathrm{N}}\left(\frac{\log \left(\gamma^{\kappa_{1}} / \eta\right)+\frac{1}{2} \kappa_{1}^{2} \sigma_{01}^{2} \rho_{n}}{\kappa_{1} \sigma_{01} \sqrt{1-\rho_{n}^{2}}}\right) \\
& -\eta \Phi_{\mathrm{N}}\left(\frac{\log \left(\gamma^{\left.\kappa_{1} / \eta\right)-\frac{1}{2} \kappa_{1}^{2} \sigma_{01}^{2} \rho_{n}}\right.}{\kappa_{1} \sigma_{01} \sqrt{1-\rho_{n}^{2}}}\right) \tag{CH}
\end{align*}
$$

This leaves open the determination of the 'constant' $\eta=\eta_{-1}$. But minus the second term has the value

$$
E\left[T_{1}^{\kappa_{1}} 1_{T_{1}<\gamma} \mid T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right]
$$

So taking the limit as $\gamma \rightarrow+\infty$ we obtain

$$
\eta=\eta_{-1}=E\left[T_{1}^{\kappa_{1}} \mid T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right] .
$$

Now, by the conditional mean formula, with

$$
\begin{aligned}
& \bar{h}_{i}=\bar{h}_{i}^{1}=\frac{p_{i}}{p-p_{1}} \\
& H_{-1} t_{2}^{\bar{h}_{2}} \ldots t_{n}^{\bar{h}_{n}}= \mathbb{E}\left[X \mid T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right] \\
&= \mathbb{E}\left[\mathbb{E}\left[X \mid T_{1}, T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right] \mid T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right] \\
&= \mathbb{E}\left[K T_{1}^{\kappa_{1}} t_{2}^{\kappa_{2}} \ldots t_{n}^{\kappa_{n}} \mid T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right] \\
&= K t_{2}^{\kappa_{2}} \ldots t_{n}^{\kappa_{n}} \mathbb{E}\left[T_{1}^{\kappa_{1}} \mid T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right]
\end{aligned}
$$

and so

$$
\begin{aligned}
\eta_{-1} & =\left(H_{-1} K^{-1}\right) t_{2}^{\bar{h}_{2}-\kappa_{2}} \ldots t_{2}^{\bar{h}_{n}-\kappa_{n}} \\
& =\exp \left(\frac{n-1}{2\left(p_{0}+p_{2}+\ldots+p_{n}\right)}\right) \exp \left(-\frac{n}{2 p}\right) t_{2}^{\bar{h}_{2}-\kappa_{2} \ldots t_{2}^{\bar{h}_{n}-\kappa_{n}}} \\
& =\exp \left(\frac{n-1}{2\left(p-p_{1}\right)}\right) \exp \left(-\frac{n}{2 p}\right) t_{2}^{\bar{h}_{2}-\kappa_{2} \ldots t_{2}^{\bar{h}_{n}-\kappa_{n}},}
\end{aligned}
$$

as required. The rests is now clear from (CH) above.

Postscript: Log-normal vs normal: standardization

Normal x with mean m and variance σ^{2} transforms to $v=(x-m) / \sigma \sim \mathrm{N}(0,1)$, i.e. zero-mean unit-variance. Note the moment generating function for $x \sim \mathrm{~N}(0,1)$ is

$$
E\left[e^{s x}\right]=e^{\frac{1}{2} s^{2}}
$$

General log-normal

$$
X=m_{X} e^{\sigma x-\frac{1}{2} \sigma^{2}} \text { with } x \sim N(0,1)
$$

Consider now the power transformation $Y=X^{\kappa}$ for $0<\kappa<1$, then with $s=\kappa \sigma$

$$
\begin{aligned}
Y & =e^{\kappa \sigma x-\frac{1}{2} \kappa \sigma^{2}}=e^{\frac{1}{2} \kappa(\kappa-1) \sigma^{2}} e^{s x-\frac{1}{2} s^{2}} \\
& =e^{\frac{1}{2} \kappa(\kappa-1) \sigma^{2}} Z
\end{aligned}
$$

That is, the new variable has reduced mean

$$
m=m(\kappa, \sigma):=e^{\frac{1}{2} \kappa(\kappa-1) \sigma^{2}}
$$

(Smart reason: derive this from from Ito's Lemma! via the second derivative of y^{κ}.)
Log-normal X with mean m_{X} and variance σ^{2} transforms using $\kappa=1 / \sigma$ to $Y=X^{\kappa}$ with unit variance and mean

$$
m_{Y}=m_{X} e^{\frac{1}{2}(1-\sigma)}
$$

and so we arrive at $Z=X^{\kappa} / m_{Y}=\left(Y / m_{Y}\right) \sim \operatorname{LN}(1,1)$, i.e. unit-mean unitvariance.

