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Overview

The dynamical systems in this talk are mainly motivated by processes
in Game Theory, modelling the learning behaviour of players when
repeatedly playing a game.
Mathematically, the systems of interest are nonsmooth flows on S3,
with global sections whose first return maps are

1 continuous,
2 piecewise affine,
3 area-preserving.

Among other interesting features of this class of nonsmooth dynamics
we are particularly interested in different forms of coexistence of
quasi-periodic and stochastic behaviour.

G.Ostrovski (University of Warwick) Arnold Diffusion in Fictitious Play Dynamics May 9, 2012 2 / 30



Overview

The dynamical systems in this talk are mainly motivated by processes
in Game Theory, modelling the learning behaviour of players when
repeatedly playing a game.

Mathematically, the systems of interest are nonsmooth flows on S3,
with global sections whose first return maps are

1 continuous,
2 piecewise affine,
3 area-preserving.

Among other interesting features of this class of nonsmooth dynamics
we are particularly interested in different forms of coexistence of
quasi-periodic and stochastic behaviour.

G.Ostrovski (University of Warwick) Arnold Diffusion in Fictitious Play Dynamics May 9, 2012 2 / 30



Overview

The dynamical systems in this talk are mainly motivated by processes
in Game Theory, modelling the learning behaviour of players when
repeatedly playing a game.
Mathematically, the systems of interest are nonsmooth flows on S3,
with global sections whose first return maps are

1 continuous,
2 piecewise affine,
3 area-preserving.

Among other interesting features of this class of nonsmooth dynamics
we are particularly interested in different forms of coexistence of
quasi-periodic and stochastic behaviour.

G.Ostrovski (University of Warwick) Arnold Diffusion in Fictitious Play Dynamics May 9, 2012 2 / 30



Overview

The dynamical systems in this talk are mainly motivated by processes
in Game Theory, modelling the learning behaviour of players when
repeatedly playing a game.
Mathematically, the systems of interest are nonsmooth flows on S3,
with global sections whose first return maps are

1 continuous,
2 piecewise affine,
3 area-preserving.

Among other interesting features of this class of nonsmooth dynamics
we are particularly interested in different forms of coexistence of
quasi-periodic and stochastic behaviour.

G.Ostrovski (University of Warwick) Arnold Diffusion in Fictitious Play Dynamics May 9, 2012 2 / 30



Overview

1 Static Games

2 Dynamics in Games: Fictitious Play

3 Fictitious Play in Zero-Sum Games

4 The Induced Flow on S3

5 Numerical Experiments

6 Model Maps

G.Ostrovski (University of Warwick) Arnold Diffusion in Fictitious Play Dynamics May 9, 2012 3 / 30



Overview

1 Static Games

2 Dynamics in Games: Fictitious Play

3 Fictitious Play in Zero-Sum Games

4 The Induced Flow on S3

5 Numerical Experiments

6 Model Maps

G.Ostrovski (University of Warwick) Arnold Diffusion in Fictitious Play Dynamics May 9, 2012 4 / 30



A Two-Player Game in Normal Form

Definition
A two-player normal form game consists of:

two players, say player 1 and player 2

for each player k = 1, 2, a space of pure strategies, Sk = {1, . . . , nk }

for each player k = 1, 2, a payoff-function

uk : S1 × S2 → R.

Player k chooses strategy sk without knowing his opponent’s choice.
Then he receives his payoff uk (s1, s2).
Each player’s aim is to maximize his own payoff.
Today we assume n = n1 = n2.

The payoff functions can be represented by a bimatrix (A ,B), A ,B ∈ Rn×n:

u1(i, j) = Aij = eT
i Aej and u2(i, j) = Bij = eT

i Bej .
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The Mixed Extension of a Game

Idea: randomization instead of fixed strategy choice.

Definition
Space of player k ’s mixed strategies is set of probability distributions over
his pure strategies:

Σk = ∆(Sk ) = {x ∈ Rn
≥0 :
∑

xi = 1}

(pure strategy i implicitly identified with ei , the ith unit vector in Rn)

Geometrically: simplex spanned by n vertices e1, . . . , en

Convention: row vectors for player 1 and column vectors for player 2

Extended payoff functions ui : Σ1 × Σ2 → R

u1(x, y) = xAy and u2(x, y) = xBy

Expected payoff from randomizing with probability distributions x, y
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Best Response and Nash Equilibrium

Best Response Correspondences
Let BR1 : Σ2 → Σ1 and BR2 : Σ1 → Σ2 be given by

BR1(y) = {x ∈ Σ1 : u1(x, y) ≥ u1(x′, y) ∀x′ ∈ Σ1},

BR2(x) = {y ∈ Σ2 : u2(x, y) ≥ u2(x, y′) ∀y′ ∈ Σ2}.

Generically single-valued except on a finite set of hyperplanes

Definition
A Nash Equilibrium of a two-player game is a mixed strategy profile
(x, y) ∈ Σ1 × Σ2, such that

x ∈ BR1(y) and y ∈ BR2(x).

Interpretation: neither player benefits from unilateral deviation.
Nash (1950): Every game has at least one Nash Equilibrium.
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An Example: Rock-Paper-Scissors

Let 1 = ‘rock’, 2 = ‘paper’, 3 = ‘scissors’. The game is given by (A ,B):

A =

0 0 1
1 0 0
0 1 0

 , B =

0 1 0
0 0 1
1 0 0

 .
The space of mixed strategies can be visualized like this:

Player 1 Player 2

11 22

3 3

BR2 = 1

BR2 = 2 BR2 = 3 BR1 = 2

BR1 = 1

BR1 = 3
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Fictitious Play

Instead of playing a game once (‘one-shot game’), the players can play it
repeatedly (discrete time) or continuously (continuous time).

Question: How can players learn from past play to improve their
future play?

Possible Answer: Always play a best response to the average past
play of your opponent.

Definition
Let (xn, yn) denote the (pure) strategies played at time n ∈ N. Then
discrete-time Fictitious Play is given by the rule

xn+1 ∈ BR1

1n
n∑

i=1

yi

 , yn+1 ∈ BR2

1n
n∑

i=1

xi

 .
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Fictitious Play

We are more interested in a continuous-time process:

Let x(t) and y(t) be the strategies played at time t > 0.

Denote the average play through time t by

p(t) =
1
t

∫ t

0
x(τ) dτ and q(t) =

1
t

∫ t

0
y(τ) dτ.

Assume x(t) ∈ BR1(q(t)) and y(t) ∈ BR2(p(t)) for all t > 0.

A short calculation shows:

(Continuous-time) Fictitious Play Dynamics (FP)

ṗ ∈
1
t

(BR1(q) − p) , q̇ ∈
1
t

(BR2(p) − q)
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Facts about Fictitious Play

Fictitious Play Dynamics
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Facts about Fictitious Play

Fictitious Play Dynamics

ṗ ∈
1
t

(BR1(q) − p) , q̇ ∈
1
t

(BR2(p) − q) (FP)

Solutions for any initial conditions exist for all times t ≥ 0 (by general
theory: BRupper semi-continuous, has closed convex sets as values).

Under genericity assumptions on (A ,B), (FP) defines a unique,
continuous flow for all t ≥ 0 for a set of initial conditions which has full
Lebesgue measure, is open and dense (van Strien et al., 2008).
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ṗ ∈
1
t

(BR1(q) − p) , q̇ ∈
1
t

(BR2(p) − q) (FP)

Solutions for any initial conditions exist for all times t ≥ 0 (by general
theory: BRupper semi-continuous, has closed convex sets as values).

Under genericity assumptions on (A ,B), (FP) defines a unique,
continuous flow for all t ≥ 0 for a set of initial conditions which has full
Lebesgue measure, is open and dense (van Strien et al., 2008).

G.Ostrovski (University of Warwick) Arnold Diffusion in Fictitious Play Dynamics May 9, 2012 12 / 30



Facts about Fictitious Play

Fictitious Play Dynamics

ṗ ∈
1
t

(BR1(q) − p) , q̇ ∈
1
t

(BR2(p) − q) (FP)

Nash Equilibria are equilibrium solutions for (FP). If a (FP)-orbit
converges to a point, this point is a Nash Equilibrium.

(FP)-orbits converge to the set of Nash Equilibria in various specific
classes of games, but generally this is not the case (example of
(3 × 3)-game with a stable limit cycle due to Shapley, 1964).

In a zero-sum game (A + B = 0), (FP)-orbits converge to the set of
Nash Equilibria (Brown, 1951). The converse statement is an open
conjecture (Hofbauer, 1995).
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ṗ ∈
1
t

(BR1(q) − p) , q̇ ∈
1
t

(BR2(p) − q) (FP)

G.Ostrovski (University of Warwick) Arnold Diffusion in Fictitious Play Dynamics May 9, 2012 12 / 30



Facts about Fictitious Play

Fictitious Play Dynamics
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Example piece of orbit:

1

2

3 1 3

2

BR2 = 3

BR2 = 1BR2 = 2

BR1 = 2

BR1 = 3BR1 = 1

Σ1 Σ2

Non-equilibrium solution trajectories consist of straight line segments.
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Studying the Zero-Sum Case

From now on we assume that

(A ,B) is a 3 × 3 zero-sum game, i.e. A + B = 0 (A ,B ∈ R3×3),

with unique Nash Equilibrium (EA ,EB) ∈ int(Σ1 × Σ2).

Theorem (van Strien, 2011)
In this setting (FP) induces a unique continuous flow on all of Σ1 × Σ2.
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Studying the Zero-Sum Case

There exists a special function H : Σ1 × Σ2 → R, such that

H is continuous and piecewise affine (pieces = best response regions)

H−1(c) is a topological 3-sphere centred at the Nash Equilibrium

H is a Lyapunov function for (FP) (Brown, 1951)

Let (A ,B) be zero-sum with unique Nash Equilibrium (EA ,EB). Then
1 H(p, q) ≥ 0 and H(p, q) = 0 if and only if (p, q) = (EA ,EB);
2 Ḣ = −H

t along solutions (p(t), q(t)) of (FP).

For A + B = 0, the motion defined by (FP) is a product of radial
motion towards the Nash Equilibrium and motion on H-level sets.

This induced flow on H−1(1) ≈ S3 is subject of our further interest.
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The Induced Flow on S3

φt flow of (FP) on Σ1 × Σ2

π : (Σ1 × Σ2) \ {(EA ,EB)} → H−1(1) radial projection along rays from
(EA ,EB)

Ψt the induced flow on H−1(1) ≈ S3, i.e. π maps orbits of φt to orbits of Ψt

Theorem (van Strien, 2011)
Ψt is a piecewise translation flow.

Ψt has no stationary points. In particular, no orbit of (FP) approaches
Nash Equilibrium along a well-defined direction.

Ψt is volume-preserving w.r.t. an appropriate volume form.
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An Example with Special Properties

A = −B =

1 0 β

β 1 0
0 β 1

 , β =

√
5 − 1
2

≈ 0.618 (golden mean)

The induced flow Ψt on H−1(1) ≈ S3 has a periodic orbit Γ (a hexagon),
and there exists a topological disc S ⊂ H−1(1) with ∂S = Γ, such that:

Every orbit intersects S infinitely many times (transversally); i.e., S is
a global section with well-defined first return map RS .

The first return time of z ∈ S tends to zero as z tends to ∂S = Γ.
RS can be extended continuously to ∂S by RS |∂S = id.

RS is piecewise affine and area-preserving.
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Types of Dynamics for Zero-Sum Games

For different zero-sum games, numerical experiments seem to suggest
several possible types of induced dynamics on S3. The following types
were (numerically) observed in (O., van Strien, 2011):

Completely ergodic type
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Types of Dynamics for Zero-Sum Games

Space decomposed into elliptic islands and ergodic regions

Remark (O., van Strien, 2011)
Quasi-periodic orbits in the elliptic regions exactly correspond to orbits
with periodic itinerary (players switch strategies in a cyclic way).
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Types of Dynamics for Zero-Sum Games

More complicated situation with coexistence of different
quasi-periodic islands and stochastic motion
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Types of Dynamics for Zero-Sum Games
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Types of Dynamics for Zero-Sum Games

The images indicate the occurence of ‘Arnold Diffusion’; coexistence
of various families of islands of (quasi-)periodic motion (filled with
invariant circles), contained in regions of stochastic (space-filling)
motion.
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Properties of a Special First Return Map

As we have seen (in an example), the induced flow Ψt on H−1(1) ≈ S3 has
a global section S, which is a two dimensional topological disc. Its first
return map RS has rather special properties:

piecewise affine

continuous

area-preserving

RS |∂S = id

Trying to construct simple (non-trivial) examples of maps with these
properties shows that the properties are quite restrictive.
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A Model Map

P1

P2

P3

P4 Q2

Q4

Q3

Q1

The map Fθ for θ ∈ (0, π4 ] is defined by declaring:
1 Fθ = id on the boundary of the square
2 Fθ(Pi) = Qi for i = 1, . . . , 4
3 Fθ affine on each of the shown pieces

The map acts similar to a twist map. Intuitively, all points
approximately rotate counterclockwise with rotation number
decreasing to zero as points approach the boundary.
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Invariant curves

For many parameter values of θ, families of invariant circles consisting
of straight line segments and accumulating on the boundary can be
constructed explicitly. On these invariant circles, Fθ has rational
rotation number.
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Stochastic Regions
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Open Questions

Open questions:

Do invariant circles near the boundary exist for all θ? What is their
geometry? Can they have irrational rotation number?

What are the ergodic properties of Fθ restricted to ‘stochastic
regions’? Are there dense orbits?

What are the possible itineraries for quasi-periodic orbits?
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