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Overview

Overall Objective:

Develop a theory of decentralized decision-making in stochastic
dynamical systems with many competing or cooperating agents

Outline:

A motivating control problem from code division multiple
access (CDMA) uplink power control
Motivational notions from statistical mechanics
The basic concepts of Mean Field (MF) control and game
theory
The Nash Certainty Equivalence (NCE) methodology
Main NCE results for Linear-Quadratic-Gaussian (LQG)
systems
Nonlinear MF Systems
Adaptive NCE System Theory
Adaptation based leader-follower stochastic dynamic games
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Part 1 – CDMA Power Control

Base Station & Individual Agents
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Part 1 – CDMA Power Control

Lognormal channel attenuation: 1  i  N

i
th

channel: dx
i

= �a(x
i

+ b)dt+ �dw
i

, 1  i  N

Transmitted power = channel attenuation ⇥ power
= exi(t)p

i

(t)
(Charalambous, Menemenlis; 1999)

Signal to interference ratio (Agent i) at the base station

= exip
i

/
h
(�/N)

P
N

j 6=i

exjp
j

+ ⌘
i

How to optimize all the individual SIR’s?

Self defeating for everyone to increase their power

Humans display the “Cocktail Party E↵ect”: Tune hearing to
frequency of friend’s voice (E. Colin Cherry)
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Part 1 – CDMA Power Control

Can maximize
P

N

i=1 SIRi

with centralized control.
(HCM, 2004)

Since centralized control is not feasible for complex systems,
how can such systems be optimized using decentralized
control?

Idea: Use large population properties of the system together
with basic notions of game theory.
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Part 2 – Statistical Mechanics

The Statistical Mechanics Connection
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Part 2 – Statistical Mechanics

A foundation for thermodynamics was provided by the Statistical
Mechanics of Boltzmann, Maxwell and Gibbs.

Basic Ideal Gas Model describes the interaction of a huge number of
essentially identical particles.

SM describes the aggregate of the very complex individual particle
trajectories in terms of the PDEs governing the continuum limit of
the mass of particles.
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Part 2 – Statistical Mechanics

Start from the equations for the perfectly elastic (i.e. hard) sphere
mechanical collisions of each pair of particles:

Velocities before collision: v,V
Velocities after collision: v

0 = v

0(v,V, t), V

0 = V

0(v,V, t)

These collisions satisfy the conservation laws, and hence:

Conserv. of

8
<

:

Momentum m(v0 +V

0) = m(v +V)

Energy 1
2m

�
kv0k2 + kV0k2

�
= 1

2m
�
kvk2 + kVk2

�
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Part 2 – Boltzmann’s Equation

The assumption of Statistical Independence of particles
(Propagation of Chaos Hypothesis) gives Boltzmann’s PDE for the
behaviour of an infinite population of particles

@p
t

(v,x)

@t
+r

x

p
t

(v,x) · v =

ZZZ
Q(✓, )d✓d kv �Vk·

⇣
p
t

(v0,x)p
t

(V0,x)� p
t

(v,x)p
t

(V,x)
⌘
d3V

v

0 = v

0(v,V, t), V

0 = V

0(v,V, t)
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Part 2 – Statistical Mechanics

Entropy H:

H(t)
def
= �

ZZZ
p
t

(v, x)(log p
t

(v, x)) d3xd3v

The H-Theorem:
dH(t)
dt � 0

H1
def
= sup

t�0 H(t) occurs at p1 = N(v1,⌃1)

(The Maxwell Distribution)
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Part 2 – Statistical Mechanics: Key Intuition

Extremely complex large population particle systems
may have simple continuum limits
with distinctive bulk properties.
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Part 2 – Statistical Mechanics
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Part 2 – Statistical Mechanics

Control of Natural Entropy Increase

Feedback Control Law (Non-physical Interactions):

At each collision, total energy of each pair of particles is
shared equally while physical trajectories are retained.

Energy is conserved.
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Part 2 – Key Intuition

A su�ciently large mass of individuals may be
treated as a continuum.

Local control of particle (or agent) behaviour can result in
(partial) control of the continuum.
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Part 3 – Game Theoretic Control Systems

Massive game theoretic control systems: Large ensembles of
partially regulated competing agents

Fundamental issue: The relation between the actions of each
individual agent and the resulting mass behavior
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Part 3 – Basic LQG Game Problem

Individual Agent’s Dynamics:

dx
i

= (a
i

x
i

+ bu
i

)dt+ �
i

dw
i

, 1  i  N.

(scalar case only for simplicity of notation)

x
i

: state of the ith agent

u
i

: control

w
i

: disturbance (standard Wiener process)

N : population size
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Part 3 – Basic LQG Game Problem

Individual Agent’s Cost:

J
i

(u
i

, ⌫) , E

Z 1

0
e�⇢t[(x

i

� ⌫)2 + ru2
i

]dt

Basic case: ⌫ , �.( 1
N

P
N

k 6=i

x
k

+ ⌘)

More General case: ⌫ , �( 1
N

P
N

k 6=i

x
k

+ ⌘) � Lipschitz

Main feature:

Agents are coupled via their costs

Tracked process ⌫:
(i) stochastic
(ii) depends on other agents’ control laws
(iii) not feasible for xi to track all xk trajectories for large N
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Part 3 – Large Popn. Models with Game Theory Features

Economic models: Cournot-Nash equilibria (Lambson)

Advertising competition: game models (Erickson)

Wireless network res. alloc.: (Alpcan et al., Altman, HCM)

Admission control in communication networks: (Ma, MC)

Public health: voluntary vaccination games (Bauch & Earn)

Biology: stochastic PDE swarming models (Bertozzi et al.)

Sociology: urban economics (Brock and Durlauf et al.)

Renewable Energy: Charging control of of PEVs (Ma et al.)
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Part 3 – Background & Current Related Work

Background:

40+ years of work on stochastic dynamic games and team problems:
Witsenhausen, Varaiya, Ho, Basar, et al.

Current Related Work:

Industry dynamics with many firms: Markov models and Oblivious
Equilibria (Weintraub, Benkard, Van Roy, Adlakha, Johari & Goldsmith,
2005, 2008 - )

Mean Field Games: Stochastic control of many agent systems with
applications to finance (Lasry et al., Cardaliaguet, Capuzzo-Dolcetta,
Buckdahn, 2006-)

Mean Field Control of Oscillators & Mean Field Particle Filters
(Yin/Yang, Mehta, Meyn, Shanbhag, 2009-)

Mean Field Games for Nonlinear Markov Processes (Kolokoltsov, Li, Wei,
2011-)

Mean Field MDP Games on Networks: Exchangeability hypothesis;
propagation of chaos in the popn. limit; evolutionary games. (Tembine et
al., 2009-)

Discrete Mean Field Games (Gomes, Mohr, Souza, 2009-)
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Part 3 – Preliminary Optimal LQG Tracking

LQG Tracking: Take x⇤ (bounded continuous) for scalar model:

dxi = aixidt+ buidt+ �idwi

Ji(ui, x
⇤) = E

Z 1

0
e�⇢t[(xi � x⇤)2 + ru2

i ]dt

Riccati Equation: ⇢⇧i = 2ai⇧i �
b2

r
⇧2

i + 1, ⇧i > 0

Set �1 = �ai +
b2

r ⇧i, �2 = �ai +
b2

r ⇧i + ⇢, and assume �1 > 0

Mass O↵set Control: ⇢si =
dsi
dt

+ aisi �
b2

r
⇧isi � x⇤.

Optimal Tracking Control: ui = � b

r
(⇧ixi + si)

Boundedness condition on x⇤ implies existence of unique solution si.
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Part 3 – Key Intuition

When the tracked signal is replaced by the deterministic mean
state of the mass of agents:

Agent’s feedback = feedback of agent’s local
stochastic state

+

feedback of
deterministic mass o↵set

Think Globally, Act Locally
(Geddes, Alinsky, Rudie-Wonham)
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Part 3 – LQG-NCE Equation Scheme

The Fundamental NCE Equation System

Continuum of Systems: a 2 A; common b for simplicity

⇢sa =
dsa
dt

+ asa �
b2

r
⇧asa � x⇤

dxa

dt
= (a� b2

r
⇧a)xa �

b2

r
sa,

x(t) =

Z

A
xa(t)dF (a),

x⇤(t) = �(x(t) + ⌘) t � 0

Riccati Equation : ⇢⇧a = 2a⇧a �
b2

r
⇧2

a + 1, ⇧a > 0

Individual control action ua = � b
r (⇧axa + sa) is optimal w.r.t

tracked x⇤.

Does there exist a solution (xa, sa, x
⇤; a 2 A)?

Yes: Fixed Point Theorem
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Part 3 – NCE Feedback Control

Proposed MF Solution to the Large Population LQG Game Problem
The Finite System of N Agents with Dynamics:

dxi = aixidt+ buidt+ �idwi, 1  i  N, t � 0

Let u�i , (u1, · · · , ui�1, ui+1, · · · , uN ); then the individual cost

Ji(ui, u�i) , E

Z 1

0
e�⇢t{[xi � �(

1

N

NX

k 6=i

xk + ⌘)]2 + ru2
i }dt

Algorithm: For ith agent with parameter (ai, b) compute:
• x⇤ using NCE Equation System

•

8
<

:

⇢⇧i = 2ai⇧i � b2

r ⇧
2
i + 1

⇢si =
dsi
dt + aisi � b2

r ⇧isi � x⇤

ui = � b
r (⇧ixi + si)
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Part 3 – Saddle Point Nash Equilibrium

Agent y is a maximizer

Agent x is a minimizer
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Part 3 – Nash Equilibrium

The Information Pattern:

F
i

, �(x
i

(⌧); ⌧  t) FN , �(x
j

(⌧); ⌧  t, 1  j  N)

F
i

adapted control: U
loc,i

FN adapted control: U

The Equilibria:

The set of controls U0 = {u0
i

; u0
i

adapted to U
loc,i

, 1  i  N}
generates a Nash Equilibrium w.r.t. the costs {J

i

; 1  i  N} if,
for each i,

J
i

(u0
i

, u0�i

) = inf
ui2U

J
i

(u
i

, u0�i

)
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Part 3 – ✏-Nash Equilibrium

✏-Nash Equilibria:

Given " > 0, the set of controls U0 = {u0
i

; 1  i  N} generates
an "-Nash Equilibrium w.r.t. the costs {J

i

; 1  i  N} if,
for each i,

J
i

(u0
i

, u0�i

)� "  inf
ui2U

J
i

(u
i

, u0�i

)  J
i

(u0
i

, u0�i

)
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Part 3 – NCE Control: First Main Result

Theorem: (MH, PEC, RPM, 2003)

Subject to technical conditions, the NCE Equations have a unique
solution for which the NCE Control Algorithm generates a set of controls

UN
nce = {u0

i ; 1  i  N}, 1  N < 1, where

u0
i = � b

r
(⇧ixi + si)

which are s.t.

(i) All agent systems S(Ai), 1  i  N, are second order stable.

(ii) {UN
nce; 1  N < 1} yields an "-Nash equilibrium for all ",

i.e. 8" > 0 9N(") s.t. 8N � N(")

Ji(u
0
i , u

0
�i)� "  inf

ui2U
Ji(ui, u

0
�i)  Ji(u

0
i , u

0
�i),

where ui 2 U is adapted to FN .
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Part 3 – NCE Control: Key Observations

The information set for NCE Control is minimal and
completely local since Agent A

i

’s control depends on:
(i) Agent Ai’s own state: xi(t)
(ii) Statistical information F (✓) on the dynamical parameters of

the mass of agents.

Hence NCE Control is truly decentralized.

All trajectories are statistically independent for all finite
population sizes N .
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Part 4 – Localization of Influence

Consider the 2-D interaction:
Partition [�1, 1]⇥ [�1, 1] into a 2-D lattice

Weight decays with distance by the rule !(N)
pipj = c|p

i

� p
j

|��

where c is the normalizing factor and � 2 (0, 2)
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Part 4 – Separated and Linked Populations

./videos/connectTorus_audio.mp4

2-D System
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Part 5 – Nonlinear MF Systems

In the infinite population limit, a representative agent satisfies
a controlled McKean-Vlasov Equation:

dx
t

= f [x
t

, u
t

, µ
t

]dt+ �dw
t

, 0  t  T

with f [x, u, µ
t

] =
R
R f(x, u, y)µ

t

(dy), x0, µ0 given and

µ
t

(·) = distribution of population states at t 2 [0, T ].

In the infinite population limit, individual Agents’ Costs:

J(u, µ) , E

Z
T

0
L[x

t

, u
t

, µ
t

]dt,

where L[x, u, µ
t

] =
R
R L(x, u, y)µ

t

(dy).
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Part 5 – Mean Field and McK-V-HJB Theory

Mean Field Triple (HMC, 2006, LL, 2006-07):

[MF-HJB] � @V

@t
= inf

u2U

⇢
f [x, u, µt]

@V

@x
+ L[x, u, µt]

�
+
�2

2

@2V

@x2

V (T, x) = 0, (t, x) 2 [0, T )⇥ R

[MF-FPK]
@p(t, x)

@t
= �@{f [x, u, µ]p(t, x)}

@x
+
�2

2

@2p(t, x)

@x2

[MF-BR] ut = '(t, x|µt), (t, x) 2 [0, T ]⇥ R

Closed-loop McK-V equation:

dxt = f [xt,'(t, x|µ·), µt]dt+ �dwt, 0  t  T

Yielding Nash Certainty Equivalence Principle expressed in terms of

McKean-Vlasov HJB Equation, hence achieving the highest Great Name

Frequency possible for a Systems and Control Theory result.
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Part 5 – Mean Field and McK-V-HJB Theory

Mean Field Triple (HMC, 2006, LL, 2006-07):

[MF-HJB] � @V

@t
= inf

u2U

⇢
f [x, u, µt]

@V

@x
+ L[x, u, µt]

�
+
�2

2

@2V

@x2

V (T, x) = 0, (t, x) 2 [0, T )⇥ R

[MF-FPK]
@p(t, x)

@t
= �@{f [x, u, µ]p(t, x)}

@x
+
�2

2

@2p(t, x)

@x2

[MF-BR] ut = '(t, x|µt), (t, x) 2 [0, T ]⇥ R

Closed-loop McK-V equation:

dxt = f [xt,'(t, x|µ·), µt]dt+ �dwt, 0  t  T

Yielding Nash Certainty Equivalence Principle expressed in terms of

McKean-Vlasov HJB Equation, hence achieving the highest Great Name

Frequency possible for a Systems and Control Theory result.
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Part 6 – Adaptive NCE Theory:

Certainty Equivalence Stochastic Adaptive Control (SAC) replaces
unknown parameters by their recursively generated estimates

Key Problem:

To show this results in asymptotically optimal system behaviour in
the ✏�Nash sense
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Part 6 – Adaptive NCE: Self & Popn. Ident.

Known:

Q

R

Observed:

x
i

(t)

u
i

(t)

{x
j

, u
j

; j 2 Obs
i

(N)}
Estimated:

Â

i

, B̂
i

F
⇣̂

(✓)

A
i

observes a random subset Obs
i

(N) of all agents s.t.
|Obs

i

(N)| ! 1, |Obs
i

(N)|/N ! 0 as N ! 1
✓T
i

= (A
i

,B
i

)

F
⇣

= F
⇣

(✓), ✓ 2 ⇥ ⇢⇢ Rn(2n+m), ⇣ 2 P ⇢⇢ Rp
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Part 6 – NCE-SAC Cost Function

Each agent’s Long Run Average (LRA) Cost Function:

J
i

(û
i

, û�i

)

= lim sup
T!1

1

T

Z
T

0

�
[x

i

(t)�m
i

(t)]TQ[x
i

(t)�m
i

(t)] + ûT
i

(t)Rû
i

(t)
 
dt

1  i  N, a.s.
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Part 6 – NCE-SAC Control Algorithm

For agent Ai, t � 0 :

(I) Self Parameter Identification:
Solve the RWLS Equations for the dynamical parameters [Âi,t, B̂i,t]:

(II) Popn. Parameter Identification:

(a) Solve the RWLS equations for the dynamical parameters
{Âj,t, B̂j,t, j 2 Obsi(N)}

(b) Solve the MLE equation at ✓̂[1:N0]

i,t = [Âj,t, B̂j,t], j 2 Obsi(N) to

estimate ⇣0 via ⇣̂Ni,t = argmin⇣2P L(✓̂[1:N0]

i,t ; ⇣), N
0

= |Obsi(N)|,
and solve the set of NCE Equations for all ✓ 2 ⇥ generating

x⇤
⇣
⌧, ⇣̂Ni,t

⌘
, ⌧ � t.

(III) Solve the NCE Control Law at ✓̂i,t and ⇣̂Ni,t:

(a) ⇧̂t: Solve the Riccati Equation at ✓̂i,t

(b) ŝ(t): Solve the mass control o↵set at ✓̂i,t and x⇤
⇣
⌧, ⇣̂Ni,t

⌘

(c) The control law from Certainty Equivalence Adaptive Control:

û0(t) = �R�1B̂T

t

⇣
⇧̂tx(t) + ŝ(t)

⌘
+ ⇠k [✏(t)� ✏(k)]

Dither weighting: ⇠2k = log kp
k
, k � 1 ✏(t) = Wiener Process
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Part 6 – NCE-SAC - Self & Popn. Ident.

Theorem: (AK & PEC, 2010)

Hypotheses: Subject to the conditions above, assume each agent
A

i

:

(i) Observes a random subset Obs
i

(N) of the total population
N s.t. |Obs

i

(N)| ! 1, |Obs
i

(N)|/N ! 0, N ! 1,

(ii) Estimates own parameter ✓̂
i,t

via RWLS

(iii) Estimates the population distribution parameter ⇣̂N
i,t

via RMLE

(iv) Computes û0
i

(t) via the extended NCE equations plus dither,
where x̄(⌧, ⇣̂N

i,t

) =
R
⇥ x̄(⌧, ✓) dF

⇣̂

N
i,t
(✓).
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Part 6 – NCE-SAC - Self & Popn. Ident.

Theorem: (AK & PEC, 2010)
Implications: Then, as t ! 1 and N ! 1 :

(i) ✓̂
i,t

! ✓0
i

a.s. 1  i  N

(ii) ⇣̂N
i,t

! ⇣0 2 P w.p.1 and hence, F
⇣̂

N
i,t

! F
⇣

0 a.s.

(weak convergence on P ), 1  i  N
and the set of controls {ÛN

nce

; 1  N < 1} is s.t.

(iii) Each S(A
i

), 1  i  N, is an LRA� L2 stable system.

(iv) {ÛN

nce

; 1  N < 1} yields a (strong) ✏-Nash equilibrium for
all ✏

(v) Moreover J1
i

(û
i

, û�i

) = J1
i

(u0
i

, u0�i

) w.p.1, 1  i  N
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Part 6 – NCE-SAC Simulation

400 Agents

System matrices {A
k

}, {B
k

}, 1  k  400

A ,

�0.2 + a11 �2 + a12
1 + a21 0 + a22

�
B ,


1 + b1
0 + b2

�

Population dynamical parameter distribution a
ij

’s and b
i

’s are
independent.

a
ij

⇠ N(0, 0.5) b
i

⇠ N(0, 0.5)

Population distribution parameters:
ā11 = �0.2, �2

a

11

= 0.5, b̄11 = 1, �2
b

11

= 0.5 etc.

All agents performing individual parameter and population
distribution parameter estimation

Each of 400 agents observing its own 20 randomly chosen
agents’ outputs and control inputs
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Part 6 – NCE-SAC Simulation
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Part 6 – NCE-SAC Animation
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Part 7 – Adaptation based L-F dynamic games

Leader-Follower behaviour:

is observed in humans [Dyer et.al. 2009] and other species in nature
[Couzin et.al. 2005]

is studied in many disciplines:

game theory [Simaan and Cruz 1973]
biology [Couzin et.al. 2005]
networking [Wang and Slotine 2006]
flocking [Gu and Wang 2009]
among others.
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Part 7 – An Example: Leadership in Animal Groups

Some individuals in the group have more information than others, for
instance the location of food or migratory routes [Couzin et.al. 2005]
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Part 7 – Problem Formulation: Leaders

Leaders’ Dynamics:

dzLl = [Alz
L
l +Blu

L
l ]dt+ Cdwl, l 2 L, t � 0

L: the set of leaders (L-agents), NL = |L|

zLl 2 Rn: state of the l � th Leader

uL
l 2 Rm: control input

wl 2 Rp: disturbance (standard Wiener process)

✓l , [Al, Bl] 2 ⇥l: dynamic parameter

{zLl (0) : l 2 L}: initial states, mutually independent
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Part 7 – Problem Formulation: Leaders

The LRA Cost Function for Leaders:

JL
l , lim sup

T!1

1

T

Z T

0

�
kzLl � �Lk2 + kuL

l k2R
 
dt

kxkR , (xTRx)1/2, R > 0 is a symmetric matrix

 L(·) = 1
NL

P
i2L zLi (·)

�L(·) , �h(·) + (1� �) L(·)

� 2 [0, 1], h: common reference trajectory of leaders

This cost function is based on a trade-o↵ between moving towards a
common reference trajectory, h(·), and staying near the leaders’ centroid
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Part 7 – Problem Formulation: Followers

Followers’ Dynamics:

dzFf = [Afz
F
f +Bfu

F
f ]dt+ Cdwf , f 2 F , t � 0

F : the set of Followers (F -agents)

zFf 2 Rn: state of the f � th Follower

uF
f 2 Rm: control input

wf 2 Rp: disturbance (standard Wiener process)
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Part 7 – Problem Formulation: Followers

The LRA Cost Function for Followers:

JF
f , lim sup

T!1

1

T

Z T

0

�
kzFf � L(·)k2 + kuF

f k2R
 
dt

 L(·) = 1
NL

P
i2L zLi (·)

The followers react by tracking the centroid of the leaders
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Part 7 – Leaders’ MF (NCE) Equation Systems

Equilibria in infinite population of leaders:

dz̄Ll
dt

=
�
Al �BlR

�1BT
l ⇧✓l

�
z̄Ll �BlR

�1BT
l s

L
l ,

dsLl
dt

= �
�
Al �BlR

�1BT
l ⇧✓l

�T
sLl + �L,

rL,1(t) =

Z

⇥L

z̄L✓l(t)dF
L(✓l),

�L(t) = �h(t) + (1� �)rL,1(t),

Leaders’ control action uL
l (t) , �R�1BT

l (⇧✓lz
L
l (t) + sLl (t)) is optimal

with respect to �L(·)
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Part 7 – MF Equation Systems: Followers

For each follower with ✓f = [Af , Bf ] when NL ! 1:

dz̄Ff
dt

=
�
Af �BfR

�1BT
f ⇧✓f

�
z̄Ff �BfR

�1BT
f s

F
f ,

dsFf
dt

= �
�
Af �BfR

�1BT
f ⇧✓f

�T
sFf + rL,1,

rL,1(t) =

Z

⇥L

z̄L✓l(t)dF
L(✓l),

Followers’ control action uF
f (t) , �R�1BT

f (⇧✓f z
F
f (t) + sFf (t)) is

optimal with respect to rL,1(·)
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Part 7 – Estimation Procedure for the Followers

Each adaptive follower is observing a random subset M of size M of the
leaders’ trajectories through the process y(·)

dyM = (
1

M

MX

i2L
zLi )dt+

1

M

MX

i=1

Ddvi

{vi, 1  i  M}: disturbance (standard Wiener processes)

M is chosen by uniformly distributed random selection on L

h(·), is parameterized with � from a finite set �

WLG assume �1 2 � is the true unobservable parameter
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Part 7 – The Likelihood Ratio

For each Adaptive Follower, define:

Likelihood Function [T. Duncan 1968]:

LM
t (�) , exp{

R t
0 zL,M

�,s dyMs � 1
2

R t
0 kzL,M

�,s k2ds}, t > 0

zL,M
�,t , 1

M

PM
i2L zLi,�(t): the centroid of the leaders’ states when
the defining parameter of h(·) is � 2 �

Likelihood Ratio:

xj
i (t) ,

LM
t (�i)

LM
t (�j)

, �i, �j 2 �, t > 0

which depend explicitly upon the hypotheses �i and �j
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Part 7 – Identifiability Condition

( A1) For all K > 0 there exists 0 < TK < 1 such that

Z t

0
krL,1

�i,s
� rL,1

�j ,s
k2ds > K, 8�i, �j 2 �, �i 6= �j , t > TK ,

rL,1
� (·) is computed by the followers from the leader’s MF (NCE)

equation system with parameter � 2 �.
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Part 7 – Maximum Likelihood Ratio Estimator

For an adaptive follower f 2 F with observation size m, the Maximum
Likelihood Ratio (MLR) estimator:

�̂mf (t) , {� 2 �|
Lm
tk(�i)

Lm
tk(�)

< 1 8�i 2 �, �i 6= �}

t 2 [tk, tk + ⌧f )

⌧f is a pre-specific positive number

t0, t1, · · · is an infinite sequence, tk+1 � tk = ⌧f .

56 / 70



Part 7 – Main Estimation Theorem

Theorem: [Based on Caines 1975]

Under suitable assumptions, for each follower f 2 F there exist
non-random Tf , and, with probability one, Mf (!), 0 < Tf ,Mf (!) < 1,

such that �̂mf (t) = �1 for all t > Tf and m > Mf (!).
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Part 7 – Algorithm for Adaptive Followers

1 Estimation Phase:

By observing a sample population of the leaders each follower
computes the LRs for alternative values in �
control laws:

ûF,1
f (t) , �R�1BT

f (⇧✓f z
F
f (t) + sF

�̂mf (t)
(t))

2 Lock-on Phase:

the MF (NCE) control laws will necessarily be computed with
the true parameter of the reference trajectory
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Part 7 – Optimality Property: Followers

Theorem: Under suitable assumptions each follower’s adaptive MF
(NCE) control strategy is almost surely ✏NL -optimal with respect to the
leaders’ control strategies, i.e.

JF
f (ûF,1

f , uL,1
�1

)� ✏NL  infu2U JF
f (u, uL,1

�1
)  JF

f (ûF,1
f , uL,1

�1
)

almost surely and such that limNL!1 ✏NL = 0, a.s.
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Part 7 – Simulation

30 leaders and one adaptive follower

n = 2, � = 0.5, C = D = 5I, R = 0.001I, ⌧f = 1

Af =


�0.2 0.5
�0.8 0.4

�

observation size of adaptive follower is 10

Al is chosen randomly from a normal probability distribution with
zero mean and identity covariance

The reference trajectories: [a1 + b1cos(wt) a2 + b2sin(wt)],
t 2 [0,1), where � = (a1, b1, a2, b2, w) 2 �

� has four parameters
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Part 7 – Simulation
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Part 7 – Simulation (cnt)

�̂mf (t) , {� 2 �|
Lm

tk (�i)

Lm
tk
(�)

< 1 8�i 2 �, �i 6= �}
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Part 7 – Simulation (cnt)

�̂mf (t) , {� 2 �|
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Part 7 – Simulation (cnt)
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Part 7 – Simulation (cnt)

�̂mf (t) , {� 2 �|
Lm

tk (�i)

Lm
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(�)
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Part 7 – Simulation (cnt)
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Part 7 – Simulation (cnt)
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Summary

NCE Theory solves a class of decentralized decision-making
problems with many competing agents.

Asymptotic Nash Equilibria are generated by
the NCE Equations.

Key intuition:

Single agent’s control = feedback of stochastic local (rough)
state + feedback of deterministic global (smooth) system
behaviour

NCE Theory extends to (i) localized problems, (ii) stochastic
adaptive control, (iii) egoist-altruist, major agent-minor agent
systems, (iv) flocking behaviour, (v) point processes in
networks.
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Future Directions

Further development of Minyi Huang’s large and small players
extension of NCE Theory

Further development of egoists and altruists version of NCE
Theory

Mean Field stochastic control of non-linear (McKean-Vlasov,
YMMS) systems

Extension of NCE (MF) SAC Theory in richer game theory
contexts

Development of MF Theory towards economic, renewable
energy, biological applications

Development of large scale cybernetics: Systems and control
theory for competitive and cooperative systems
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Thank You !
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