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Scaled Markov chain

Let us consider a discrete time Markov chain YN (k) with values in R
The index N is used to denote some scaling parameter.
the drift of the chain is denoted g"V:

() EE (YN +1) = YN Y(k) = y)

fN(y) the drift rescaled by /(N):

det gV (y)
FN(y) = i)
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Stochastic approximation

Using these definitions, one can write the evolution of the Markov chain

YN(k) as a stochastic approximation algorithm with constant step size
I(N):

YNk +1) = YN(R) + I (AU R) + UMK+ 1)),
where UN(k +1) < (YN(k+1) — YN(K))) /I(N) — FN(YN(K)) is a zero
mean process that captures the random innovation of the chain between
steps k and k + 1.
UN(k) is a martingale difference sequence w. r. t. the filtration F
associated with the process YV (k). In particular, it has zero mean

conditionally to YN(k): by the Markov property,
E(UN(k+1) | YN(k)) = E(UN(k + 1) | Fx) = 0.
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Stochastic approximation (1)

The set-valued function F associated with the rescaled drift £V, at point
y, is defined as the convex closure of the set of the accumulation points of
fN(yN) as N goes to infinity, for all sequences y" converging to y:

F(y) 4 cony ({ acc fV(yN) for all sequences y¥ —s y}) .
N—oo N—oo

where accy_oox™N denotes the set of accumulation points of the sequence
xN as N goes to infinity and conv(A) is the convex hull of set A.

¥(0) =yo, y(t) € F(y(t))
is the limit differential inclusion (DI) of YN(.).
The set of solutions up to T is denoted .7 (yo).
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Main theorem

Theorem

Let YN(.) be a Markov process on RY as above. Assume that
o The drift gN vanishes with speed I(N):

N

aof 6"l _ .
£ < cueiyi)

g
/

Jim J(N) =0 and VyeRd:Hf’V(y)’

o UN is a martingale difference sequence which is uniformly integrable:

lim supE (HUN(k+ 1)H 1 ungesnsr | YV(K)) =0.

R—oo g
If YN(0) 2, yo (convergence in probability), then for all T > 0:

inf sup H YN(t) - y(t)H 2 0.
ye€Z1(%0) 0<t<T

v
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Population Dynamics

Let DV be a continuous time Markov chain on Z9/N (d > 1) for N > 1.
DV is called a density dependent population process if there exists a set

L C 79 (with 0 € L), such that for each £ € £ and y € Z9/N, the rate of
transition from y to y + ¢/N is NB¢(y) > 0, where 3(.) does not depend
on N.

Let us assume that the transition rate from a state y is bounded:

7 def SUPy ¢ 74 > ver Be(y) < oo and that Y-, . [|4]] sup, Be(y) < 0o. Under
these assumptions, the continuous time Markov chain DV(t) can be seen
as a composition of a Poisson counting process AV(t) whose rate is N7
with a discrete time Markov chain YN: DN(t) = YN(AN(t)).

For all T > 0:

inf su HDNt —dtHQO,
deS1(yo) ogth (&) (t)

where .77 (yp) is the set of solutions of the DI starting in yp.
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Steady state distribution

Let us assume that for any starting point y(0), the differential inclusion
y € F(y) has a unique solution on [0; c0). We denote this solution
t — ¢¢(y). We define the Birkhoff center of ¢ by:

. T _ _
R={xeR": I|rp2|61f |x — ¢¢(x)]] = 0}.

Theorem

Under the conditions of Theorem 1, if the DI has a unique solution y on
[0; T] and if for each N, YN has a stationary measure MV, then, any limit
point of N (for the weak convergence topology) has support in R.

Corollary

If there is a unique point y* to which all trajectory converge, then
R = {y*} and NN converges weakly to the Dirac measure in y* :
limpy_oo MV =4,

v
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Convergence result (11)

Previous theorem:

Interests
But

@ no uniqueness of solution.

@ Constructive limit.

@ General convergence result.
@ no speed of convergence

@ Convergence holds for all f.

F satisfies a one-sided Lipschitz (OSL) with constant L if for all
f(x) € F(x), f(y) € F(y):
(x =y, F(x) = () < LlIx = yII*.

When F is OSL, we can say more
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Convergence result (I11): OSL condition

Theorem ([GG]

Assume that F is OSL with constant L, then for all T, there exists A, B
s.t. for all e > 0,

0<t<T €2

P ( sup HMN(t) - m(t)H > HI\/IéV - moH elT + VI(N)A + e) < /(N)B

v

Remarks O.; number of packets
@ Applicability of OSL is big in dim 1: o
0.2
@ Similar to the Lipschitz case °o os 1 15 2

» The solution is unique.
» Similar bounds except for //(N).

» /I(N) can become /(N) if the solution is smooth enough.
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Sketch of the Proof

We use a stochastic approximation method.

By definition of the drift, MN(k + 1) can be written:

{

MN(k +1) = MN(k) + I(N) (drift + noise)
(.

!
T
o
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Sketch of the Proof

We use a stochastic approximation method.

By definition of the drift, MN(k + 1) can be written:

MN(k +1) = MN(k) + I(N) (drift + noise>

——
E(.)=0
At time t = kI(N), MN(t) can be written:
k-1 k
MN(k) = MY+ " I(N)drift + I(N) > noise.
i=0 i=0
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Sketch of the Proof

We use a stochastic approximation method.

By definition of the drift, MN(k + 1) can be written:

MN(k +1) = MN(k) + I(N) <drift + noise>
E(.)=0
At time t = kI(N), MN(t) can be written:

k—1

k
MN(k) = Mg+ " I(N)drift  + I(N)) noise.
i=0 i=0

Euler approximation of DI Converges to 0
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Sketch of the Proof

We use a stochastic approximation method.

By definition of the drift, MN(k + 1) can be written:

MN(k +1) = MN(k) + I(N) <drift + noise>
E(.)=0
At time t = kI(N), MN(t) can be written:

k—1

k
MN(k) = Mg+ " I(N)drift  + I(N)) noise.
i=0 i=0

Euler approximation of DI Converges to 0

@ Convergence of the Euler approximation based on analytical
arguments.

@ When F is OSL, we have explicit bounds.
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The One-side Lipschitz condition

The one-side Lipschitz condition = bound the spreading of two
trajectories.

o @ . _1 if Q(t) > 0 E; number of packets =——
ot 0 if Q(t)=0 2
0< x - yI? it x,y > 0
—v. f —f = ’
oyt —ry ={ OSBRI el

@ Threshold policies: buffer Q(t)

> Accept all packets if Q@ < Qmin e
3
. . —Q. 25
> Reject with prob. pQQ 8’5‘"_ for L2
max 'min .

Qmin S Q < Qmax O_é Q(l) —
0

> Reject all if Qmax < Q. 0 05 1 15 2 25 3 35 4

@ OSL = natural discontinuous differential equations.

Nicolas Gast and Bruno Gaujal (INRIA) Optimal Mean Field(1V) Warwick 12 /28



Uniqueness of solution

@ The one-side Lipschitz condition is not necessary to show uniqueness.

@ For example, in best-response dynamics (Rock-scissor-paper)

N limiting dynamics -------
stochastic system «----+-+
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Multiple solutions: Join the longest Queue.

5

Buffer 1
Buffer 2
Two queues :
@ Arrival rate 1. )
@ No service rate. ,
@ Packets are routed using
. 1
Join Longest Queue.
0
0 05 1 15 2 25 3
i Buffer 1 i Buffer 1 mm——
Buffer 2 Buffer 2 e
3 3
25 25
2 2
15 15
1 1
05 05
0 0

05 1 15 2 25 3 0 05 1 15 2 25

0 3
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The power of Differential Inclusion

1
o Two queue, 1 server I
@ Queue 1 has full priority. 1
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The power of Differential Inclusion

1
o Two queue, 1 server I
@ Queue 1 has full priority. 1

size  of
queue 2 o Drift is easy to compute.

@ But: differential equation
has no solution.

o

\
\\
\\

size of queue 1

Nicolas Gast and Bruno Gaujal (INRIA) Optimal Mean Field(1V) Warwick 15 / 28



The power of Differential Inclusion

1
o Two queue, 1 server I
@ Queue 1 has full priority. 1

size  of
queue 2 o Drift is easy to compute.

o But: differential equation

\ \ has no solution.

\ @ Convexification makes the
< inclusion easy to solve.

A

size of queue 1
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The power of Differential Inclusion

1
o Two queue, 1 server I
@ Queue 1 has full priority. 1

size  of
queue 2 o Drift is easy to compute.

o But: differential equation

\ \ has no solution.

\ Convexification makes the
< inclusion easy to solve.

A R
@ The differential inclusion hasJ

2 2 a unique solution.

size of queue 1
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Volunteer Computing : fast simulation

One buffer, N volunteers that are OFF or ON (busy or idle).

Proportion of processor / Buffer size

Nicolas Gast and Bruno Gaujal (INRIA) Optimal Mean Field(1V)
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p(t)b(t) + pau(t) —va(t)lc(>o

b(t) = —pb(t)+va(t)lc(ryso
a(t) =
u(t) = —pau(t) + pya(t)
C(t) = —va(t)lery>o0 + ALc(t)< G -
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L On and busy -------- |
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Volunteer Computing : day and night hours

@ Same model with day and night behavior.

d(m,t)
“ai~ € F(m,t).
1 T T T T T T T T
Buffer Size
09 Off and idle ------- b
Onand busy --------

Proportion of processor / Buffer size
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Volunteer Computing : two clusters using JSQ

@ Two volunteer clusters with JSQ.

T T
Buffer of queue 1 ———
. Buffer of queue 2 -------
1 b Total jobs in Queue 1 --------
. Total Jobs in Queue 2
Active procs Queue 1 ————
08 R Active procs Queue 2 ------

Proportion of processor / Buffer size
o
»
T
1
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Push and pull strategies in server farms

The goal of our first example is to show how our framework can help the
study of discontinuities due to centralized decisions. We consider the
following model of a server farm, with a pulling server.
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Push and pull strategies in server farms (Il)

Now we consider the same farm with a pushing router.
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Drift set

Fi(s) = M1 — q)(si-1 — si) = (1L = p)(si — si+1) + uiq — v;p
with
u=0if s;_1 <1,
vi =0if s;41 > 0;

Zigo uj = Zizo vi=1

the differential inclusion § € F(s) has a unique solution, that is a global
attractor of all trajectories.
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Performance measures
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(a) Average waiting time as a function of  (b) Probability s; for a server to have i
A jobs or more.

Figure: Average response time and steady state distribution of occupancy for the
model of parallel servers of Figure ??7. The four curves corresponds to different
parameters: in blue, p = g = g (N independent M/M/1 queues); in black:
p=0.05¢g=0; in green: p=0,9 =0.05; in red: p=qg=.02.
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Fluid limits

Let X(.) be a discrete time Markov chain in R, For any yo € RY and
N > 0, we consider the rescaled process YV for which the state has been
scaled by a factor 1/N and the time accelerated by N:

V(E) = TX(IN- ) 7(0) = £X(0) = yo.

the fluid limits of YN is the set E if for all T > 0:
inf sup H\_’N(t) —y(t)H 0.

ye€E o<t<T

Proposition

Assume that the drift f(x) = E (X (t 4+ 1) — X(t) | X(t) = x) is bounded
and that limg_,0c E([|X(t + 1) = X(£)[|1)x(e4+1)-x(0)2r | X(t) = x) = 0.
Let F be a set-valued function defined as

F(y) 4 cony ( ace f(N-yN) with  lim yN :y) .
N—o0 N—o0
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Stability and Harris recurrence

y € F(y) is stable if there exists T > 0 and p < 1 such that:

For any y solution of y € F(y) with [|y(0)|| =1: 0<iniTHy(t)H <p<l
St

A discrete time Markov chain X on R is said to be y-irreducible if there
exists a o-finite measure ¢ such that for any set A C R9, p(A) > 0
implies 3", P(X(k) € A| X(0) = x) > 0. Moreover, a set AC R is
said to be petite if for some fixed probability measure a on Z* and some
non-trivial measure v on R?, v(B) < 3", P(X(k) € B | X(0) = x)a(k)
for all x € A and B C RY. Finally, X is said to be positive Harris recurrent
if X has a unique stationary probability distribution 7 and P*(x, .)
converges to . In particular, if the state space of X is included in Z¢ and
if X is irreducible and aperiodic, then X is @-irreducible and all compact
sets are petite.
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Stability and Harris recurrence (l1)

Theorem

Assume that X is an aperiodic, p-irreducible Markov chain such that all
compact sets are petite. Assume that the drift

f(x)=E(X(t+1) — X(t) | X(t) = x) is bounded and that

im0 E(IX (£ + 1) = X()l|Lx(e11)_x(er | X(£) = x) = 0 and et F
be defined as in Equation (1):

F(y) © cony ( acc F(N-yN)  forall {yN}nen st lim yN = y) .
N—oo N—o0

If the differential inclusion y € F(y) is stable in the sense of Equation (6),
then X is positive Harris recurrent.

v
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Opportunistic scheduling policies in wireless
networks

There are K classes of users. At time slot t, Ax(t) new users of type k
arrive in the system. The Ag(t) are i.i.d. with E(Ax(t)) = A«.

The condition of the channel is varying over time and at time slot t, a user
of type k has condition i € {1.../c} with probability g, ; # 0. At each
time slot, a server observes the channel condition of all users and chooses
to serve one user. If this user is of type k and has a channel condition /,
this user leaves the system with probability i ;.

Let us consider the following policy (called “Best Rate” policy in

@ if there are n users x1...x, of class ky < --- < k, that are in their

best channel condition, serve the user with the smallest class (i.e.
user x1).

@ if there are no users in their best channel condition, serve a user at
random.
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Opportunistic scheduling policies in wireless
networks (1)

Let us compute the set-value function F at point y = (0,...0,yy,...yk),
with y, > 0. Let pN = (1 — q,-71)NyiN be the probability that there are no
user of class i in its best state.

The value of the drift at Ny" is equal to

FY(NYNY = (1= pt)i + -+ pY . pl (1= pf) i + o(1).

F is the following set-valued function:

F()— u_i ifX1>0
Y)= conv(ig,...,u;) if yp =+ =yk1=0,y >0.

However, notice that when y,-N goes to zero as N goes to infinity, the
sequence p{V does not necessarily converge as N goes to infinity. This
implies that the rescaled drift £V does not converge to any single-valued
function (continuous or not) in that case.
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Opportunistic scheduling policies in wireless
networks (I11)

The condition ), Ax/pk < 1 implies that the unique solution of the DI
goes to 0 in finite time.

size of queue 2: xp

queue 1 is empty

(a) The set-valued drift for
x1 = 0 is the set of vectors
displayed by the dashed line.

size of queue 1: x1

(b) Unique solution of the differential inclusion.
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