
Mean field Limits with discontinuous drifts

Nicolas Gast and Bruno Gaujal

Grenoble University INRIA

Warwick – May, 2012

Nicolas Gast and Bruno Gaujal (INRIA) Optimal Mean Field(IV) Warwick 1 / 28



Outline

1 Stochastic Approximations and differential inclusions
Density Dependent Population Processes

2 Application and Examples
The One-Side Lipschitz Condition in Practice
Uniqueness or multiple solutions
The power of Differential Inclusion
Volunteer Computing
Comparison of push and pull strategies in server farms

3 Fluid limits and Stability Issues

Nicolas Gast and Bruno Gaujal (INRIA) Optimal Mean Field(IV) Warwick 2 / 28



Scaled Markov chain

Let us consider a discrete time Markov chain Y N(k) with values in Rd .
The index N is used to denote some scaling parameter.
the drift of the chain is denoted gN :

gN(y)
def
= E

(
Y N(k + 1)− Y N(k)|Y N(k) = y

)
f N(y) the drift rescaled by I (N):

f N(y)
def
=

gN(y)

I (N)
.
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Stochastic approximation

Using these definitions, one can write the evolution of the Markov chain
Y N(k) as a stochastic approximation algorithm with constant step size
I (N):

Y N(k + 1) = Y N(k) + I (N)
(

f N(Y N(k)) + UN(k + 1)
)
,

where UN(k + 1)
def
=
(
Y N(k + 1)− Y N(k))

)
/I (N)− f N(Y N(k)) is a zero

mean process that captures the random innovation of the chain between
steps k and k + 1.
UN(k) is a martingale difference sequence w. r. t. the filtration Fk

associated with the process Y N(k). In particular, it has zero mean
conditionally to Y N(k): by the Markov property,
E(UN(k + 1) | Y N(k)) = E(UN(k + 1) | Fk) = 0.
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Stochastic approximation (II)

The set-valued function F associated with the rescaled drift f N , at point
y , is defined as the convex closure of the set of the accumulation points of
f N(yN) as N goes to infinity, for all sequences yN converging to y :

F (y)
def
= conv

({
acc

N→∞
f N(yN) for all sequences yN −→

N→∞
y

})
.

where accN→∞xN denotes the set of accumulation points of the sequence
xN as N goes to infinity and conv(A) is the convex hull of set A.

y(0) = y0, ẏ(t) ∈ F (y(t))

is the limit differential inclusion (DI) of Y N(·).
The set of solutions up to T is denoted ST (y0).
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Main theorem

Theorem

Let Y N(·) be a Markov process on Rd as above. Assume that

The drift gN vanishes with speed I (N):

lim
N→∞

I (N) = 0 and ∀y ∈ Rd :
∥∥∥f N(y)

∥∥∥ def
=

∥∥∥∥gN(y)

I (N)

∥∥∥∥ ≤ c(1+‖y‖).

UN is a martingale difference sequence which is uniformly integrable:

lim
R→∞

sup
k

E
(∥∥∥UN(k + 1)

∥∥∥ 1‖UN(k+1)≥R‖ | Y N(k)
)

= 0.

If Y N(0)
P−→ y0 (convergence in probability), then for all T > 0:

inf
y∈ST (y0)

sup
0≤t≤T

∥∥∥Ȳ N(t)− y(t)
∥∥∥ P−→ 0.
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Population Dynamics

Let DN be a continuous time Markov chain on Zd/N (d ≥ 1) for N ≥ 1.
DN is called a density dependent population process if there exists a set
L ⊂ Zd (with 0 6∈ L), such that for each ` ∈ L and y ∈ Zd/N, the rate of
transition from y to y + `/N is Nβ`(y) ≥ 0, where β`(.) does not depend
on N.
Let us assume that the transition rate from a state y is bounded:

τ
def
= supy∈Zd

∑
`∈L β`(y) <∞ and that

∑
`∈L ‖`‖ supy β`(y) <∞. Under

these assumptions, the continuous time Markov chain DN(t) can be seen
as a composition of a Poisson counting process ΛN(t) whose rate is Nτ
with a discrete time Markov chain Y N : DN(t) = Y N(ΛN(t)).
For all T > 0:

inf
d∈ST (y0)

sup
0≤t≤T

∥∥∥DN(t)− d(t)
∥∥∥ P−→ 0,

where ST (y0) is the set of solutions of the DI starting in y0.
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Steady state distribution

Let us assume that for any starting point y(0), the differential inclusion
y ∈ F (y) has a unique solution on [0;∞). We denote this solution
t 7→ φt(y). We define the Birkhoff center of φ by:

R = {x ∈ Rd : lim inf
t≥0

‖x − φt(x)‖ = 0}.

Theorem

Under the conditions of Theorem 1, if the DI has a unique solution y on
[0; T ] and if for each N, Y N has a stationary measure ΠN , then, any limit
point of ΠN (for the weak convergence topology) has support in R.

Corollary

If there is a unique point y∗ to which all trajectory converge, then
R = {y∗} and ΠN converges weakly to the Dirac measure in y∗ :
limN→∞ΠN = δy∗ .
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Convergence result (II)

Previous theorem:

Interests

Constructive limit.

General convergence result.

Convergence holds for all f .

But

no uniqueness of solution.

no speed of convergence

F satisfies a one-sided Lipschitz (OSL) with constant L if for all
f (x) ∈ F (x), f (y) ∈ F (y):

〈x − y , f (x)− f (y)〉 ≤ L ‖x − y‖2 .

When F is OSL, we can say more
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Convergence result (III): OSL condition

Theorem ([GG]

Assume that F is OSL with constant L, then for all T , there exists A,B
s.t. for all ε > 0,

P

(
sup

0≤t≤T

∥∥∥MN(t)−m(t)
∥∥∥ ≥ ∥∥∥MN

0 −m0

∥∥∥ eLT +
√

I (N)A + ε

)
≤ I (N)

ε2
B

Remarks:

Applicability of OSL is big in dim 1:

Similar to the Lipschitz case
I The solution is unique.
I Similar bounds except for

√
I (N).

I
√

I (N) can become I (N) if the solution is smooth enough.
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Sketch of the Proof

We use a stochastic approximation method.

By definition of the drift, MN(k + 1) can be written:

MN(k + 1) = MN(k) + I (N)

(
drift + noise︸ ︷︷ ︸

E(.)=0

)

At time t = kI (N), MN(t) can be written:

MN(k) = MN
0 +

k−1∑
i=0

I (N)drift + I (N)
k∑

i=0

noise.

Convergence of the Euler approximation based on analytical
arguments.
When F is OSL, we have explicit bounds.
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The One-side Lipschitz condition

The one-side Lipschitz condition = bound the spreading of two
trajectories.

∂Q
∂t =

{
−1 if Q(t) > 0
0 if Q(t) = 0

〈x − y , f (x)− f (y)〉 =

{
0 ≤ ‖x − y‖2 if x , y > 0

− |x | ≤ 0 ≤ ‖x − y‖2 if x > 0, y = 0

Threshold policies: buffer Q(t)

I Accept all packets if Q < Qmin

I Reject with prob. p Q−Qmin
Qmax−Qmin

for

Qmin ≤ Q < Qmax

I Reject all if Qmax ≤ Q.

OSL = natural discontinuous differential equations.
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Uniqueness of solution

The one-side Lipschitz condition is not necessary to show uniqueness.

For example, in best-response dynamics (Rock-scissor-paper)
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Multiple solutions: Join the longest Queue.

Two queues

Arrival rate 1.

No service rate.

Packets are routed using
Join Longest Queue.
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The power of Differential Inclusion

Two queue, 1 server

Queue 1 has full priority.

1

1 µ = 3

size of queue 1

size of
queue 2 Drift is easy to compute.

But: differential equation
has no solution.

Convexification makes the
inclusion easy to solve.

The differential inclusion has
a unique solution.
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Volunteer Computing : fast simulation

One buffer, N volunteers that are OFF or ON (busy or idle).

ḃ(t) = −µb(t) + γa(t)1C(t)>0

ȧ(t) = µ(t)b(t) + pau(t)− γa(t)1C(t)>0

u̇(t) = −pau(t) + pua(t)

Ċ (t) = −γa(t)1C(t)>0 + λ1C(t)<Cmax
.
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Volunteer Computing : day and night hours

Same model with day and night behavior.
∂(m,t)
∂t ∈ F (m, t).
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Volunteer Computing : two clusters using JSQ

Two volunteer clusters with JSQ.
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Push and pull strategies in server farms

The goal of our first example is to show how our framework can help the
study of discontinuities due to centralized decisions. We consider the
following model of a server farm, with a pulling server.

Nλ

1−p

1−p

... Np
LQF
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Push and pull strategies in server farms (II)

Now we consider the same farm with a pushing router.

JSQ

Nλ
1− q

q

1

1

...
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Drift set

Fi (s) = λ(1− q)(si−1 − si )− (1− p)(si − si+1) + uiq − vip

with ∣∣∣∣∣∣
ui = 0 if si−1 < 1;
vi = 0 if si+1 > 0;∑

i≥0 ui =
∑

i≥0 vi = 1

the differential inclusion ṡ ∈ F (s) has a unique solution, that is a global
attractor of all trajectories.
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Performance measures
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(a) Average waiting time as a function of
λ.
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(b) Probability si for a server to have i
jobs or more.

Figure: Average response time and steady state distribution of occupancy for the
model of parallel servers of Figure ??. The four curves corresponds to different
parameters: in blue, p = q = q (N independent M/M/1 queues); in black:
p = 0.05, q = 0; in green: p = 0, q = 0.05; in red: p = q = .02.

Figure shows the average number of jobs per server as a function of the
load λ. As pointed out in Tsitsiklis 2011, when q = 0, the average number
of jobs goes from λ/(1− λ) to O(log(1/(1− λ)) which provides a large
gain in term of waiting time, even for p = 5%. When p = 0 and B =∞,
si = (λ(1− q))i−1. Thus, the average number of jobs is λ/(1− λ(1− q))
which is bounded by 1/q regardless of the load. This shows that when the
load is high, a judicious routing of the packets decreases the average
response time more efficiently than adding a centralized server.
Figure reports the distribution si as a function of i for a highly loaded
system λ = .99. When p > 0 and B =∞, the constant β of Eq.(??) is
negative and there exists i∗ = blogλ 1−q

1−p
(−β/α)c such that the probability

for a server to have more than i∗ jobs goes to zero as N goes to infinity.
For example, Figure shows that when λ = .99 and (p, q) = (.05, 0) (or
p = q = 2%), then i∗ = 40 (or i∗ = 41): there are almost no queues with
more than i∗ jobs. However, when p = 0, β ≥ 0 and si > 0 for all i . This
shows that to avoid big queues, adding a centralized server helps more.
Both figures show that adding both a centralized server and a judicious
routing, even for the very small values p = q = 2% allows one to get the
better of the two worlds: a low response time and a tail distribution equal
to zero.
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Fluid limits

Let X (.) be a discrete time Markov chain in Rd . For any y0 ∈ Rd and
N > 0, we consider the rescaled process Ȳ N for which the state has been
scaled by a factor 1/N and the time accelerated by N:

Ȳ N(t) =
1

N
X (bN · tc) Ȳ N(0) =

1

N
X (0) = y0.

the fluid limits of Y N is the set E if for all T > 0:

inf
y∈E

sup
0≤t≤T

∥∥∥Ȳ N(t)− y(t)
∥∥∥ P−→ 0.

Proposition

Assume that the drift f (x) = E (X (t + 1)− X (t) | X (t) = x) is bounded
and that limR→∞ E(‖X (t + 1)− X (t)‖1‖X (t+1)−X (t)‖≥R | X (t) = x) = 0.
Let F be a set-valued function defined as

F (y)
def
= conv

(
acc

N→∞
f (N · yN) with lim

N→∞
yN = y

)
.

Then, the set of solutions ST (y0) of the differential inclusion ẏ ∈ F (y)
starting in x contains the fluid limits of Y N (in the sense of (5)).
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Stability and Harris recurrence

ẏ ∈ F (y) is stable if there exists T > 0 and ρ < 1 such that:

For any y solution of ẏ ∈ F (y) with ‖y(0)‖ = 1 : inf
0≤t≤T

‖y(t)‖ ≤ ρ < 1.

A discrete time Markov chain X on Rd is said to be ϕ-irreducible if there
exists a σ-finite measure ϕ such that for any set A ⊂ Rd , ϕ(A) > 0
implies

∑
k≥0 P(X (k) ∈ A | X (0) = x) > 0. Moreover, a set A ⊂ Rd is

said to be petite if for some fixed probability measure a on Z+ and some
non-trivial measure ν on Rd , ν(B) ≤

∑
k≥0 P(X (k) ∈ B | X (0) = x)a(k)

for all x ∈ A and B ⊂ Rd . Finally, X is said to be positive Harris recurrent
if X has a unique stationary probability distribution π and Pk(x , .)
converges to π. In particular, if the state space of X is included in Zd and
if X is irreducible and aperiodic, then X is ϕ-irreducible and all compact
sets are petite.
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Stability and Harris recurrence (II)

Theorem

Assume that X is an aperiodic, ϕ-irreducible Markov chain such that all
compact sets are petite. Assume that the drift
f (x) = E (X (t + 1)− X (t) | X (t) = x) is bounded and that
limR→∞ E(‖X (t + 1)− X (t)‖1X (t+1)−X (t)≥R | X (t) = x) = 0 and let F
be defined as in Equation (1):

F (y)
def
= conv

(
acc

N→∞
f (N · yN) for all {yN}N∈N s.t. lim

N→∞
yN = y

)
.

If the differential inclusion ẏ ∈ F (y) is stable in the sense of Equation (6),
then X is positive Harris recurrent.
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Opportunistic scheduling policies in wireless
networks

There are K classes of users. At time slot t, Ak(t) new users of type k
arrive in the system. The Ak(t) are i.i.d. with E(Ak(t)) = λk .
The condition of the channel is varying over time and at time slot t, a user
of type k has condition i ∈ {1 . . . Ik} with probability qk,i 6= 0. At each
time slot, a server observes the channel condition of all users and chooses
to serve one user. If this user is of type k and has a channel condition i ,
this user leaves the system with probability µk,i .
Let us consider the following policy (called “Best Rate” policy in

if there are n users x1 . . . xn of class k1 ≤ · · · ≤ kn that are in their
best channel condition, serve the user with the smallest class (i.e.
user x1).

if there are no users in their best channel condition, serve a user at
random.
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Opportunistic scheduling policies in wireless
networks (II)

Let us compute the set-value function F at point y = (0, . . . 0, y`, . . . yK ),

with y` > 0. Let pN
i = (1− qi ,1)Ny

N
i be the probability that there are no

user of class i in its best state.
The value of the drift at NyN is equal to

f N(NyN) = (1− pN
1 )~u1 + · · ·+ pN

1 . . . p
N
`−1(1− pN

` )~u` + o(1).

F is the following set-valued function:

F (y) =

{
~u1 if x1 > 0
conv(~u1, . . . , ~uk) if y1 = · · · = yk−1 = 0, yk > 0.

However, notice that when yN
i goes to zero as N goes to infinity, the

sequence pN
i does not necessarily converge as N goes to infinity. This

implies that the rescaled drift f N does not converge to any single-valued
function (continuous or not) in that case.
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Opportunistic scheduling policies in wireless
networks (III)

The condition
∑

k λk/µk < 1 implies that the unique solution of the DI
goes to 0 in finite time.

queue 1 is empty

(a) The set-valued drift for
x1 = 0 is the set of vectors
displayed by the dashed line.

size of queue 1: x1

si
ze

of
q

u
eu

e
2:

x 2

(b) Unique solution of the differential inclusion.
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