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Alternative Subtitle:
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Averaging, bandwagon and quality e¤ects from correlation



Motivation: a disclosure game

1. At the �rst �ex-ante date�Nature selects a probabilistic strategy (�action�) X
from a known space of actions. Actions are represented by a family of distributions.

2. At the interim date (a known later date), as a result of an independent draw
with some probability q; this action is observed noisily by an agent (�observer�).

3. At the �terminal date�(a still later date), there is a publicly observed vector of
outcomes Fi dependent on the action X:

The �public�comprises the agents and a disjoint set of principals (e.g. investors).



At the interim date a pre-assessment/evaluation of the outcome Fi may be formed
from the observation.

What is the disclosure game? What is news? Answer (T for a transform):

Ti = T (X;Yi) = private signal about X involving the observer�s noise Yi;

received at the �interim date�prior to public (common) knowledge ofX at the terminal
date.

The e¤ect of X is to yield an outcome, e.g. via

Fi := fi � T (X;Zi) = e¤ect of X with uncertainties from Zi:

Leads to a public interim re-assessment of any disclosed signals from the agents.

This could be the evaluation of some underlying complex system based on partial
noisy observation.



The ex-ante assessment is modelled as

E[Fi] = fi � E[T (X;Zi)]:

Game objective: maximization at the interim date of the re-assessment of Fi:

Disclosure option: opportunity to suppress the reporting of the signal Ti, if

E[Fij report Ti] < E[Fijno report/no disclosure]

equivalently, on using Fi = fi � T (X;Zi);

E[T (X;Zi)j report Ti] < E[T (X;Zi)jND];

assuming there is a positive probability that the observer is unable to observe Ti:



A basic question: When is a censor  optimal?

Answer: it is the �indi¤erent censor�: indi¤erence as to reporting when T = :

Note for later that

E[T jND using ] :=
(1� q)E[T ] + qE[T � 1T<]

(1� q) + qE[1T<]
We assume:

(i) 0 < q < 1 and q is public (common) knowledge,

(ii) the observer does not lie, and cannot directly announce credibly absence of an
observation.



The Equity-valuation model

Take X = Y0; Yi; Zi all log-normal with unit-mean, so in sttochastic-exponential
format:

Yi = e
�ivi�12�

2
i ; for i = 0; 1; 2; :::; n;

with vi all independent, standard normal, and

Ti = XYi and Fi = fiXZi:

The observers are called �rm-managers and identi�ed with Yi:

Easy to include individual dependency loading index �i of �rm i on X :

Ti = XYi and Fi = fiX
�iZi:



Corollaries of the model:

1. Ti = e
�0iwi�12�

2
0i; with �0iwi = �0v0 + �ivi and �20i = �

2
0 + �

2
i :

So v0 is the only source of all the correlation.

Useful to refer to pi = 1=�2i , the precision of Yi:

2.

E[Fijdata] = fiE[Xjdata]:



Noiseless Dye Cuto¤: the Censor equation

For T = X; i.e. true value rather than a nosiy signal is observed

Dye indi¤erence equation, or Dye Censor Equation is

 = E[XjND()]:

It is equivalent to:

�(mX � ) = E[( �X)+]; with odds � =
1� q
q
;

where

E[( �X)+] =
Z
( � t)+dFX(t) =

Z
t�

FX(t)dt:



Alternative characterizations of the Dye censor: Minimized valuation consistent with
available information:

 = argmin

E[XjND()]:

No-arbitrage valuation:  such that E[X] values X consistently with the possibility
of further -censored information becoming available later.



The hemi-mean function

This put-payo¤ is valued under an expectation, and we call

HX() :=
Z
t�

FX(t)dt;

the hemi-mean function of X: Since H 00 = fX � 0 that itself is an increasing
convex function of  and so has a smoothed out hockey-stick shape: it looks like the
valuation of a call (dual to the put). Examples below! Dye equation standardizes to:

�(1� ) = HX():



The Normal Censor

The pink/red intersection
identi�es the normal Dye
censor (here � = 1).

A corresponding dual call
payo¤ (X � x)+ is in green.



Location-scale cuto¤ standardization theorem. For the location and scale family
of distributions �F (

x��
� ), with mean � and variance �2; the Dye cuto¤ (�; �; �)

satis�es

(�; �; �) = �� ��(�):

So:

pLow < pHigh =) (pLow) < (pHigh);

i.e. more disclosure from the low-precision �rm.

This will be altered by the pressence of additional information sources.



*Location-scale cuto¤ standardization theorem. Let �F (x) be an arbitrary zero-
mean, unit-variance, cumulative distribution for F de�ned on R. For the location
and scale family of distributions �F (

x��
� ), with mean � and variance �2; the Dye

cuto¤ (�; �; �) satis�es

(�; �; �) = �� ��(�); where � = 1� q
q
;

so that

�(�) = �(0; 1; �) < 0

is the cuto¤ when standardizing to zero mean and unit variance and is a function only
of the odds �. The standardized cuto¤ �(�) is a convex and decreasing function of
� satisfying

� = HF (��)=�;

where HF (x) =
R x
�1�F (t)dt is the corresponding hemi-mean function.



Black-Scholes Censor

The red-pink intersection
identi�es the log-normal Dye

censor (for � = 1 ).
Green indicates the dual call

payo¤.



Noisy Dye Cuto¤: Estimator-Censor equation

For T = T (X;Y ); put

�X(t) : = E[XjT = t]; the regression function,
S : = �X(T ); the estimator, or X

est.

Since

E[F ] = fiE[X];

then, provided �X(:) is strictly increasing, the Dye Equation holds in the form:

�X(T ) = S = E[SjND(S)];

where S is the censor for S and T is the equivalent censor for T:



Equivalently, as S is an unbiased estimator of X one has

�(mX � S) = HS():

By the conditional mean formula (tower law/iterated expecation):

E[S] = E[E[XjT ]] = E[X] = mX :

So the hemi-mean function rules OK.



Multi-Censor Equilibrium equation

One has n simultaneous equations corresponding to a simultaneous interim-report
date:

E[XjTj = j for all j] = E[XjNDi()];
with  = (1; :::; n) and NDi = only i makes no disclosure.

We call these the Marginal Dye equations.



Log-normal Marginal Dye equations

Recall the Estimator version of the Dye equation:

�(mX � S) = HS():

Conditioning on the other disclosures, yields for some K and �i = pi=p

�X(1; ::::; n) = E[XjTi = i all i] = K
�1
1 ::::

�n
n ;

(see below). Change of random variable, and change of variable:

S := �X(T1; 2; ::::; n); and s = �X(; 2; ::::; n)

yields a conditioned format, in which mSj2:::: replaces mS :

�(E[Sj2; ::::; n]� s) = HS(sj2; ::::; n):



Principal �ndings for the Equity Valuation case:

Preparatory Step. Replace the n �rm-managers Yi by n hypothetical observers/managers
Ŷi which are uncoupled � acting as though all the competitors had vanished � but
with re�ned precision parameters

�i�0i

q
1� �2i ; with �i :=

pi
p
and �20i = �

2
0 + �

2
i ;

and

p = p0 + :::+ pn; total precision.

Here �i measures the dependence of Ti on the remaining Tj (more properly: partial
co-variance of wi on the remaining wj):



Conclusion. If the corresponding Dye censors for T̂i = XŶi are ̂i; then the true
managers have censors i given by the weighted average:

log i =
log gi
��i

+
1

�0

 
�1
��1

log g1 +
�2
��2

log g2 + :::+
�n

��n
log gn

!
;

with

��i = pi=(p� pi);

and where gj is the hypothetical �rm-j censor.



In fact

gi = log
�
̂LN

�
�i; �i�0i

q
1� �2i

�
L�i

�
; �i =

1� qi
qi

;

L�i = exp

 
n� 1

2(p� pi)
� 1
2

n

p

!
= exp

1

2

 
1

pav,-i
� 1

pav

!
;

where L�i is a mean adjustment.



Bandwagon e¤ect

Bandwagon In�ator Theorem. The presence of correlation increases the precision
parameter of the cuto¤ and hence raises the cuto¤:

̂LN(�i; �0i) < ̂LN(�i; �i�0i) < ̂LN

�
�i; �i�0i

q
1� �2i

�
:

Proof. Clear since ̂LN(�; :) is increasing in precsioin, and also �2i is increasing in
pi.



Estimator-quality e¤ect

Estimator-Quality Theorem. The mean-adjustor for �rm i is increasing in pi with

exp

 
� 1

2(p� pi)

!
< L�i < exp

 
+

1

2pav,�i

!
;

and in particular

L�i < L�j i¤ pi < pj:

The adjustor is a strict de�ator, i.e. L�i < 1; i¤ pi is below the sector average,
equivalently below the competitor average, i.e.

pi <
p

n
; equivalently pi <

p� pi
n� 1

:



Tools:

Basic Tools: Isomorphism. Equity a log-normal variate, but it is easy to move back
and forth from log-normal to normal via the isomorphism exp : (R;+)! (R+; �)

Explicit Normal and Black-Scholes put-option formulas.

Main Tools: Linear regression easily computed via a Hilbert space approach: view
E[::] as a projection and use P the precision matrix.

Strategy: Uncoupling the co-dependency and solving the uncoupled censor equa-
tions via P .



Some simple algebra: the precision matrix

Put

Pn :=

26664
p1 p2 ::: pn
p1 p2 pn
... . . . ...
p1 p2 ::: pn

37775 :
and

Pn(x) = Pn � xI:

Recall that for �2i a variance parameter, pi = 1=�
2
i is the precision parameter.

Proposition 1. For any n; the characteristic function of the matrix Pn is

det(Pn � xI) = (�1)nxn�1(x� p1 � :::� pn);



Proof. Easy exercise. [Hint: Pn has nullity n� 1:]

Proposition 2. For any non-zero parameter q such that pq := q+p1+ :::+pn 6= 0;
the simultaneous system of equations

(Pn + qI)x = s;

i.e.

p1x1 + :::+ (pi + q)xi + :::+ pnxn = si;

has the unique solution

xi =
si
q
+ c; with c =

1

qpq
(p1s1 + :::+ pnsn):



Proof. Easily checked; by Prop. 1, det(Pn + qI) = qn�1(p1 + :::+ pn + q) 6= 0;
so the solution is unique. �



*Example 1: Normal put-option formula

Notation

FX(t) := Pr[X � t]

Cases: X = u �N(0; �2) normal

�(t) = Fu(t) := Pr[u � t]:

with density '(t) = �0(t): Here

E[(t�X)+] = t�

0@t+ 1
2�
2

�

1A+ '(t=�2):



*Example 2: Black-Scholes put-option formula

For X log-normal

X = e�u�
1
2�
2
with u � N(0; 1);

E[(t�X)+] = t�

0@log t+ 1
2�
2

�

1A� �
0@log t� 1

2�
2

�

1A :



Simpli�cation:

Again use the conditional mean formula:

E[Sj2; ::::; n] = E[E[Xj2; :::n]j2; :::n]; defn of S

= E[E[E[XjT1; 2; :::n]]j2; :::n]]j2; :::n]; re�ne

= E[KT�11 
�2
2 ::::

�n
n j2; :::n]; apply formula

= K
�2
2 ::::

�n
n � E[T�11 j2; :::n]:



Theorem (Conditional hemi-mean formula).

E[T�11 jT2; :::; Tn] = L�1T
�h2��2
2 :::T

�hn��n
n ;

where, with p = p0 + :::+ pn the total precision,

L�1 = exp

 
n� 1

2(p� p1)

!
exp

 
� n
2p

!
; and �hj =

pj

p� p1
; for j > 1:

Proof uses conditional mean formula and yields L�1 = K�1=K:



Uncoupling Theorem

Uncoupling Theorem. The substitution

y1 = 
�1
1 =L�1

�h12��2
2 ::

�h1n��n
n

reduces the marginal Dye equation, namely

�1 (E[Xj2; :::; n]� �X(; 2; :::; n))
=

Z
t1<1

[�X(1; 2; :::; n)� �X(t1; 2; :::; n)] dFT1(t1j2; :::; n);

to the standard form

�1(1� y1) = HLN(y1; �1�01
q
1� �21);

where 1��21 is the partial covariance, or Schur complement, of w1 given w1; :::; wn:



Notational convention for shifting from LN to N

�i = log Yi +
1
2�
2
i = �ivi the underlying normal variate, etc



Background: a little linear regression

Proposition (Geometric weighted-average)

E[XjT1 = t1; :::; Tn = tn] = Kt
�1
1 :::t

�n
n ; with �i =

pi
p
; and

K = e
n
2p = exp

 
1

2pav

!
t
�1
1 :::t

�n
n ; with pav :=

p0 + :::+ pn

n
:

Sketch Proof. Put � = logX; � i = log Ti (+ take o¤ constants), do classical linear
regrssion with normal variates, transform back via exp , �nally compute the constant
K using the tower law.



Remarks. 1. The preceding shows why log-normals are as easy as normals.

2. The normal regression arguments need only P; so some simple algebra.



Reprise: a little linear regression

Lemma (Arithmetic weighted-average). One has

E[�j�1; �2] = �1�1 + :::+ �n�n; with �i =
pi
p
:

Proof. Method: write

�est = E[�j�1; :::; �n] = �1�1 + :::+ �n�n:

By the conditional mean formula,

E[�1�est] = E[�1E[�j�1; :::; �n]] = E[E[�1�j�1; :::; �n]]
= E[�1�]



Recall, vi independent so E[vivj] = �ij and

� i = (v0 + vi)

Compute to obtain

E[�1�est] = E[�1�]

equivalent to:

�1(�
2
0 + �

2
1) + �2�

2
0 + :::+ �n�

2
0 = �

2
0:

Setting ki = �i=pi; obtain

k1(p0 + p1) + k2p2 + :::+ knpn = 1:

More generally,

k1p1 + :::+ ki(p0 + pi) + :::+ knpn = 1:

Solution now obviously: ki = 1=(p0 + :::+ pn).



Covariance: the Hilbert space view

Recall that each wi has mean-zero and that

E[wiwi] = 1; and E[wiwj] =
�20

�0i�0j
> 0:

So any combination of w1; ::::; wn has mean zero, i.e. they span a vector space W:
For w;w0 2W write

hw;w0i := cov(w;w0) = E[ww0]:

This is an inner product (so W is a Hilbert space under h:; :i) i¤ the following
covariance matrix is non-singular

Q = (�ij) where �ij = E[wiwj]:



It turns out that Q is related to the precision matrix.

Theorem. For pi > 0 the covariance matrix is non-singular and

detQ = (p0 + p1):::(p0 + pm) det[P + p0I]

= �ppm�10 (p0 + p1):::(p0 + pm):



Appendix: the Schur complement: 1

Aim: �nd the variance of E[wijwj8j 6= i]: NB. Requires �rst to solve e.g.

E[wnjw1; :::; wn�1] =
X

j<n
�jwj:

Answer: put �Qi = Q omitting the i-th row and column; likewise,

~�i = i-th row (�i1; :::; �i;n) omitting i-th entry.

The Schur complement (of �Qi in Q) is given by

�ii � ~�i �Q�1i ~�
T
i :



Putting

�i :=
q
~�i �Q

�1
i ~�

T
i ;

the Schur complement becomes

1� �2i :

(This notation permits specialization to the n = 2 case to yield �Qi = (1) and
~�i = (�), so that �i = � = �12.)

The conditional distribution of wi given all the wj for j 6= i is normal with variance
given by the Schur complement.



The Schur complement: 2

Consider the distribution of E[TnjT1; :::; Tn�1]; or equivalently that ofE[wnjw1; :::; wn�1]:
Recall that

Ti = e
�0iwi�12�

2
0i; with �0iwi = �0w0 + �ivi:

Put

wn�1n = E[wnjw1; :::; wn�1] =
X

j<n
�jwj:

Then, by de�nition and by the conditional mean formula,

�in = E[wiwn] = E[wiwn�1n ] =
X

j<n
�j�ij:

We solve the system of m := n� 1 equations for i < nX
j<n

�ij�j = �in;



or, in matrix form with ~�n := (�1n; :::; �n�1;n)

Qn�1� = ~�n;

by computing explicitly � = Q�1n�1~�n: Here we have denoted the principal submatrix
of the covariance matrix Qn by:

Qn�1 = (�ij)i;j<n:

Using the precision matrix one may easily �nd the �j explicitly. WE have an important
corollary.



Monotonicity Theorem (Own precision re�ned by presence of others) The
Schur complement

1� �2n;

corresponding to conditioning wn on w1; ::; wn�1 as a factor in the conditional
variance, acts to increase the precision; increasing the precision of the competitors
re�nes one�s own conditional precision. Indeed, one has the explicit formula with
m = n� 1 and �p = p� pn = p0 + :::+ pn�1;

�2n =
pm

p0�p(p0 + pm)

24Xm

i=1
pi(�p� pi) +

X
i<j�m(pi + pj)

s
pipj

(p0 + pi)(p0 + pj)

35 ;
which is increasing in pi for each i < n; and so the Schur complement itself decreases
with pi:



In fact one has:

Theorem 1. Provided all the precisions pi are �nite and positive, the regression
equations

E[wnjw1; :::; wn�1] = �1w1 + :::+ �n�1wn�1;

which are equivalent to the solution of the system Qn�1� = ~�n; have non-singular
matrix Qn�1 and the equivalent system of equations, for i = 1; 2; :::;m =: n� 1;

�i1�1 + :::+ �i + ::: = �in;

has the unique solution:

�i =
pi + p0
p

�in:



Proof of the averaging e¤ect

In the setting of the Uncoupling Theorem, the equations


�i
i = ̂iL�i

Y
j 6=i 

�hij��j
j ;

imply

xi �
X

j 6=i
�hij xj = Bi :=

1

�i
log (̂iL�i) =

p

pi
log (̂iL�i) ;

with

xi = log i:



Proof. Cross-multiply take logs and note

�hij�i = �hij � �j

=
pj

p� pi
�
pj

p
= pj

p� (p� pi)
p(p� pi)

=
pi
p

pj

(p� pi)
:

The more revealing re-statement is

(�i � 1)xi +
X

j 6=i �jxj = bi :=
(pi � p)
pi

log (̂iL�i) :



Conditional hemi-mean formula

The following identi�es the hemi-mean function.

Theorem (Conditional hemi-mean formula).

E[T�11 jT2; :::; Tn] = L�1T
�h2��2
2 :::T

�hn��n
n ; where L�1 = exp

 
n� 1

2(p� p1)

!
exp

 
� n
2p

!
;

and �hj =
pj

p� p1
; for j > 1:

Hence, for any ;

E[T�11 1T1<j(T )�1] = L�1
Y
j>1

T
�hj��j
j �LN(

�1=L�1
Y
j>1

T
�hj��j
j ; �1�01

q
1� �21):



Proof. The random variable S = T
�1
1 has mean m = m(�1; �01) and volatility

�1�01: Hence, by the Exponent E¤ect Theorem,

HS(
�) = mHLN(

�1=m; �1�01):

The distribution of S conditional on T2 = t2; :::; T2 = tn (for any t2; :::; tn) has
a mean � = ��1 (depending on t2; :::; tn to be determined below) and a volatility

�1�01

q
1� �2n; with 1� �2n the �Schur complement�of Tn in (T2; ::; Tn); because

that is the e¤ect on normal variates of conditioning (see Bingham & Fry (2010)).



Thus putting � = ��1 := m��1 we have for any  > 0 that

HSjt2:::(
�1) = E[(�1 � T�11 )1T1<jT2 = t2; :::; Tn = tn]

= m�HLN(
�1=m�; �1�01

q
1� �2n)

= �1�N

0B@log(�1=�) + 1
2�
2
1�
2
01�n

�1�01

q
1� �2n

1CA
���N

0B@log(�1=�)� 1
2�
2
1�
2
01�n

�1�01

q
1� �2n

1CA : (CH)

This leaves open the determination of the �constant�� = ��1: But minus the second
term has the value

E[T
�1
1 1T1<jT2 = t2; :::; Tn = tn]:



So taking the limit as  ! +1 we obtain

� = ��1 = E[T
�1
1 jT2 = t2; :::; Tn = tn]:

Now, by the conditional mean formula, with

�hi = �h1i =
pi

p� p1

H�1t
�h2
2 :::t

�hn
n = E[XjT2 = t2; :::; Tn = tn]

= E[E[XjT1; T2 = t2; :::; Tn = tn]jT2 = t2; :::; Tn = tn]
= E[KT�11 t

�2
2 :::t

�n
n jT2 = t2; :::; Tn = tn]

= Kt
�2
2 :::t

�n
n E[T

�1
1 jT2 = t2; :::; Tn = tn]



and so

��1 = (H�1K
�1)t

�h2��2
2 :::t

�hn��n
2

= exp

 
n� 1

2(p0 + p2 + :::+ pn)

!
exp

 
� n
2p

!
t
�h2��2
2 :::t

�hn��n
2

= exp

 
n� 1

2(p� p1)

!
exp

 
� n
2p

!
t
�h2��2
2 :::t

�hn��n
2 ;

as required. The rests is now clear from (CH) above.



Postscript: Log-normal vs normal: standardization

Normal x with mean m and variance �2 transforms to v = (x �m)=� �N(0; 1);
i.e. zero-mean unit-variance. Note the moment generating function for x �N(0; 1)
is

E[esx] = e
1
2s
2
:

General log-normal

X = mXe
�x�12�

2
with x � N(0; 1):

Consider now the power transformation Y = X� for 0 < � < 1; then with s = ��

Y = e��x�
1
2��

2
= e

1
2�(��1)�

2
esx�

1
2s
2

= e
1
2�(��1)�

2
Z:



That is, the new variable has reduced mean

m = m(�; �) := e
1
2�(��1)�

2
:

(Smart reason: derive this from from Ito�s Lemma! via the second derivative of y�:)

Log-normalX with meanmX and variance �
2 transforms using � = 1=� to Y = X�

with unit variance and mean

mY = mXe
1
2(1��)

and so we arrive at Z = X�=mY = (Y=mY ) �LN(1; 1); i.e. unit-mean unit-
variance.


