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Empirical Measure and Control

We consider a system composed of N objects. Each object has a state
from the finite set S = {1 . . . S}. Time is discrete and the state of the
object n at step k ∈ N is denoted XN

n (k). The actions of the central
controller form a compact metric space.
MN(k) is the empirical measure of the objects

(
XN
1 (k) . . .XN

N (k)
)

at time
k :

MN
n (k)

def
=

1

N

N∑
n=1

δXN
n (k), (1)

We assume that

(A0) Objects are observable only through their states

A direct consequence is:

Theorem

- For any given sequence of actions, the process MN(t) is a Markov chain
- There exists an optimal policy π = (π0, π1, . . . , πk , . . . ) where πk is a
deterministic function P(S)→ A.
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Value function

The controller focusses on a finite-time horizon [0; HN ]. If the system has
an occupancy measure MN(k) at time step k ∈ [0; HN ] and if the
controller chooses the action AN(k), she gets an instantaneous reward
rN(MN(k),AN(k)). At time HN , she gets a final reward rf (MN(HN)).
The value of a policy π is the expected gain over the horizon [0; HN ]
starting from m0 when applying the policy π. It is defined by

V N
π (m)

def
= E

( HN−1∑
k=0

rN(MN
π (k), π(MN

π (k)))

+rf (MN
π (HN))

∣∣∣MN
π (0) = m

)
.

(2)

The goal of the controller is to find an optimal policy that maximizes the
value. We denote by V N

∗ (m) the optimal value when starting from m:

V N
∗ (m) = sup

π
V N
π (m) (3)
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Scaling Time and Space

The drift

FN (m, a)
def
= E

(
MN(k + 1)−MN(k)

|MN(k) = m,AN(k) = a
)
.

(4)

goes to 0 at speed I (N) when N goes to infinity and FN/I (N) converges
to a Lipschitz continuous function f .
We define the continuous time process (M̂N(t))t∈R+ as the affine
interpolation of MN(k), rescaled by the intensity function, i.e. M̂N is
affine on the intervals [kI (N), (k + 1)I (N)], k ∈ N and

M̂N(kI (N)) = MN(k).

We assume that the time horizon and the reward per time slot scale
accordingly, i.e. we impose

HN =

⌊
T

I (N)

⌋
rN(m, a) = I (N)r(m, a)
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Mean Field Limit

An action function α : [0; T ]→ A is a piecewise Lipschitz continuous
function that associates to each time t an action α(t). For an action
function α and an initial condition m0, we consider the following ordinary
integral equation for m(t), t ∈ R+:

m(t)−m(0) =

∫ t

0
f (m(s), α(s))ds. (5)

We call φt , t ∈ R+, the corresponding semi-flow: the unique solution of
Eq.(5) is

m(t) = φt(m0, α). (6)

Its value is

vα(m0)
def
=

∫ T

0
r (φs(m0, α), α(s)) ds + rf (φT (m0, α)).

We also define the optimal value of the deterministic limit v∗(m0):

v∗(m0) = sup
α

vα(m0),
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Technical Assumptions

(A1) (Transition probabilities) the number of objects changing at time k
satisfies

E
(

∆N
π (k)

∣∣∣MN
π (k) = m

)
≤ NI1(N)

E
(

∆N
π (k)2

∣∣∣MN
π (k) = m

)
≤ N2I (N)I2(N)

(A2) (Convergence of the Drift) f bounded on P(S)×A and
limN→∞ I (N) = limN→∞ I0(N) = 0 such that∥∥∥ 1
I (N)FN(m, a)− f (m, a)

∥∥∥ ≤ I0(N)

(A3) (Lipschitz Continuity) FN , (f ), r are Lipschitz continuous in m and
(a).
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Technical Assumptions(II)

To make things more concrete, here is a simple but useful case where all
assumptions are true.

There are constants c1 and c2 such that the expectation of the
number of objects that perform a transition in one time slot is ≤ c1
and its standard deviation is ≤ c2,

and FN(m, a) can be written under the form 1
Nϕ (m, a, 1/N) where ϕ

is a continuous function on ∆S ×A× [0, ε) for some neighborhood
∆S of P(S) and some ε > 0, continuously differentiable with respect
to m.

In this case we can choose I (N) = 1/N, I0(N) = c0/N (where c0 is an
upper bound to the norm of the differential ∂ϕ

∂m ), I1(N) = c1/N and
I2(N) = (c2

1 + c2
2 )/N.
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Main results(I)

Theorem (1: Convergence for action functions)

Under (A0-A3), let α is a piecewise Lipschitz continuous action function
on [0; T ], of constant Kα, with p jumps. Let M̂N

α (t) be the linear
interpolation of the discrete time process MN

α . Then for all ε > 0:

P
{

sup
0≤t≤T

∥∥∥M̂N
α (t)−φt(m0, α)

∥∥∥ > [ ∥∥∥MN(0)−m0

∥∥∥
+I ′0(N, α)T + ε

]
eL1T

}
≤ J(N,T )

ε2

(7)

and ∣∣∣V N
α

(
MN(0)

)
− vα(m0)

∣∣∣ ≤ B ′
(

N,
∥∥∥MN(0)−m0

∥∥∥) (8)

where J, I ′0 and B ′ are constants and satisfy
limN→∞ I ′0(N, α) = limN→∞ J(N,T ) = 0 and limN→∞,δ→0 B ′(N, δ) = 0.
In particular, if limN→∞MN

π (0) = m0 almost surely [resp. in probability]
then limN→∞ V N

α

(
MN(0)

)
= vα(m0) almost surely [resp. in probability].
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Main results (II)

Consider the system with N objects under policy π. The process MN
π is

defined on some probability space Ω. To each ω ∈ Ω corresponds a
trajectory MN

π (ω), and for each ω ∈ Ω, we define an action function
AN
π (ω).

Theorem (2: Uniform convergence of the value)

Let AN
π be the random action function associated with MN

π , as defined
earlier. Under Assumptions (A0) to (A3),∣∣∣V N

π

(
MN(0)

)
− E

[
vAN

π
(m0)

]∣∣∣ ≤ B
(
N,
∥∥∥MN(0)−m0

∥∥∥ )
where B is such that limN→∞,δ→0 B(N, δ) = 0; in particular, if
limN→∞MN

π (0) = m0 almost surely [resp. in probability] then∣∣∣V N
π

(
MN(0)

)
− E

[
vAN

π
(m0)

]∣∣∣→ 0 almost surely [resp. in probability].
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Main results(III)

Corollary (Asymptotically Optimal Policy)

If α∗ is an optimal action function for the limiting system and if
limN→∞MN(0) = m0 almost surely [resp. in probability], then we have:

lim
N→∞

∣∣∣V N
α∗ − V N

∗

∣∣∣ =
∣∣∣V N
∗ − v∗

∣∣∣ = 0,

almost surely [resp. in probability].

In other words, an optimal action function for the limiting system is
asymptotically optimal for the system with N objects.
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Main ingredient of the proof: coupling

Consider the system with N objects under policy π. The process MN
π is

defined on some probability space Ω. To each ω ∈ Ω corresponds a
trajectory MN

π (ω), and for each ω ∈ Ω, we define an action function
AN
π (ω). This random function is piecewise constant on each interval

[kI (N), (k + 1)I (N)) (k ∈ N) and is such that

AN
π (ω)(kI (N))

def
= πk(MN(k)) is the action taken by the controller of the

system with N objects at time slot k , under policy π. For every ω,
φt(m0,A

N
π (ω)) is the solution of the limiting system with action function

AN
π (ω), i.e.

φt(m0,A
N
π (ω))=m0+

∫ t

0
f (φs(m0,A

N
π (ω)),AN

π (ω)(s))ds.
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Main ingredient of the proof: coupling (II)

Let ε > 0 and α(.) be an action function such that vα(m0) ≥ v∗(m0)− ε
Th. 1 shows that limN→∞ V N

α (MN(0)) = vα(m0) ≥ v∗(m0)− ε a.s. This
shows that lim infN→∞ V N

∗ (MN(0)) ≥ limN→∞ V N
α (MN(0)) ≥ v∗(m0)− ε;

this holds for every ε > 0 thus lim infN→∞ V N
∗ (MN(0)) ≥ v∗(m0) a.s.

Now, let B(N, δ) be as in Th. 2 , ε > 0 and πN such that
V N
∗ (MN(0)) ≤ V N

πN (MN(0)) + ε.

V N
πN (MN(0)) ≤ E

(
vAN

πN
(m0)

)
+ B(N, δN) ≤ v∗(m0) + B(N, δN) where

δN
def
=
∥∥MN(0)−m0

∥∥. Thus V N
∗ (MN(0)) ≤ v∗(m0) + B(N, δN) + ε. If

further δN → 0 a.s. it follows that lim supN→∞ V N
∗ (MN(0)) ≤ v∗(m0) + ε

a.s. for every ε > 0, thus lim supN→∞ V N
∗ (MN(0)) ≤ v∗(m0) a.s.
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Infinite horizon with discounted costs

Under a policy π, the expected discounted value starting from MN(0) = m
is:

W N
π (m) = E

( ∞∑
k=0

δkI (N)r(MN
π (k), πk(MN

π (k)))

∣∣∣∣∣MN
π (0) = m

)

Similarly, the discounted cost can be defined for the infinite system:

wα (m) =

∫ ∞
0

δsr (φs (m, α) , α(s)) ds.

Theorem

Under hypothesis (A1,A2,A3) and if MN
π (0)

P−→ m0, then:

lim
N→∞

W N
∗

(
MN
π (0)

)
= sup

π
W N
π

(
MN
π (0)

)
= sup

α
wα (m) = w∗ (m0)
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HJB Equation and Dynamic Programming

The optimal value can be computed by a discrete dynamic programming
algorithm by setting UN(m,T ) = rf (m) and

UN(m, t)= sup
a∈A

E
[
rN(m, a)+UN(MN(t+I (N)), t+I (N))∣∣∣M̄N(t) = m,AN(t) = a

]
.

Then, the optimal cost over horizon [0; T/I (N)] is V N
∗ (m) = U(m, 0).

Similarly, if we denote by u(m, t) the optimal cost over horizon [t; T ] for
the limiting system, u(m, t) satisfies the classical Hamilton-Jacobi-Bellman
equation:

∂u(m, t)

∂t
+ max

a
{∇u(m, t).f (m, a) + r(m, a)} = 0. (9)
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Algorithm

– From the original system with N objects, construct the occupancy
measure MN and its kernel ΓN and let MN(0) be the initial occupancy
measure;
– Compute the limit f of the drift of ΓN ;
Solve the HJB equation (9) on [0,HI (N)]. This provides an optimal
control function α∗(MN

0 , t);
– Construct a discrete control π for the discrete system: the action to be
taken under state MN(k) at step k is

π(MN(k), k)
def
= α∗(φkI (N)(MN(0), α)).

– Return π
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Algorithm 2

The policy π constructed by Algorithm 1 is static in the sense that it does
not depend on the state MN(k) but only on the initial state MN(0), and
the deterministic estimation of MN(k) provided by the differential
equation. One can construct a more adaptive policy by updating the
starting point of the differential equation at each step.
– M := MN(0); k := 0
– Repeat until k = H

α∗k(M, ·) := solution of HJB over [kI (N),HI (N)] starting in M
π′(M, k) := α∗k(φkI (N)(M, αk))

M is changed by applying kernel ΓN
π′

k:= k+1
– Return π′
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Infection Strategy of a Viral Worm

A susceptible (S) node is a mobile wireless device, not contaminated by
the worm but prone to infection. A node is infective (I ) if it is
contaminated by the worm. An infective node spreads the worm to a
susceptible node whenever they meet, with probability β. The worm can
also choose to kill an infective node, i.e., render it completely
dysfunctional - such nodes are denoted dead (D). A functional node that
is immune to the worm is referred to as recovered (R).
The goal of the worm is to maximize the damages done to the network by
choosing the rate α(t) at which it kills node at time t.

E

(
Dπ(T ) +

1

NT

NT∑
k=1

g(Iπ(k))

)
.
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Infection Strategy of a Viral Worm (II)

the dynamics of this population process converges to the solution of the
following differential equations.

dS
dt = −βIS − qS
dI
dt = βIS − bI − α(t)I
dD
dt = α(t)I
dR
dt = bI + qS ,

(10)

where α(t) is the action taken by the worm at time t.
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Infection Strategy of a Viral Worm (III)

In the continuous control problem, the objective of the worm is to find an
action function α such that the damage function D(T ) + 1

T

∫ T
0 g(I (t))dt

is maximized under the constraint 0 ≤ α(t) ≤ αmax (where f is convex). In
[Khousani, Sarkar, Altamn, 2010], this problem is shown to have a solution
and the Pontryagin maximum principle is used to show that the optimal
action function α∗ is of bang-bang type: there exists t1 ∈ [0 . . .T ) s.t.

α∗(t) =

{
0 for 0 < t < t1
αmax for t1 < t < T

(11)
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Infection Strategy of a Viral Worm (III)
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Figure: Damage caused by the worm for various infection policies as a function
of the size of the system N.
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Utility provider pricing

We consider a system made of a utility and N users; users can be either in
state S (subscribed) or U (unsubscribed). The utility fixes their price
α ∈ [0, 1].
Each customer revises her status independently. If she is in state U [resp.
S ], with probability s(α) [resp. a(α)] she moves to the other state; s(α) is
the probability of a new subscription, and a(α) is the probability of
attrition.

An equivalent model is that at every time step (which size decreases as
1/N), one customer is chosen randomly

Nicolas Gast, Bruno Gaujal and Jean-Yves Le Boudec (INRIA)Optimal Mean Field Warwick 22 / 24



Utility provider pricing (II)

This problem can be seen as a Markovian system made of N objects
(users) and one controller (the provider). The intensity is I (N) = 1/N. if
x(t) is the fraction of objects in state S at time t and α(t) ∈ [0; 1] is the
action taken by the provider at time t, the mean field limit of the system is:

dx

dt
= −x(t)a(α(t)) + (1− x(t))s(α(t))

= s(α(t))− x(s(α(t)) + a(α(t))
(12)

and the rescaled profit over a time horizon T is
∫ T
0 x(t)α(t)dt. Call

u∗(t, x) the optimal benefit over the interval [t,T ] if there is a proportion
x of subscribers at time t. The Hamilton-Jaccobi-Bellman equation is

∂

∂t
u∗(t, x) + H

(
x ,

∂

∂x
u∗(t, x)

)
= 0 (13)

with
H(x , p) = max

α∈[0,1]
[p(s(α)− x(s(α) + a(α)) + αx ]

H can be computed under reasonable assumptions on the rates of
subscription and attrition s(.) and a(.), which can then be used to show
that there exists an optimal policy that is threshold based.
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Utility provider pricing (III)

Consider the case where α ∈ {0, 1} and s(0) = a(1) = 1 and
s(1) = a(0) = 0. The ODE becomes

dx

dt
= −x(t)α(t) + (1− x(t))(1− α(t)) = 1− x(t)− α(t), (14)

and H(x , p) = max (x(1− p), (1− x)p). The optimal policy is α = 1 if
x > 1/2 or x > 1− exp(−(T − t)), and 0 otherwise.
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