Optimal Mean field Limits: From discrete to continuous optimization

Nicolas Gast, Bruno Gaujal and Jean-Yves Le Boudec

Grenoble University INRIA EPFL

Warwick - May, 2012

Optimal Mean Field

Outline

- **1** Notations and Definitions
- **2** Mean Field Convergence
- **3** Infinite Horizon
- Algorithmic Issues

5 Applications

Empirical Measure and Control

We consider a system composed of *N* objects. Each object has a state from the finite set $S = \{1 \dots S\}$. Time is discrete and the state of the object *n* at step $k \in \mathbb{N}$ is denoted $X_n^N(k)$. The actions of the central controller form a compact metric space. $M^N(k)$ is the empirical measure of the objects $(X_1^N(k) \dots X_N^N(k))$ at time *k*:

$$M_n^N(k) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(k)},\tag{1}$$

We assume that

(A0) Objects are observable only through their states

A direct consequence is:

Theorem

- For any given sequence of actions, the process $M^{N}(t)$ is a Markov chain
- There exists an optimal policy $\pi = (\pi_0, \pi_1, \ldots, \pi_k, \ldots)$ where π_k is a deterministic function $\mathcal{P}(S) \to \mathcal{A}$.

Nicolas Gast, Bruno Gaujal and Jean-Yves I

Optimal Mean Field

Value function

The controller focusses on a finite-time horizon $[0; H^N]$. If the system has an occupancy measure $M^N(k)$ at time step $k \in [0; H^N]$ and if the controller chooses the action $A^N(k)$, she gets an *instantaneous reward* $r^N(M^N(k), A^N(k))$. At time H^N , she gets a *final reward* $r_f(M^N(H^N))$. The value of a policy π is the expected gain over the horizon $[0; H^N]$ starting from m_0 when applying the policy π . It is defined by

$$V_{\pi}^{N}(m) \stackrel{\text{def}}{=} \mathbb{E}\Big(\sum_{k=0}^{H^{N}-1} r^{N}(M_{\pi}^{N}(k), \pi(M_{\pi}^{N}(k))) + r_{f}(M_{\pi}^{N}(H^{N})) \Big| M_{\pi}^{N}(0) = m\Big).$$
(2)

The goal of the controller is to find an optimal policy that maximizes the value. We denote by $V_*^N(m)$ the optimal value when starting from m:

$$V_*^N(m) = \sup_{\pi} V_{\pi}^N(m) \tag{3}$$

Scaling Time and Space

The drift

$$F^{N}(m,a) \stackrel{\text{def}}{=} \mathbb{E}(M^{N}(k+1) - M^{N}(k))$$

$$|M^{N}(k) = m, A^{N}(k) = a).$$
(4)

goes to 0 at speed I(N) when N goes to infinity and $F^N/I(N)$ converges to a Lipschitz continuous function f.

We define the continuous time process $(\hat{M}^N(t))_{t \in \mathbb{R}^+}$ as the affine interpolation of $M^N(k)$, rescaled by the intensity function, i.e. \hat{M}^N is affine on the intervals [kI(N), (k+1)I(N)], $k \in \mathbb{N}$ and

$$\hat{M}^N(kI(N)) = M^N(k).$$

We assume that the time horizon and the reward per time slot scale accordingly, i.e. we impose

$$H^{N} = \left[\frac{T}{I(N)}\right]$$
$$L^{N}(m, a) = I(N)r(m, a)$$

Mean Field Limit

An action function $\alpha : [0; T] \to A$ is a piecewise Lipschitz continuous function that associates to each time t an action $\alpha(t)$. For an action function α and an initial condition m_0 , we consider the following ordinary integral equation for m(t), $t \in \mathbb{R}^+$:

$$m(t) - m(0) = \int_0^t f(m(s), \alpha(s)) ds.$$
(5)

We call ϕ_t , $t \in \mathbb{R}^+$, the corresponding semi-flow: the unique solution of Eq.(5) is

$$m(t) = \phi_t(m_0, \alpha). \tag{6}$$

Its value is

$$v_{\alpha}(m_0) \stackrel{\text{def}}{=} \int_0^T r\left(\phi_s(m_0, \alpha), \alpha(s)\right) ds + r_f(\phi_T(m_0, \alpha)).$$

We also define the optimal value of the deterministic limit $v_*(m_0)$:

$$v_*(m_0) = \sup_{\alpha} v_{\alpha}(m_0),$$

Technical Assumptions

(A1) (Transition probabilities) the number of objects changing at time k satisfies

$$\mathbb{E}\left(\left.\Delta_{\pi}^{N}(k)\right|M_{\pi}^{N}(k)=m\right) \leq NI_{1}(N)$$
$$\mathbb{E}\left(\left.\Delta_{\pi}^{N}(k)^{2}\right|M_{\pi}^{N}(k)=m\right) \leq N^{2}I(N)I_{2}(N)$$

(A2) (Convergence of the Drift) f bounded on $\mathcal{P}(S) \times \mathcal{A}$ and $\lim_{N \to \infty} I(N) = \lim_{N \to \infty} I_0(N) = 0 \text{ such that}$ $\left\| \frac{1}{I(N)} F^N(m, a) - f(m, a) \right\| \le I_0(N)$

(A3) (Lipschitz Continuity) F^N, (f), r are Lipschitz continuous in m and (a).

To make things more concrete, here is a simple but useful case where all assumptions are true.

- There are constants c_1 and c_2 such that the expectation of the number of objects that perform a transition in one time slot is $\leq c_1$ and its standard deviation is $\leq c_2$,
- and F^N(m, a) can be written under the form ¹/_Nφ(m, a, 1/N) where φ is a continuous function on Δ_S × A × [0, ϵ) for some neighborhood Δ_S of P(S) and some ϵ > 0, continuously differentiable with respect to m.

In this case we can choose I(N) = 1/N, $I_0(N) = c_0/N$ (where c_0 is an upper bound to the norm of the differential $\frac{\partial \varphi}{\partial m}$), $I_1(N) = c_1/N$ and $I_2(N) = (c_1^2 + c_2^2)/N$.

Main results(I)

Theorem (1: Convergence for action functions)

Under (A0-A3), let α is a piecewise Lipschitz continuous action function on [0; T], of constant K_{α} , with p jumps. Let $\hat{M}_{\alpha}^{N}(t)$ be the linear interpolation of the discrete time process M_{α}^{N} . Then for all $\epsilon > 0$:

and

$$\left|V_{\alpha}^{N}\left(M^{N}(0)\right)-v_{\alpha}(m_{0})\right|\leq B'\left(N,\left\|M^{N}(0)-m_{0}\right\|\right)$$
(8)

where J, I'_0 and B' are constants and satisfy $\lim_{N\to\infty} I'_0(N, \alpha) = \lim_{N\to\infty} J(N, T) = 0$ and $\lim_{N\to\infty,\delta\to0} B'(N, \delta) = 0$. In particular, if $\lim_{N\to\infty} M^N_{\pi}(0) = m_0$ almost surely [resp. in probability] then $\lim_{N\to\infty} V^N_{\alpha} (M^N(0)) = v_{\alpha}(m_0)$ almost surely [resp. in probability].

Main results (II)

Consider the system with N objects under policy π . The process M_{π}^{N} is defined on some probability space Ω . To each $\omega \in \Omega$ corresponds a trajectory $M_{\pi}^{N}(\omega)$, and for each $\omega \in \Omega$, we define an action function $A_{\pi}^{N}(\omega)$.

Theorem (2: Uniform convergence of the value)

Let A_{π}^{N} be the random action function associated with M_{π}^{N} , as defined earlier. Under Assumptions (A0) to (A3),

$$\left|V_{\pi}^{N}\left(M^{N}(0)
ight)-\mathbb{E}\left[v_{\mathcal{A}_{\pi}^{N}}(m_{0})
ight]
ight|\leq Big(N,\left\|M^{N}(0)-m_{0}
ight\|ig)$$

where B is such that $\lim_{N\to\infty,\delta\to0} B(N,\delta) = 0$; in particular, if $\lim_{N\to\infty} M_{\pi}^{N}(0) = m_{0}$ almost surely [resp. in probability] then $\left|V_{\pi}^{N}(M^{N}(0)) - \mathbb{E}\left[v_{A_{\pi}^{N}}(m_{0})\right]\right| \to 0$ almost surely [resp. in probability].

Corollary (Asymptotically Optimal Policy)

If α_* is an optimal action function for the limiting system and if $\lim_{N\to\infty} M^N(0) = m_0$ almost surely [resp. in probability], then we have:

$$\lim_{N\to\infty} \left| V_{\alpha_*}^N - V_*^N \right| = \left| V_*^N - v_* \right| = 0,$$

almost surely [resp. in probability].

In other words, an optimal action function for the limiting system is asymptotically optimal for the system with N objects.

Main ingredient of the proof: coupling

Consider the system with N objects under policy π . The process M_{π}^{N} is defined on some probability space Ω . To each $\omega \in \Omega$ corresponds a trajectory $M_{\pi}^{N}(\omega)$, and for each $\omega \in \Omega$, we define an action function $A_{\pi}^{N}(\omega)$. This random function is piecewise constant on each interval $[kI(N), (k+1)I(N)) \ (k \in \mathbb{N})$ and is such that $A_{\pi}^{N}(\omega)(kI(N)) \stackrel{\text{def}}{=} \pi_{k}(M^{N}(k))$ is the action taken by the controller of the system with N objects at time slot k, under policy π . For every ω , $\phi_{t}(m_{0}, A_{\pi}^{N}(\omega))$ is the solution of the limiting system with action function $A_{\pi}^{N}(\omega)$, i.e.

$$\phi_t(m_0, A_\pi^N(\omega)) = m_0 + \int_0^t f(\phi_s(m_0, A_\pi^N(\omega)), A_\pi^N(\omega)(s)) ds.$$

Main ingredient of the proof: coupling (II)

Let $\epsilon > 0$ and $\alpha(.)$ be an action function such that $v_{\alpha}(m_0) \ge v_*(m_0) - \epsilon$ Th. 1 shows that $\lim_{N\to\infty} V^N_{\alpha}(M^N(0)) = v_{\alpha}(m_0) \ge v_*(m_0) - \epsilon$ a.s. This shows that $\liminf_{N\to\infty} V^N_*(M^N(0)) \ge \lim_{N\to\infty} V^N_{\alpha}(M^N(0)) \ge v_*(m_0) - \epsilon$; this holds for every $\epsilon > 0$ thus $\liminf_{N\to\infty} V^N_*(M^N(0)) \ge v_*(m_0)$ a.s.

Now, let $B(N, \delta)$ be as in Th. 2, $\epsilon > 0$ and π^N such that $V_*^N(M^N(0)) \leq V_{\pi^N}^N(M^N(0)) + \epsilon$. $V_{\pi^N}^N(M^N(0)) \leq \mathbb{E}\left(v_{A_{\pi^N}^N}(m_0)\right) + B(N, \delta^N) \leq v_*(m_0) + B(N, \delta^N)$ where $\delta^N \stackrel{\text{def}}{=} \|M^N(0) - m_0\|$. Thus $V_*^N(M^N(0)) \leq v_*(m_0) + B(N, \delta^N) + \epsilon$. If further $\delta^N \to 0$ a.s. it follows that $\limsup_{N\to\infty} V_*^N(M^N(0)) \leq v_*(m_0) + \epsilon$ a.s. for every $\epsilon > 0$, thus $\limsup_{N\to\infty} V_*^N(M^N(0)) \leq v_*(m_0)$ a.s.

Infinite horizon with discounted costs

Under a policy π , the expected discounted value starting from $M^N(0) = m$ is:

$$W_{\pi}^{N}(m) = \mathbb{E}\left(\sum_{k=0}^{\infty} \delta^{kI(N)} r(M_{\pi}^{N}(k), \pi_{k}(M_{\pi}^{N}(k))) \middle| M_{\pi}^{N}(0) = m\right)$$

Similarly, the discounted cost can be defined for the infinite system:

$$w_{\alpha}(m) = \int_{0}^{\infty} \delta^{s} r(\phi_{s}(m, \alpha), \alpha(s)) ds.$$

Theorem

Under hypothesis (A1,A2,A3) and if $M_{\pi}^{N}(0) \xrightarrow{\mathcal{P}} m_{0}$, then:

$$\lim_{N\to\infty} W^N_*\left(M^N_\pi(0)\right) = \sup_{\pi} W^N_\pi\left(M^N_\pi(0)\right) = \sup_{\alpha} w_\alpha\left(m\right) = w_*\left(m_0\right)$$

Nicolas Gast, Bruno Gaujal and Jean-Yves L

HJB Equation and Dynamic Programming

The optimal value can be computed by a discrete dynamic programming algorithm by setting $U^N(m, T) = r_f(m)$ and

$$U^{N}(m,t) = \sup_{a \in \mathcal{A}} \mathbb{E} \Big[r^{N}(m,a) + U^{N}(M^{N}(t+I(N)),t+I(N)) \\ \Big| \overline{M}^{N}(t) = m, A^{N}(t) = a \Big].$$

Then, the optimal cost over horizon [0; T/I(N)] is $V_*^N(m) = U(m, 0)$. Similarly, if we denote by u(m, t) the optimal cost over horizon [t; T] for the limiting system, u(m, t) satisfies the classical Hamilton-Jacobi-Bellman equation:

$$\frac{\partial u(m,t)}{\partial t} + \max_{a} \left\{ \nabla u(m,t) f(m,a) + r(m,a) \right\} = 0.$$
(9)

Algorithm

– From the original system with N objects, construct the occupancy measure M^N and its kernel Γ^N and let $M^N(0)$ be the initial occupancy measure;

- Compute the limit f of the drift of Γ^N ; Solve the HJB equation (9) on [0, HI(N)]. This provides an optimal control function $\alpha_*(M_0^N, t)$;

– Construct a discrete control π for the discrete system: the action to be taken under state $M^N(k)$ at step k is

$$\pi(M^N(k),k) \stackrel{\text{def}}{=} \alpha_*(\phi_{kI(N)}(M^N(0),\alpha)).$$

– Return π

Algorithm 2

The policy π constructed by Algorithm 1 is static in the sense that it does not depend on the state $M^N(k)$ but only on the initial state $M^N(0)$, and the deterministic estimation of $M^N(k)$ provided by the differential equation. One can construct a more adaptive policy by updating the starting point of the differential equation at each step.

$$-M := M^N(0); k := 0$$

– Repeat until k = H

 $\begin{array}{l} \alpha_k^*(M,\cdot) := \text{ solution of HJB over } [kI(N), HI(N)] \text{ starting in } M\\ \pi'(M,k) := \alpha_k^*(\phi_{kI(N)}(M,\alpha_k))\\ M \text{ is changed by applying kernel } \Gamma_{\pi'}^N\\ k := k+1\\ \text{wrn } \pi' \end{array}$

– Return π'

Infection Strategy of a Viral Worm

A susceptible (S) node is a mobile wireless device, not contaminated by the worm but prone to infection. A node is *infective* (I) if it is contaminated by the worm. An infective node spreads the worm to a susceptible node whenever they meet, with probability β . The worm can also choose to kill an infective node, i.e., render it completely dysfunctional - such nodes are denoted *dead* (D). A functional node that is immune to the worm is referred to as *recovered* (R). The goal of the worm is to maximize the damages done to the network by

choosing the rate $\alpha(t)$ at which it kills node at time t.

$$\mathbb{E}\left(D_{\pi}(T)+\frac{1}{NT}\sum_{k=1}^{NT}g(I_{\pi}(k))\right).$$

the dynamics of this population process converges to the solution of the following differential equations.

$$\frac{dS}{dt} = -\beta IS - qS
\frac{dI}{dt} = \beta IS - bI - \alpha(t)I
\frac{dD}{dt} = \alpha(t)I
\frac{dR}{dt} = bI + qS,$$
(10)

where $\alpha(t)$ is the action taken by the worm at time t.

In the continuous control problem, the objective of the worm is to find an action function α such that the damage function $D(T) + \frac{1}{T} \int_0^T g(I(t))dt$ is maximized under the constraint $0 \le \alpha(t) \le \alpha_{\max}$ (where f is convex). In [Khousani, Sarkar, Altamn, 2010], this problem is shown to have a solution and the Pontryagin maximum principle is used to show that the optimal action function α_* is of bang-bang type: there exists $t_1 \in [0...T)$ s.t.

$$\alpha_*(t) = \begin{cases} 0 & \text{for } 0 < t < t_1 \\ \alpha_{\max} & \text{for } t_1 < t < T \end{cases}$$
(11)

Infection Strategy of a Viral Worm (III)

Figure: Damage caused by the worm for various infection policies as a function of the size of the system N.

We consider a system made of a utility and N users; users can be either in state S (subscribed) or U (unsubscribed). The utility fixes their price $\alpha \in [0, 1]$.

Each customer revises her status independently. If she is in state U [resp. S], with probability $s(\alpha)$ [resp. $a(\alpha)$] she moves to the other state; $s(\alpha)$ is the probability of a new subscription, and $a(\alpha)$ is the probability of attrition.

An equivalent model is that at every time step (which size decreases as 1/N), one customer is chosen randomly

Utility provider pricing (II)

This problem can be seen as a Markovian system made of N objects (users) and one controller (the provider). The intensity is I(N) = 1/N. if x(t) is the fraction of objects in state S at time t and $\alpha(t) \in [0; 1]$ is the action taken by the provider at time t, the mean field limit of the system is:

$$\frac{dx}{dt} = -x(t)a(\alpha(t)) + (1 - x(t))s(\alpha(t))$$

= $s(\alpha(t)) - x(s(\alpha(t)) + a(\alpha(t)))$ (12)

and the rescaled profit over a time horizon T is $\int_0^T x(t)\alpha(t)dt$. Call $u_*(t,x)$ the optimal benefit over the interval [t, T] if there is a proportion x of subscribers at time t. The Hamilton-Jaccobi-Bellman equation is

$$\frac{\partial}{\partial t}u_*(t,x) + H\left(x,\frac{\partial}{\partial x}u_*(t,x)\right) = 0$$
(13)

with

$$H(x,p) = \max_{\alpha \in [0,1]} \left[p(s(\alpha) - x(s(\alpha) + a(\alpha)) + \alpha x \right]$$

Nicolas Gast, Bruno Gaujal and Jean-Yves I

Utility provider pricing (III)

Consider the case where $\alpha \in \{0, 1\}$ and s(0) = a(1) = 1 and s(1) = a(0) = 0. The ODE becomes $\frac{dx}{dt} = -x(t)\alpha(t) + (1 - x(t))(1 - \alpha(t)) = 1 - x(t) - \alpha(t), \quad (14)$ and $H(x, p) = \max(x(1 - p), (1 - x)p)$. The optimal policy is $\alpha = 1$ if

x > 1/2 or $x > 1 - \exp(-(T - t))$, and 0 otherwise.

Nicolas Gast, Bruno Gaujal and Jean-Yves I

Optimal Mean Field