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Abstract

We study singular control problems for stochastic partial
differential equations. We establish sufficient and necessary
maximum principles for an optimal control of such systems. The
associated adjoint processes satisfy a kind of backward stochastic
partial differential equation (BSPDE) with reflection. Existence
and uniqueness of BSPDEs with reflection are obtained.

Tusheng Zhang Singular control of SPDEs and backward stochastic partial differential equations with reflection



The control problem

Let D be a given bounded domain in Rd . We consider a general
system where the state Y (t, x) at time t and at the point
x ∈ D ⊂ R is given by a stochastic partial differential equation
(SPDE) as follows:

dY (t, x) = {AY (t, x) + b(t, x , Y (t, x))}dt + σ(t, x ,Y (t, x))dB(t)

+ λ(t, x , Y (t, x))ξ(dt, x) ; (t, x) ∈ [0, T ]× D

Y (0, x) = y0(x) ; x ∈ D

Y (t, x) = 0 ; (t, x) ∈ (0, T )× ∂D. (1)

Here A is a given linear second order partial differential operator.
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The control problem

We assume that the coefficients

b(t, x , y) : [0, T ]× D × R→ R,

σ(t, x , y) : [0,T ]× D × R× → R,

and
λ(t, x , y) : [0, T ]× D × R→ R

are C 1 functions with respect to y .
The set of possible controls, A, is a given family of adapted
processes ξ(t, x), which are non-decreasing and left-continuous
w.r.t. t for all x , ξ(0, x) = 0. The performance functional has the
form

J(ξ) = E

[∫

D

∫ T

0
f (t, x , Y (t, x))dtdx +

∫

D
g(x , Y (T , x))dx

+

∫

D

∫ T

0
h(t, x , Y (t, x))ξ(dt, x)

]
, (2)

Tusheng Zhang Singular control of SPDEs and backward stochastic partial differential equations with reflection



The control problem

where f (t, x , y), g(x , y) and h(t, x , y) are bounded measurable
functions which are differentiable in the argument y and
continuous w.r.t. t. We want to maximize J(ξ) over all ξ ∈ A,
where A is the set of admissible singular controls. Thus we want
to find ξ∗ ∈ A (called an optimal control) such that

sup
ξ∈A

J(ξ) = J(ξ∗)
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Sufficient maximum principle

Define the Hamiltonian H by

H(t, x , y , p, q)(dt, ξ(dt, x)) = {f (t, x , y) + b(t, x , y)p + σ(t, x , y)q}dt

+ {λ(t, x , y)p + h(t, x , y)}ξ(dt, x). (3)

To this Hamiltonian we associate the following backward SPDE
(BSPDE) in the unknown process (p(t, x), q(t, x)):

dp(t, x) = −
{

A∗p(t, x)dt +
∂H

∂y
(t, x , Y (t, x), p(t, x),

q(t, x))(dt, ξ(dt, x))}+ q(t, x)dB(t) ; (t, x) ∈ (0,T )× D
(4)

with boundary/terminal values

p(T , x) =
∂g

∂y
(x , Y (T , x)) ; x ∈ D (5)

p(t, x) = 0 ; (t, x) ∈ (0, T )× ∂D. (6)

Here A∗ denotes the adjoint of the operator A.
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Sufficient maximum principle

Theorem[1. Sufficient maximum principle] Let ξ̂ ∈ A with
corresponding solutions Ŷ (t, x), p̂(t, x), q̂(t, x). Assume that

y → h(x , y) is concave (7)

and

(y , ξ) → H(t, x , y , p̂(t, x), q̂(t, x))(dt, ξ(dt, x))

is concave. (8)

Assume that

E [

∫

D
(

∫ T

0
{(Y ξ(t, x)− Ŷ (t, x))2q̂2(t, x) + p̂2(t, x)

×(σ(t, x , Y ξ(t, x))− σ(t, x , Ŷ (t, x))2}dt)dx ] < ∞, (9)
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Sufficient maximum principle

for all ξ ∈ A. Moreover, assume that the following maximum
condition holds:

{λ(t, x , Ŷ (t, x))p̂(t, x) + h(t, x , Ŷ (t, x))}ξ(dt, x)

≤ {λ(t, x , Ŷ (t, x))p̂(t, x) + h(t, x , Ŷ (t, x))}ξ̂(dt, x) for all ξ ∈ A.
(10)

Then ξ̂ is an optimal singular control.
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Sufficient maximum principle

Theorem[2.Sufficient maximum principle II] Suppose the
conditions of the above Theorem hold. Suppose ξ ∈ A, and that ξ
together with its corresponding processes
Y ξ(t, x), pξ(t, x), qξ(t, x) solve the coupled SPDE-RBSPDE
system consisting of the SPDE (1) together with the reflected
backward SPDE (RBSPDE) given by

dpξ(t, x)

= −
{

A∗pξ(t, x) +
∂f

∂y
(t, x , Y ξ(t, x)) +

∂b

∂y
(t, x , Y ξ(t, x))pξ(t, x)

+
∂σ

∂y
(t, x ,Y ξ(t, x))qξ(t, x)

}
dt

−
{

∂λ

∂y
(t, x , Y ξ(t, x))pξ(t, x) +

∂h

∂y
(t, x , Y ξ(t, x))

}
ξ(dt, x) ;

(t, x) ∈ [0,T ]× D
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Sufficient maximum principle

λ(t, x ,Y ξ(t, x))pξ(t, x) + h(t, x , Y ξ(t, x)) ≤ 0 ; for all t, x , a.s.

{λ(t, x , Y ξ(t, x))pξ(t, x) + h(t, x , Y ξ(t, x))}ξ(dt, x) = 0 ;

for all t, x , a.s.

p(T , x) =
∂g

∂y
(x , Y ξ(T , x)) ; x ∈ D

p(t, x) = 0 ; (t, x) ∈ (0, T )× ∂D.

Then ξ maximizes the performance functional J(ξ).
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A necessary maximum principle

A weakness of the sufficient maximum principle obtained in the
previous section are the rather restrictive concavity conditions,
which do not always hold in applications. Therefore it is of interest
to obtain a maximum principle which does not need these
conditions.
Theorem[3.Necessary maximum principle]
(i) Suppose ξ∗ ∈ A is optimal, i.e.

max
ξ∈A

J(ξ) = J(ξ∗). (11)

Let Y ∗, (p∗, q∗) be the corresponding solution associated with ξ∗.
Then

λ(t, x ,Y ∗(t, x))p∗(t, x) + h(t, x , Y ∗(t, x)) ≤ 0 (12)

for all t, x ∈ [0,T ]× D, a.s.
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A necessary maximum principle

and

{λ(t, x , Y ∗(t, x))p∗(t, x) + h(t, x , Y ∗(t, x))}ξ∗(dt, x) = 0 (13)

for all t, x ∈ [0,T ]× D, a.s.
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A necessary maximum principle

(ii) Conversely, suppose that there exists ξ̂ ∈ A such that the
corresponding solutions Ŷ (t, x), (p̂(t, x), q̂(t, x)) of (1) and
(4)-(5), respectively, satisfy

λ(t, x , Ŷ (t, x))p̂(t, x)+h(t, x , Ŷ (t, x)) ≤ 0 for all t, x ∈ [0,T ]×D, a.s.
(14)

and

{λ(t, x , Ŷ (t, x))p̂(t, x) + h(t, x , Ŷ (t, x))}ξ̂(dt, x) = 0 (15)

for all t, x ∈ [0,T ]× D, a.s. Then ξ̂ is a directional sub-stationary
point for J(·), in the sense that

lim
y→0+

1

y
(J(ξ̂ + yζ)− J(ξ̂)) ≤ 0 for all ζ ∈ V(ξ̂). (16)
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Existence and uniqueness for BSPDEs with reflection

Next , I will present the existence and uniqueness result for
reflected backward stochastic partial differential equations. For
notational simplicity, we choose the operator A to be the Laplacian
operator ∆. However, our methods work equally well for general
second order differential operators like

A =
1

2

d∑

i ,j=1

∂

∂xi
(aij(x)

∂

∂xj
),

where a = (aij(x)) : D → Rd×d is a measurable, symmetric
matrix-valued function which satisfies the uniform elliptic condition

λ|z |2 ≤
d∑

i ,j=1

aij(x)zizj ≤ Λ|z |2, ∀ z ∈ Rd and x ∈ D

for some constant λ, Λ > 0
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Existence and uniqueness for BSPDEs with reflection

First we will establish a comparison theorem for BSPDEs, which is
of independent interest. Consider two backward SPDEs:

du1(t, x) = −∆u1(t)dt − b1(t, u1(t, x), Z1(t, x))dt + Z1(t, x)dBt ,

u1(T , x) = φ1(x) a.s. (17)

du2(t, x) = −∆u2(t)dt − b2(t, u2(t, x), Z2(t, x))dt + Z2(t, x)dBt ,

u2(T , x) = φ2(x) a.s. (18)

From now on, if u(t, x) is a function of (t, x), we write u(t) for the
function u(t, ·).
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A comparison theorem

The following result is a comparison theorem for backward
stochastic partial differential equations.
Theorem[4. Comparison theorem for BSPDEs] Suppose
φ1(x) ≤ φ2(x) and b1(t, u, z) ≤ b2(t, u, z). Then we have
u1(t, x) ≤ u2(t, x), x ∈ D, a.e. for every t ∈ [0, T ].

Steps of the proof. For n ≥ 1, define functions ψn(z), fn(x) as
follows (see [DP1]).

ψn(z) =





0 if z ≤ 0,
2nz if 0 ≤ z ≤ 1

n ,
2 if z > 1

n .
(19)

fn(x) =

{
0 if x ≤ 0,∫ x
0 dy

∫ y
0 ψn(z)dz if x > 0.

(20)
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A comparison theorem

We have

f ′n(x) =





0 if x ≤ 0,
nx2 if x ≤ 1

n ,
2x − 1

n if x > 1
n .

(21)

Also fn(x) ↑ (x+)2 as n →∞. For h ∈ K := L2(D), set

Fn(h) =

∫

D
fn(h(x))dx .

Applying Ito’s formula we get

Fn(u1(t)− u2(t))

= Fn(φ1 − φ2) +

∫ T

t
F ′n(u1(s)− u2(s))(∆(u1(s)− u2(s)))ds
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A comparison theorem

+

∫ T

t
F ′n(u1(s)− u2(s))(b1(s, u1(s), Z1(s))− b2(s, u2(s),

Z2(s)))ds

−
∫ T

t
F ′n(u1(s)− u2(s))(Z1(s)− Z2(s))dBs

−1

2

∫ T

t
F ′′n (u1(s)− u2(s))(Z1(s)− Z2(s), Z1(s)− Z2(s))ds

=: I 1
n + I 2

n + I 3
n + I 4

n + I 5
n , (22)
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A comparison theorem

After carefully analyzing every term on the right and after
cancelation of terms, we can show that

Fn(u1(t)− u2(t))

≤ Fn(φ1 − φ2) + C

∫ T

t

∫

D
((u1(s, x)− u2(s, x))+)2dxds

−
∫ T

t
F ′n(u1(s)− u2(s))(Z1(s)− Z2(s))dBs (23)

Take expectation and let n →∞ to get

E [

∫

D
((u1(t, x)−u2(t, x))+)2dx ] ≤

∫ T

t
dsE [

∫

D
((u1(s, x)−u2(s, x))+)2dx ]

(24)
Gronwall’s inequality yields that

E [

∫

D
((u1(t, x)− u2(t, x))+)2dx ] = 0, (25)

which completes the proof of the theorem
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Existence and uniqueness for BSPDEs with reflection

Let V = W 1,2
0 (D) be the Sobolev space of order one with the

usual norm || · ||. Consider the reflected backward stochastic partial
differential equation:

du(t) = −∆u(t)dt − b(t, u(t, x), Z (t, x))dt + Z (t, x)dBt

−η(dt, x), t ∈ (0, T ), (26)

u(t, x) ≥ L(t, x),∫ T

0

∫

D
(u(t, x)− L(t, x))η(dt, x)dx = 0,

u(T , x) = φ(x) a.s. (27)
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Existence and uniqueness for BSPDEs with reflection

Theorem[5. Existence and Uniqueness]
Assume that E [|φ|2K ] < ∞. and that

|b(s, u1, z1)− b(s, u1, z1)| ≤ C (|u1 − u2|+ |z1 − z2|).

Let L(t, x) be a measurable function which is differentiable in t
and twicely differentiable in x such that φ(x) ≥ L(T , x) and

∫ T

0

∫

D
L′(t, x)2dxdt < ∞,

∫ T

0

∫

D
|∆L(t, x)|2dxdt < ∞.

Then there exists a unique K × L2(D,Rm)× K-valued
progressively measurable process (u(t, x), Z (t, x), η(t, x)) such
that
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Existence and uniqueness for BSPDEs with reflection

(i) E [
∫ T
0 ||u(t)||2V dt] < ∞, E [

∫ T
0 |Z (t)|2L2(D,Rm)dt] < ∞.

(ii) η is a K-valued continuous process, non-negative
and nondecreasing in t and η(0, x) = 0.

(iii) u(t, x) = φ(x) +
∫ T
t ∆u(t, x)ds +

∫ T
t b(s, u(s, x),Z (s, x))ds

− ∫ T
t Z (s, x)dBs + η(T , x)− η(t, x); 0 ≤ t ≤ T ,

(iv) u(t, x) ≥ L(t, x) a.e. x ∈ D,∀t ∈ [0, T ].

(v)
∫ T
0

∫
D(u(t, x)− L(t, x))η(dt, x)dx = 0

(28)
where u(t) stands for the K -valued continuous process u(t, ·) and
(iii) is understood as an equation in the dual space V ∗ of V .
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The proof of existence and uniqueness

I will indicate how we prove the theorem. we introduce the
penalized BSPDEs:

dun(t) = −∆un(t)dt − b(t, un(t, x), Zn(t, x))dt + Zn(t, x)dBt

−n(un(t, x)− L(t, x))−dt, t ∈ (0, T ) (29)

un(T , x) = φ(x) a.s. (30)

According to [ØPZ], the solution (un, Zn) of the above equation
exists and is unique. We are going to show that the sequence
(un, Zn) has a limit, which will be a solution of the equation (28).
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The proof of existence and uniqueness

First we need some a priori estimates.
Lemma[1]
Let (un, Zn) be the solution of equation (29). We have

sup
n

E [sup
t
|un(t)|2K ] < ∞, (31)

sup
n

E [

∫ T

0
||un(t)||2V ] < ∞, (32)

sup
n

E [

∫ T

0
|Zn(t)|2L2(D,Rm)] < ∞. (33)
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The proof of existence and uniqueness

We also need the following crucial estimates.
Lemma[2] Suppose the conditions in Theorem 5 hold. Then there
is a constant C such that

E [

∫ T

0

∫

D
((un(t, x)− L(t, x))−)2dxdt] ≤ C

n2
. (34)

Main ideas of the proof. Let fm be defined as in the proof of
Theorem 4. Then fm(x) ↑ (x+)2 and f ′m(x) ↑ 2x+ as m →∞. For
h ∈ K , set

Gm(h) =

∫

D
fm(−h(x))dx .

The idea is to apply Ito’s formula to the process un(t)− L(t) and
for the functional Gm(·).

Tusheng Zhang Singular control of SPDEs and backward stochastic partial differential equations with reflection



The proof of existence and uniqueness

Lemma[3].
Let (un, Zn) be the solution of equation (29). We have

lim
n,m→∞E [ sup

0≤t≤T
|un(t)− um(t)|2K ] = 0, (35)

lim
n,m→∞E [

∫ T

0
||un(t)− um(t)||2V dt] = 0. (36)

lim
n,m→∞E [

∫ T

0
|Zn(t)− Zm(t)|2L2(D,Rm)dt] = 0. (37)
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The proof of existence and uniqueness

Main ideas of the proof. Applying Itô’s formula, it follows that

|un(t)− um(t)|2K
= 2

∫ T

t
< un(s)− um(s),∆(un(s)− um(s)) > ds

+2

∫ T

t
< un(s)− um(s), b(s, un(s), Zn(s))− b(s, um(s), Zm(s)) > ds

−2

∫ T

t
< un(s)− um(s), Zn(s)− Zm(s) > dBs

+2

∫ T

t
< un(s)− um(s), n(un(s)− L(s))− −m(um(s)− L(s))− > ds

−
∫ T

t
|Zn(s)− Zm(s)|2L2(D,Rm)ds (38)

Now we estimate each of the terms on the right side.
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The proof of existence and uniqueness

2

∫ T

t
< un(s)− um(s),∆(un(s)− um(s)) > ds

= −2

∫ T

t
||un(s)− um(s)||2V ds. (39)

By the Lipschitz continuity of b and the inequality
ab ≤ εa2 + Cεb

2, one has

2

∫ T

t
< un(s)− um(s), b(s, un(s), Zn(s))− b(s, um(s),Zm(s)) > ds

≤ C

∫ T

t
|un(s)− um(s)|2Kds +

1

2

∫ T

t
|Zn(s)− Zm(s)|2L2(D,Rm)ds. (40)
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The proof of existence and uniqueness

In view of (34), we can show that

2E [

∫ T

t
< un(s)− um(s), n(un(s)− L(s))− −m(um(s)− L(s))− > ds]

≤ 2m(E [

∫ T

t

∫

D
((un(s, x)− L(s, x))−)2dxds])

1
2

×(E [

∫ T

t

∫

D
((um(s, x)− L(s, x))−)2dxds])

1
2

+2n(E [

∫ T

t

∫

D
((un(s, x)− L(s, x))−)2dxds])

1
2

×(E [

∫ T

t

∫

D
((um(s, x)− L(s, x))−)2dxds])

1
2

≤ C ′(
1

n
+

1

m
). (41)
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The proof of existence and uniqueness

It follows from (38) and (39) that

E [|un(t)− um(t)|2K ] +
1

2
E [

∫ T

t
|Zn(s)− Zm(s)|2L2(D,Rm)ds]

+E [

∫ T

t
||un(s)− um(s)||2V ds]

≤ C

∫ T

t
E [|un(s)− um(s)|2K ]ds + C ′(

1

n
+

1

m
). (42)

Application of the Gronwall inequality yields

lim
n,m→∞{E [|un(t)−um(t)|2K ]+

1

2
E [

∫ T

t
|Zn(s)−Zm(s)|2L2(D,Rm)ds]} = 0,

(43)
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The proof of existence and uniqueness

lim
n,m→∞E [

∫ T

t
||un(s)− um(s)||2V ds] = 0. (44)

By (43) and the Burkholder inequality we can further show that

lim
n,m→∞E [ sup

0≤t≤T
|un(t)− um(t)|2K ] = 0. (45)

The proof is complete
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The proof of existence and uniqueness

Proof of Theorem 5. From Lemma 3 we know that
(un, Zn), n ≥ 1, forms a Cauchy sequence. Denote by u(t, x),
Z (t, x) the limit of un and Z n. Put

η̄n(t, x) = n(un(t, x)− L(t, x))−

Lemma 3.4 implies that η̄n(t, x) admits a non-negative weak limit,
denoted by η̄(t, x), in the following Hilbert space:

K̄ = {h; h is a K-valued adapted process such that

E [

∫ T

0
|h(s)|2Kds] < ∞} (46)

with inner product

< h1, h2 >K̄= E [

∫ T

0

∫

D
h1(t, x)h2(t, x)dtdx ].
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The proof of existence and uniqueness

Set η(t, x) =
∫ t
0 η̄(s, x)ds. Then η is a continuous K -valued

process which is increasing in t Let n →∞ in (29) to obtain

u(t, x)

= φ(x) +

∫ T

t
∆u(t, x)ds +

∫ T

t
b(s, u(s, x), Z (s, x))ds

−
∫ T

t
Z (s, x)dBs + η(T , x)− η(t, x); 0 ≤ t ≤ T . (47)

Furthermore we can show that (u, η) fulfills the required properties.
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The proof of existence and uniqueness

Uniqueness. Let (u1, Z1, η1), (u2, Z2, η2) be two such solutions to
equation (28). By Itô’s formula, we have

|u1(t)− u2(t)|2K
= 2

∫ T

t
< u1(s)− u2(s), ∆(u1(s)− u2(s)) > ds

+2

∫ T

t
< u1(s)− u2(s), b(s, u1(s),Z1(s))− b(s, u2(s), Z2(s)) > ds

−2

∫ T

t
< u1(s)− u2(s), Z1(s)− Z2(s) > dBs

+2

∫ T

t
< u1(s)− u2(s), η1(ds)− η2(ds) >

−
∫ T

t
|Z1(s)− Z2(s)|2L2(D,Rm)ds (48)
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The proof of existence and uniqueness

Note that

2E [

∫ T

t
< u1(s)− u2(s), η1(ds)− η2(ds) >]

= 2E [

∫ T

t

∫

D
(u1(s, x)− L(s, x))η1(ds, x)dx ]

−2E [

∫ T

t

∫

D
(u1(s, x)− L(s, x))η2(ds, x)dx ]

+2E [

∫ T

t

∫

D
(u2(s, x)− L(s, x))η2(ds, x)dx ]

−2E [

∫ T

t

∫

D
(u2(s, x)− L(s, x))η1(ds, x)dx ]

≤ 0 (49)

This observation allows to prove
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The proof of existence and uniqueness

E [|u1(t)− u2(t)|2K ] +
1

2
E [

∫ T

t
|Z1(s)− Z2(s)|2L2(D,Rm)ds]

≤ C

∫ T

t
E [|u1(s)− u2(s)|2K ]ds. (50)

Appealing to Gronwall inequality, this implies

u1 = u2, Z1 = Z2

which further gives η1 = η2 from the equation they satisfy.
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Link to optimal stopping

This part provides a link between the solution of a reflected
backward stochastic partial differential equation and an optimal
stopping problem. Let u(t, x) be the solution of the following
reflected BSPDE.

u(t, x)

= φ(x) +

∫ T

t

1

2
∆u(t, x)ds +

∫ T

t
k(s, x , u(s, x), Z (s, x))ds

−
∫ T

t
Z (s, x)dBs + η(T , x)− η(t, x); 0 ≤ t ≤ T ,

u(t, x) ≥ L(t, x),∫ T

0

∫

D
(u(s, x)− L(s, x))η(dt, x)dx = 0 a.s. (51)
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Link to optimal stopping

Let St,T be the set of all stopping times τ satisfying t ≤ τ ≤ T .
For τ ∈ St,T , define

Rt(τ, x) =

∫ τ

t
Ps−tk(s, x)ds+Pτ−tL(τ, x)χ{τ<T}+Pτ−tφ(x)χ{τ=T},

where k(s, ·) = k(s, ·, u(s, ·),Z (s, ·)) and Pt denotes the heat
semigroup generated by the Laplacian operator 1

2∆.
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Link to optimal stopping

Here, and in the following we will use the simplified notation
Ptk(s, x) = (Ptk(s, ·))(x) etc.
Theorem[6. Optimal stopping]
u(t, x) is the value function of the the optimal stopping problem
associated with Rt(τ, x), i.e.,

u(t, x) = esssupτ∈St,T
E [Rt(τ, x)|Ft ] (52)
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