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Empirical Measure

Markovian model

N objects (O1(t) . . .ON(t)).

(O1(t), . . .ON(t)) is a finite homogeneous discrete time Markov chain
over SN .

Dynamics is invariant under any permutation of the objects.

Empirical measure : MN(t)
def
=

1

N

N∑
n=1

δOn(t).

Under permutation invariance, MN(t) is a finite homogeneous discrete time
Markov chain over PN (S) the set of probability measures p on {1 . . . S},
such that Np(i) ∈ N for all i ∈ S.
When N goes to infinity, it converges to P (S) the set of probability
measures on S.
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Context

Context The system of objects evolves depending on their common
environment (context).
Its evolution depends on the empirical measure MN(t), itself at the previous
time slot and the action at chosen by the controller (see below):

CN(t + 1) = g(CN(t),MN(t + 1), at),

where g : Rd×PN (S)×A → Rd is a continuous function.
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Actions and Policies

Action The action space A is assumed to be a compact subset of Rk .

Kernel For an action a ∈ A and an environment C ∈ Rd , each object
evolves independently of the others, according to a Transition matrix

P
(

ON
n (t + 1) = j |ON

n (t) = i , at = a,CN(t) = C
)

= Ki ,j(a,C ).

Ki ,j(a,C ) is continuous in a and C .

Policy π = (π1π2 . . . ) specifies the action taken at each time step. When
the state space is finite, deterministic policies are dominant:
πt : P (S)×Rd → A is deterministic.
The variables MN

π (t),CN
π (t) denote the state of the system at time t under

policy π.
(MN

π (t),CN
π (t))t≥0 is a sequence of random variables on PN (S)× Rd .
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Reward functions

To each state (M(t),C (t)), we associate a reward rt(M,C ) (invariant by
permutation of the objects).
In the finite-horizon case, the controller maximizes the expectation of the
sum of the rewards over all time t < T plus a final reward that depends on
the final state, rT (MN(t),CN(t)). The expected reward of a policy π is:

V N
π (MN(0),CN(0))

def
= E

[
T−1∑
t=1

rt
(

MN
π (t),CN

π (t)
)

+ rT

(
MN
π (T ),CN

π (T )
)]

,

In the infinite-horizon discounted case, let 0 ≤ δ < 1, the δ-discounted
reward associated to the policy π is the quantity:

V N
(δ),π(MN

0 ,C
N
0 )

def
= E

[ ∞∑
t=1

δtrt(MN
π (t),CN

π (t))

]
.
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Main Assumptions

(A1) Independence of the users, Markov system – If at time t if the
environment is C and the action is a, then the behavior of each object
is independent of other objects and its evolution is Markovian with a
kernel K (a,C ).

(A2) Compact action set – The set of action A is a compact metric space.

(A3) Continuity of K , g , r – the mappings (C , a) 7→ K (a,C ),
(C ,M, a) 7→ g(C ,M, a) and (M,C ) 7→ rt(M,C ) are continuous,
Lipschitz continuous on all compact set.

(A4) Almost sure initial state – Almost surely, the initial measure
MN(0),CN(0) converges to a deterministic value m(0), c(0).
Moreover, there exists B <∞ such that almost surely

∥∥CN(0)
∥∥ ≤ B

where ‖C‖ = supi |Ci |.
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Controlled mean field

Let a = a0, a1 . . . be a sequence of actions. We define the deterministic
variables ma(t) and ca(t) starting in

ma(0), ca(0)
def
= m(0), c(0) ∈P (S)× Rd , by induction on t:

ma(t + 1) = ma(t)K (at , ca(t))
ca(t + 1) = g (ca(t),ma(t + 1), at) .

(1)

Let π be a policy and consider a realization of the sequence
(MN(t),CN(t)). At time t, a controller that uses policy π, will apply the

action AN
π (t)

def
= πt(MN

π (t),CN
π (t)). The actions AN

π (t) form a random
sequence depending on the sequence (MN

π (t),CN
π (t)). To this random

sequence, corresponds a deterministic approximation of MN ,CN , namely
mAN

π
(t) defined by Equation (1). The quantity mAN

π
(t) is a random variable

depending on the sequence AN
π (and is deterministic once AN

π is fixed).
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Convergence Theorem

Theorem (Controlled mean field)

Under (A1,A3) and π, ∃ Et(ε, x), limε→0,x→0 Et(ε, x) = 0 s.t. ∀t:

P
(

sup
s≤t

∥∥∥(MN
π (s),CN

π (s))−(mAN
π

(s), cAN
π

(s))
∥∥∥ ≥ Et(ε, εN0 )

)
≤ 2tS2e−2Nε

2
,

εN0
def
=

∥∥∥(MN(0),CN(0))− (m(0), c(0))
∥∥∥ ;

E0 (ε, `)
def
= `;

Et+1 (ε, `)
def
=

(
Sε+ (2 + LK ) Et (ε, `) + LKEt (ε, `)2

)
max(1, Lg ).

Proof.

By induction on t: at each step, the system stays close to the deterministic
approximation with high probability.
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Convergence Theorem (II)

Assuming that the initial condition converges almost surely to m(0), c(0),
we can refined the convergence in law into an almost sure convergence:

Corollary

Under assumptions (A1,A3,A4),∥∥∥(MN
π (t),CN

π (t))− (mAN
π

(t), cAN
π

(t))
∥∥∥ a.s.−−→ 0.
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Optimal Mean Field

The reward of the deterministic system starting at m(0), c(0) under the
sequence of action a is:

va(m(0), c(0))
def
=

T∑
t=1

rt(ma(t), ca(t)).

optimal cost: v∗(m(0), c(0))
def
= maxa∈AT {va(m(0), c(0))}. An argmax

sequence in this equation is not unique. In the following, a∗ will be one of
such sequence and will be called the sequence of optimal limit actions.

Theorem (Convergence of the optimal reward)

Under (A1, A2, A3, A4), if
∥∥(MN(0),CN(0))− (m(0), c(0))

∥∥ goes to 0
when N goes to infinity, the optimal reward of the stochastic system
converges to the optimal reward of the deterministic limit system: A.s.,

lim
N→∞

V N
∗

(
MN(0),CN(0)

)
= lim

N→∞
V N
a∗

(
MN(0),CN(0)

)
= v∗(m(0), c(0)).
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Proof

Let a∗ be optimal for the deterministic limit:
limN→∞ V N

a∗
(
MN(0),CN(0)

)
= va∗(m(0), c(0)) = v∗(m(0), c(0)).

lim inf
N→∞

V N
∗

(
MN(0),CN(0)

)
≥ lim inf

N→∞
V N
a∗

(
MN(0),CN(0)

)
= v∗(m(0), c(0))

Conversely, let πN∗ be optimal for the stochastic system and AN
πN
∗

the

corresponding actions. It is suboptimal for the deterministic limit:
v∗(m(0), c(0)) ≥ vAN

πN∗
(m(0), c(0)).

V N
∗

(
MN(0),CN(0)

)
= V N

πN
∗

(
MN(0),CN(0)

)
≤ vAN

πN∗
(m(0), c(0)) + E(N, εN0 )

≤ v∗(m(0), c(0)) + E(N, εN0 )
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Discussion

Determinitic optimal cost is the limit of the optimal cost.

deterministic policy is asymptotically optimal.

As N grows, the reward of the constant policy a∗0, . . . , a
∗
t−1 converges

to the optimal reward: the value of information vanishes.

Adaptive policy: µ∗t (m(t), c(t)) is optimal for the deterministic
system starting at time t in state m(t), c(t). The least we can say is
that this strategy is also asymptotically optimal, that is for any initial
state MN(0),CN(0):

lim
N

V N
µ∗

(
MN(0),CN(0)

)
= lim

N
V N
a∗

(
MN(0),CN(0)

)
= lim

N
v∗(m(0), c(0)).

However, the policy µ∗ is not necessarily continuous and MN
µ∗ ,C

N
µ∗ may not

have limits with N.
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Second order results

Theorem

Under (A1,A2,A3,A4), there exist constants γ and γ′ such that if

εN0
def
=
∥∥MN(0),CN(0)−m(0), c(0)

∥∥ For any policy π:

√
N
∣∣∣V N
π

(
MN(0),CN(0)

)
− E

(
vN
An
π

(m(0), c(0))
)∣∣∣ ≤ γ + γ′εN0 .

√
N
∣∣∣V N
∗

(
MN(0),CN(0)

)
− vN
∗ (m(0), c(0))

∣∣∣ ≤ γ + γ′εN0 .
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Infinite horizon

(A5) Homogeneity in time The reward rt and the probability kernel Kt do
not depend on time: there exists r ,K such that, for all M,C , a
rt(M,C ) = r(M,C ) and Kt(a,C ) = K (a,C ).

(A6) Bounded reward supM,C r(M,C ) ≤ K <∞.

The rewards are discounted according to a discount factor 0 ≤ δ < 1:

V N
π (MN(0),CN(0))

def
= Eπ(

∞∑
t=1

δt−1r(MN(t),CN(t))).
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Infinite horizon (II)

Theorem ((Optimal discounted case))

Under (A1,A2,A3,A4,A5,A6), as N grows, the optimal discounted reward of
the stochastic system converges to the optimal discounted reward of the
deterministic system: limN→∞ V∗

N(MN ,CN) =a.s v∗(m, c),
where v∗(m, c) satisfies the Bellman equation for the deterministic system:

v∗(m, c) = r(m, c) + δ supa∈A

{
v∗(Φa(m, c))

}
.

Proof.

V N
T∗(M(0),C (0))

def
= sup

π
Eπ(

T∑
t=1

δt−1r(M(t),C (t))).

As r < K , the gap
∣∣V N

T∗ − V N
∗
∣∣ is bounded independently of N,M,C :

∣∣∣V N
T∗(M,C )− V N

∗ (M,C )
∣∣∣ ≤ K

∞∑
t=T+1

δt = K
δT+1

1− δ
.
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Second order result

Proposition

Under (A1,A2,A3,A4,A5,A6) and if the functions c 7→ K (a, c),
(m, c) 7→ g(c ,m, a) and (m, c) 7→ r(m, c) are Lipschitz with constants
LK ,Lg and Lr satisfying max(1, Lg )(S + LK + 1)δ < 1, there exists
constants H and H ′ s.t.

lim
N→∞

√
N
∥∥∥V N
∗ (MN(0),CN(0))− v∗(m(0), c(0))

∥∥∥ ≤ H + H ′
√

NεN0

where εN0
def
=
∥∥(MN(0),CN(0)

)
− (m(0), c(0))

∥∥.
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Average Reward

The optimal average reward is

V N
av∗ = lim sup

T→∞

1

T
VT∗(M(0),C (0)).

This raises the problem of the exchange of the limits N →∞ and T →∞.

Nicolas Gast and Bruno Gaujal (INRIA) Optimal Mean Field (II) Warwick 18 / 28



Convergence to a global attractor

Let fa : B → B denote the deterministic function corresponding to one step
of the evolution of the deterministic limit under action a:

fa(m, c) = (m′, c ′) with

{
m′ = m · K (a, c)
c ′ = g(c ,m′, a).

We say that a set H is an attractor of the function fa if

lim
t→∞

sup
x∈B

d(f t
a (x),H) = 0,

where d(x ,H) denotes the distance between a point x and a set H.

Proposition

Under (A1,A2,A3), if the controller always chooses action a then for any
attractor H of fa and for all ε > 0:

lim
N→∞

lim sup
t→∞

P
(

d
((

MN
a (t),CN(t)

)
,H
)
≥ ε
)

= 0
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Non-convergence in the controlled case

Consider a system with 2 states {0, 1}, where CN = MN
0 is the proportion

of objects in state 0. Two actions (1 and 2) are possible, corresponding to a
probability of transition from any state to 0 of f1(C ) and f2(C ) resp. Both
f1 and f2 are piecewise linear functions:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f1(.)
f2(.)
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Non-convergence in the controlled case(II)

The reward is equal to |CN − 1/2|.

Both f1 and f2 have the same unique attractor, equal to {1/2}.

One can prove that under any policy, limN→∞ limt→∞MN
π (t) will converge

to 0.5, leading to an average reward of 0 regardless of the initial condition.

However, if the deterministic limit starts from the point CN(0) = .2, then
by choosing the sequence of actions 1, 2, 1, 2 . . . the system will oscillate
between 0.2 and 0.8, leading to an average reward of 0.3.

This is caused by the fact that even if f1 and f2 have the same unique
attractor, f1 ◦ f2 has 3 accumulation points: 0.2, 0.5 and 0.8.
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An example: brokering in parallel queues

P applications sending tasks to the broker (ON/OFF).

C clusters (one buffer per cluster).

K processors per clusters, using the push/pull model (ON/OFF).

Goal of the broker: allocate tasks to clusters to minimise the average
response time.

Number of objects: N = P + CK , with a reducible transition matrix.
Intensity is O(1) so that the limit system lives in discrete time.
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Simulations

V N
a∗ average response time of the optimal open loop policy: action at

time t is a∗(t).

V N
π∗ average response time of the optimal closed loop policy: action at

time t is π∗(t,M(t)).
A

ve
ra

ge
re

sp
on

se
ti

m
e

 0

 100

 200

 300

 400

 500

 10  100  1000  10000

Deterministic cost
A* policy
Pi* policy

JSQ
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Size of the system: N
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Central limit theorem

We compute √
N(V N

π∗ − v∗) et
√

N(V N
a∗ − v∗)

√
N

(V
N X
−

v ∗
)
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Beyond deterministic limits

For any policy π and any initial condition MN(0),CN(0) of the original
process, let us define a coupled process M̃N

π (t), C̃N
π (t) in RS × Rd as

follows:
(M̃N

π (0), C̃N
π (0))

def
= (MN(0),CN(0))

for t ≥ 0:

M̃N
π (t + 1)

def
= M̃N

π (t)K (AN(t), C̃N
π (t)) + Gt(AN(t), C̃N

π (t))

C̃N
π (t + 1)

def
= g(C̃N

π (t), M̃N
π (t + 1),AN(t))

where AN(t)
def
= πt(M̃N

π (t), C̃N
π (t)) and Gt(a, C̃N

π (t)) is a sequence of i.i.d.
Gaussian random variables independent of all M̃N

π (t ′), C̃N
π (t ′) for t ′ < t.

The covariance of Gt(a,C ) is a S × S matrix D(a,C ) where if we denote

Pij
def
= Kij(a,C ), then for all j 6= k :

Djj(a,C ) =
n∑

i=1

miPij(1− Pij) and Djk(a,C ) = −
n∑

i=1

miPijPik

Notice that M̃N is not a positive measure anymore.
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Beyond deterministic limits (II)

Theorem

Under assumptions (A1,A2,A3,A4), there exists a constant H independent
of MN ,CN such that

(i) for all sequence of actions a = a1 . . . aT :∣∣∣V N
a (MN ,CN)−W N

a (MN ,CN)
∣∣∣ ≤ H

√
log(N)

N
.

(ii) ∣∣∣V N
∗ (MN ,CN)−W N

∗ (MN ,CN)
∣∣∣ ≤ H

√
log(N)

N
.
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Object-Dependent Actions

We consider the following new system. The state of the system is the states
of the N objects XN(t) = (XN

1 (t) . . .XN
N (t)) and the state of the context.

At each time step, the controller chooses an N-uple of actions a1 . . . aN ∈ A
and uses the action ai for the ith object.

We also construct a second system by replacing the action set A by
P (A)S . An action is a S-uple (p1 . . . pS). If the controller takes the action
p, then an object in state i will endure action a according to the
distribution p and evolves independently according to K (a,C ).
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Object-Dependent Actions (II)

The difference between the 2 systems collapses as N grows. Other results,
such as second order results, also hold.

Proposition

If g ,K ,A,MN(0),CN(0) satisfy assumptions (A1,A2,A3,A4), then the
object-dependent reward V N

od∗ converges to the deterministic limit:

lim
N→∞

V N
od∗(XN(0),CN(0)) = lim

N→∞
V N
∗ (MN(0),CN(0)) = v∗(m(0), c(0))

where the deterministic limit has an action set P (A).
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