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Alternative Subtitle:

Filtering with selectively censored data (news)

Averaging, bandwagon and quality effects from correlation



Motivation: a disclosure game

1. At the first ‘'ex-ante date’ Nature selects a probabilistic strategy (‘action’) X
from a known space of actions. Actions are represented by a family of distributions.

2. At the interim date (a known later date), as a result of an independent draw
with some probability g, this action is observed noisily by an agent (‘observer’).

3. At the ‘terminal date’ (a still later date), there is a publicly observed vector of
outcomes Fj; dependent on the action X.

The ‘public’ comprises the agents and a disjoint set of principals (e.g. investors).



At the interim date a pre-assessment/evaluation of the outcome F; may be formed
from the observation.
What is the disclosure game? What is news? Answer (71" for a transform):

T; = T(X,Y;) = private signal about X involving the observer's noise Y,
received at the ‘interim date’ prior to public (common) knowledge of X at the terminal
date.

The effect of X is to yield an outcome, e.g. via

F; = f; - T(X, Z;) = effect of X with uncertainties from Z,.

Leads to a public interim re-assessment of any disclosed signals from the agents.

This could be the evaluation of some underlying complex system based on partial
noisy observation.



The ex-ante assessment is modelled as

E[F;] = fi - B[T(X, Z;)].

Game objective: maximization at the interim date of the re-assessment of F;.

Disclosure option: opportunity to suppress the reporting of the signal 17, if
E[F;]| report T;] < E[F;|no report/no disclosure]
equivalently, on using F; = f; - T(X, Z;),
B[T(X, Z;)| report T;] < E[T(X, Z;)|ND],

assuming there is a positive probability that the observer is unable to observe Tj.



A basic question: When is a censor v optimal?

Answer: it is the ‘indifferent censor’ ~: indifference as to reporting when T' = ~.

Note for later that
(1 - q)E[T] + ¢E[T - 174]
(1 —q)+ qB[1p.,]

E[T|ND using ~] :=

We assume:
(i) 0 < g < 1 and q is public (common) knowledge,

(ii) the observer does not lie, and cannot directly announce credibly absence of an
observation.



The Equity-valuation model

Take X = Y),Y;, Z,; all log-normal with unit-mean, so in sttochastic-exponential
format:

L 52
Y, =e%"i72%, fori=0,1,2,...,n,
with v; all independent, standard normal, and
Ti = XY; and Fi = fZXZz

The observers are called firm-managers and identified with Yj.

Easy to include individual dependency loading index a; of firm ¢ on X :

Ti — AXYvZ and Fi — fZ‘X'Oé"ZZ



Corollaries of the model:

1 2

1. T; = e?0%i™2%i  with og;w; = ogug + o;v; and ‘7(%7: = 0(2) + o2

7: .
So vg is the only source of all the correlation.

Useful to refer to p; = 1/0%, the precision of Y.

E[F;|data] = f;E[X |data].



Noiseless Dye Cutoff: the Censor equation

For T' = X, i.e. true value rather than a nosiy signal is observed

Dye indifference equation, or Dye Censor Equation is
+ = E[X|ND()].
It is equivalent to:

1 —
Amy — ) = B[(y — X) 1], with odds A = — 2,

q
where

B[(y— X)*] = [(v—)*arx(t) = | _ Fx(t)dt



Alternative characterizations of the Dye censor: Minimized valuation consistent with
available information:

v = arg mvin E[X|ND(~v)]-

No-arbitrage valuation: = such that E[X] values X consistently with the possibility
of further y-censored information becoming available later.



The hemi-mean function

This put-payoff is valued under an expectation, and we call
Hx(v) = | __ Fx(tdt,
t<~y
the hemi-mean function of X. Since H” = fyxy > 0 that itself is an increasing

convex function of v and so has a smoothed out hockey-stick shape: it looks like the
valuation of a call (dual to the put). Examples below! Dye equation standardizes to:

A1 —7v)=Hx(v)



The Normal Censor

The pink/red intersection
identifies the normal Dye
censor (here A =1).

A corresponding dual call
payoff (X — x)T is in green.



Location-scale cutoff standardization theorem. For the location and scale family
of distributions ® (*=1), with mean i and variance o2, the Dye cutoff v(p, 0, \)
satisfies

V(s 0, A) = p— og&(A).

So:

Plow < PHigh = Y(PLow) < Y(PHigh);

I.e. more disclosure from the low-precision firm.

This will be altered by the pressence of additional information sources.



*Location-scale cutoff standardization theorem. Let ® p-(x) be an arbitrary zero-
mean, unit-variance, cumulative distribution for F' defined on R. For the location
and scale family of distributions CDF(%) with mean 1 and variance o2, the Dye
cutoff v(u, o, \) satisfies

1 —
Y(p, 0, A) = o — 0&(N), where X\ = —q,

q
so that

§(A) = —(0,1,2) <0
is the cutoff when standardizing to zero mean and unit variance and is a function only
of the odds X\. The standardized cutoff £()\) is a convex and decreasing function of
A satisfying
A= Hp(=£)/€,

where Hp(x) = [, Pr(t)dt is the corresponding hemi-mean function.
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Black-Scholes Censor

™ b ™ o " ™

The red-pink intersection

identifies the log-normal Dye
censor (for A =1 ).
Green indicates the dual call
payoff.



Noisy Dye Cutoff: Estimator-Censor equation

For T'=T(X,Y), put

wx(t) : = E[X|T =t], the regression function,
S : = ux(T), the estimator, or Xt

Since
E[F] = fiE[X],
then, provided px(.) is strictly increasing, the Dye Equation holds in the form:

px(yr) =vs = E[SIND(vg)l;

where g is the censor for S and v is the equivalent censor for 7'



Equivalently, as S is an unbiased estimator of X one has

Amx —vg) = Hs(7).
By the conditional mean formula (tower law/iterated expecation):
E[S] = E[E[X|T]] = B[X] =mx.

So the hemi-mean function rules OK.



Multi-Censor Equilibrium equation

One has n simultaneous equations corresponding to a simultaneous interim-report
date:

B[X|T; = ~, forall j] = B[X|ND;(v)],
with v = (v1,-.,7,) and ND; = only ¢ makes no disclosure.

We call these the Marginal Dye equations.



Log-normal Marginal Dye equations

Recall the Estimator version of the Dye equation:

AMmx —vg) = Hg(7)-

Conditioning on the other disclosures, yields for some K and k; = p;/p

1x (V15 ooy Yn) = EIX|T; = vy; all i] = Kyptoypm,

(see below). Change of random variable, and change of variable:

S = px(T1,v2, -y Yn), and s = px (¥, ¥25 s Yn)

yields a conditioned format, in which mg.  replaces mg :

ME[S|v2y ooy Yl — 8) = Hg(S]v2,y oo vn)-



Principal findings for the Equity Valuation case:

Preparatory Step. Replace the n firm-managers Y; by n hypothetical observers/managers
XA/,L- which are uncoupled — acting as though all the competitors had vanished — but

with refined precision parameters
Kk;00i\/ 1 — p%, with x; 1= bi and 0(2)2- = 0(2) + 022,
p

and
p = pg + ... + pn, total precision.

Here p; measures the dependence of T; on the remaining T’; (more properly: partial

co-variance of w; on the remaining w;).



Conclusion. If the corresponding Dye censors for T; = XY; are 4;, then the true
managers have censors «y; given by the weighted average:

log qg; 1 K K K
log v; = gg“r L Iogg1+—2 loggo + ... + ——log gn |,
K_; Ko \K—1 K_92 K—_n

with
k—i = i/ (P — Pi),

and where g; is the hypothetical firm-j censor.



In fact

g; = log (’AYLN (% Kio0i\/ 1 — p%) L—z') , A

—1 1 1 1
1t ) T

2(p—p;) 2p 2

where L _; is a mean adjustment.

Pav, -2




Bandwagon effect

Bandwagon Inflator Theorem. The presence of correlation increases the precision
parameter of the cutoff and hence raises the cutoff:

YN(Ais 00i) < ALN(Nis Kio0i) < ALN (Az, Kio0i\/ 1 — pf) :

Proof. Clear since 4 (A, .) is increasing in precsioin, and also pg IS Increasing in
Di-



Estimator-quality effect

Estimator-Quality Theorem. The mean-adjustor for firm 1 is increasing in p; with

1 1
exp | — < L_; <exp <—|- > ;
< 2(p — pz)) Z 2Pav,—i

and in particular

L_; < L_j iff p; < Dj-

The adjustor is a strict deflator, i.e. L_; < 1, iff p; is below the sector average,
equivalently below the competitor average, i.e.

P — P
n—1

p; < B, equivalently p; <
n



Tools:

Basic Tools: Isomorphism. Equity a log-normal variate, but it is easy to move back
and forth from log-normal to normal via the isomorphism exp : (R, +) — (R4, )

Explicit Normal and Black-Scholes put-option formulas.

Main Tools: Linear regression easily computed via a Hilbert space approach: view

[E[..] as a projection and use P the precision matrix.

Strategy: Uncoupling the co-dependency and solving the uncoupled censor equa-

tions via P.



Some simple algebra: the precision matrix

Put
I P1 P2 --- DPn |
P?’L — p:]. p2 5 p:TL
| P1 P2 .- DPn
and

Recall that for O'ZZ a variance parameter, p; = 1/(722 is the precision parameter.

Proposition 1. For any n, the characteristic function of the matrix Py, is

det(Py, — xI) = (=1)"z" 1(z — p1 — ... — pn),



Proof. Easy exercise. [Hint: Py has nullity n — 1.]

Proposition 2. For any non-zero parameter q such that pq := q+p1+...+pn # 0,
the simultaneous system of equations

(Pn + ql)x = s,
I.e.
p1x1 + ... + (P + @)z + ... + prxn = s,

has the unique solution

Sj . 1
x; = — 4+ ¢, withc = —(p1s1 + ... + Pnsn).
q 4Pq



Proof. Easily checked; by Prop. 1, det(Pn + ¢I) = ¢" Y(p1 + ... + pn + q) # 0,
so the solution is unique. []



*Example 1: Normal put-option formula

Notation
Fx(t) :== Pr[X <]
Cases: X = u ~N(0, %) normal
d(t) = Fyu(t) := Prlu < t].
with density ¢(t) = ®/(t). Here

1
E[(t — X)1] = to (751202) + o(t/a?).



*Example 2: Black-Scholes put-option formula

For X log-normal

1 2
X =e7%7279 with u ~ N(0,1),

B[(t — X)H] = to (Iogt + %g2> W (Iogt - ;02> |

o



Simplification:

Again use the conditional mean formula:
E[S[v2, s vn]l = E[E[X|v2,...75]lv2, - vnl, defnof S
= B[E[E[X|T1,v2, - valllv2, - vnlllva, - nl, refine

= E[KT{Y52..90 Y2, ...vp], apply formula

= Kvyy2nm - BT 2, -l



Theorem (Conditional hemi-mean formula).

E[TY Ty, ..., Tn] = L_1T02 "2, Tm—rn

where, with p = pg + ... + pn, the total precision,

n—1 n — joX
L_1 =exp ( ) exp (——) , and h; = J
2(p — p1) 2p 7 p—m

Proof uses conditional mean formula and yields L_1 = K_1/K.




Uncoupling Theorem

Uncoupling Theorem. The substitution

i_l,l—lﬂ'Q ]TL,']:L—[{
y1="71"/L-17° C.nt "

reduces the marginal Dye equation, namely

)\1 (E[X|727 7777,] — ,LLX(’Y,’Y27 ,f)/n))
1571

to the standard form

A1(1 — y1) = Hin(yi, k10011 — p2),

where 1 — p% Is the partial covariance, or Schur complement, of w1 given wi, ..., Wn,.



Notational convention for shifting from LN to N

n; = logY; + %‘7% = o,;v; the underlying normal variate, etc



Background: a little linear regression

Proposition (Geometric weighted-average)

EX|Ty = t1,...Tn = tn] = Kt 5 with k; = %, and

1
= exp ( ) t'fl...tg”, with pay 1= Po + —I—pn.
2Pav n

~

|
®
SE

Sketch Proof. Put £ = log X, 7; = log T; (+ take off constants), do classical linear
regrssion with normal variates, transform back via exp , finally compute the constant
K using the tower law.



Remarks. 1. The preceding shows why log-normals are as easy as normals.

2. The normal regression arguments need only P, so some simple algebra.



Reprise: a little linear regression

Lemma (Arithmetic weighted-average). One has

E[f|’7‘1,’7‘2] = K1T1 + ... + knTn, with k; = &

Proof. Method: write

feSt = El¢|T1,...,™n] = kK171 + ... + KnTn-

By the conditional mean formula,

E[r1£*Y = E[r1E[|71, ..., Tn]] = B[E[r1€|71, ..., Tal]]
= [E[r€]



Recall, v; independent so Efv;v;] = §;; and
7i = (vo + v;)
Compute to obtain
E[71£%] = B[r1¢]

equivalent to:

k1(05 + 01) + £208 + ... + koG = o5,
Setting k; = k;/p;, obtain

k1(po + p1) + kop2 + ... + knpn = L.

More generally,

kip1 + --- + ki(po + pi) + - + knpn = 1.
Solution now obviously: k; = 1/(pg + ... + pn)-



Covariance: the Hilbert space view

Recall that each w; has mean-zero and that
2

o
Elw;w;] = 1, and E[wiwj] = 0_>o.
T0i00;]
So any combination of wyq, ...., wy has mean zero, i.e. they span a vector space W.
For w,w’ € W write
(w, w') := cov(w,w') = Elww].

This is an inner product (so W is a Hilbert space under (.,.)) iff the following
covariance matrix is non-singular

Q = (p;j) where p;; = Elw;wj].



It turns out that @ is related to the precision matrix.

Theorem. For p; > 0 the covariance matrix is non-singular and

det@Q = (po+ p1)-.-(po + pm)det[P + pol]
= 5" Y (po + p1)---(Po + Pm).



Appendix: the Schur complement: 1

Aim: find the variance of E[w;|w;Vj # i]. NB. Requires first to solve e.g.
Elwn|wq, ..., wp_1] = Zj<n Biw;.
Answer: put Q; = @Q omitting the i-th row and column; likewise,

p; = i-th row (p;1, ..., p; ) OMitting i-th entry.

The Schur complement (of Q; in Q) is given by

L = 1T
pis — PiQ; P -



Putting

S =~ 1
pi =\ PiQ; "P;
the Schur complement becomes
2
(This notation permits specialization to the n = 2 case to yield Q; = (1) and

pi = (p). so that p; = p = p1>.)

The conditional distribution of w; given all the w; for j # 4 is normal with variance

given by the Schur complement.



The Schur complement: 2

Consider the distribution of B[T},|T1, ..., T;,_1], or equivalently that of E[wn|w1, ..., w,_1].
Recall that

s — k52 :
T; = e?0i%i™3%0i  with og;w; = oqwg + o;v;.
Put
n—1 __ _
wy, = Blwp|wy, ...,wp—1] = Zj<n ijj'
Then, by definition and by the conditional mean formula,
_ _ n—1y _
Pin = Blwwn] = Blwjw, 7] = Zj<n Bipij-

We solve the system of m := n — 1 equations for 1+ < n

Zj<n PiiBj = Pins



or, in matrix form with g, := (p1p,, -+, P—1 p)

Qn—lﬁ — ﬁna

by computing explicitly 8 = Q;Elﬁn. Here we have denoted the principal submatrix
of the covariance matrix @, by:

Qn—1 = (pij)ij<n-

Using the precision matrix one may easily find the 5 explicitly. WE have an important
corollary.



Monotonicity Theorem (Own precision refined by presence of others) The
Schur complement

2
1— Py
corresponding to conditioning wy on wi,..,W,_1 as a factor in the conditional

variance, acts to increase the precision; increasing the precision of the competitors
refines one’s own conditional precision. Indeed, one has the explicit formula with

m=n—1landp=p—ppn=pg+..+Pn-1,

Pm

_ pib;
" pop(po + pm)

pi)(po + pj)

Y

m _
> i PilP—p) + 2 i, (Pit pj)\/(po n

which is increasing in p; for each © < n, and so the Schur complement itself decreases
with p;.



In fact one has:

Theorem 1. Provided all the precisions p; are finite and positive, the regression
equations

E[wn|w1, X3 wn—l] — Blwl + ...+ Bn—lwn—la

which are equivalent to the solution of the system Q,_18 = p,,, have non-singular
matrix (Q,,_1 and the equivalent system of equations, for 1 = 1,2,....m =: n — 1,

pitBP1+ -+ Bi+ . = pPiny

has the unique solution:

pi + Po
5@' — ZTPin*



Proof of the averaging effect

In the setting of the Uncoupling Theorem, the equations
R
imply

— . 1 ~ D ~
i = 20y wj = Bii= —log (§;,L_;) = —log (%;L—i),

KR4 P;
with

z; = log~y;.



Proof. Cross-multiply take logs and note

Plp. — Rb .

pj _Pj_ p=(P=pi)_Pi Pj
p—p;i p 7 plp—p) p(0—D8)
The more revealing re-statement is

(pi — p)

.

P;

(ki — 1)x; + Zj#i Kixj = bj 1= log (%;L—3) -



Conditional hemi-mean formula

The following identifies the hemi-mean function.

Theorem (Conditional hemi-mean formula).

hio— P —1
BTy T, ..., Th] = L_szh2 %2 Tm=Fn \where L_1 = exp( i )exp (_ﬁ)
2(p — p1) 2p

andﬁj = P , for 5 > 1.
pP—Dr1
Hence, for any -,

hi—kK; B — s
BTy <o |(T) 1] = Loa [ 777 Vo™ /Loy [[, 7 7 ma001y/1 = p3)-



Proof. The random variable S = Tfl has mean m = m(k1,001) and volatility
k1001- Hence, by the Exponent Effect Theorem,

Hg(v") = mH (Y"1 /m, k1001).

The distribution of S conditional on 7o = to,....,T> = ty (for any to, ..., tn) has
a mean £ = £_1 (depending on tg,...,ty to be determined below) and a volatility

k1001y/1 — p2, with 1 — p2 the ‘Schur complement’ of Ty, in (15, .., Tp), because
that is the effect on normal variates of conditioning (see Bingham & Fry (2010)).



Thus putting n = n_1 := m&_q1 we have for any v > 0 that
HS|7§2...(,7K’1) — E[(’yml _ Tf1)1T1<’y|T2 = 12, 7Tn — tn]
= m&EH N(Y™/mE, k1o01y/1 — p3)
log(v*1/n) + 3K203, pp
k1oo1y/1 — P2

log(v"1/1) — 3K2031pp

—nPN
k1o01y/1 — P2

This leaves open the determination of the ‘constant’ n = n_;. But minus the second

= 7"y

(CH)

term has the value

BTy <y |Th = to, ..., T = tn].



So taking the limit as v — 400 we obtain

n=n_1=E[I} T2 =ta,..., Tn = tn].

Now, by the conditional mean formula, with

H_qt22.. thn

I3
I3
I3

h;=hl =2
p—Dp1

X|T2 — t2, ...,Tn — tn]
E[X|T1, Ty = to, ..., Tn = tp]|Th = to, ..., Tn, = tn]

KT W52 50 Th = to, ..., T = ty]

K2 A5 BIT{Y T = to, ..., Tn = t)]



and so

n-1 = (H_1K~ ])thz w2 thn

—1
- exp( " )exp( )thz "2, th” fon
2(po +p2 + ... + pn) 2p

n—1 ho—ko  hn—k
= exp exp t O AL
(ﬂp—pﬂ> ( %) ?

as required. The rests is now clear from (CH) above.




Postscript: Log-normal vs normal: standardization

Normal = with mean m and variance o transforms to v = (xz — m) /o ~N(0, 1),
i.e. zero-mean unit-variance. Note the moment generating function for  ~N(0, 1)

IS
1.2
E[e’®] = e2® .

General log-normal

1 2
X =mxe’ 727 with z ~ N(0,1).

Consider now the power transformation Y = X for 0 < Kk < 1, then with s = ko

1.2 1 _ 2 _1.2
YV — ROZT—3KO :62’4“(“ 1)o eST—755

6%/63(/4,—1)0'22.



That is, the new variable has reduced mean

m = m(k,o) := e2#(v—1)0?,

(Smart reason: derive this from from Ito's Lemma! via the second derivative of y.)

2

Log-normal X with mean m x and variance o transforms using xk = 1/ctoY = XF*

with unit variance and mean
1
my = mXei(l_a)

and so we arrive at Z7 = X"/my = (Y/my) ~LN(1,1), i.e. unit-mean unit-

variance.



