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Overview

Main Objective:

Develop efficient and robust implementations of iterative regularization
methods for data assimilation in subsurface flow applications.

@ M. Iglesias
Iterative regularization for data assimilation in reservoir models. In preparation.

Key aspects of the proposed work:

@ Apply existing iterative regularization (IR) techniques
[Kaltenbacher, 2010] for the solution of inverse problems in
subsurface flow.

@ Use ideas from IR to develop stable RML and Kalman-based
ensemble methods that capture aspects of the posterior.

@ Synthetic experiments show substantial benefits in the robust
estimation of unknown geologic properties.
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Background of the proposed work

@ lterative regularization methods for history matching (joint with Clint
Dawson, UT Austin).

@ M. A. Iglesias and C. Dawson
The regularizing Levenberg-Marquardt scheme for history matching of petroleum
reservoirs, submitted to Computational Geosciences, http://arxiv.org/abs/1302.3501.
2013

@ Ensemble Kalman method for the solution of generic inverse problems
(joint with Kody Law (now KAUST) and Andrew Stuart (Warwick)).

@ M. Iglesias, K. Law and A.M. Stuart,
Ensemble Kalman methods for inverse problems. Inverse Problems. 29 (2013)
045001

@ Infinite-dimensional Bayesian framework for evaluating approximations
of the posterior (joint with Kody Law (now KAUST) and Andrew Stuart
(Warwick)).

@ M. Iglesias, K. Law and A.M. Stuart,
Evaluating Gaussian approximations for data assimilation in reservoir models
applications. to appear in Computational Geosciences, 2013.
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Standard approach for history matching
Compute uyap = argmingex J(u)

_ 1. _
J=SlIFVRY = G + 511672 (u - )k

N —

where
@ u is the unknown (geologic properties).
@ U priori mean of the unknown.
@ C prior covariance of the unknown.
@ G(u) is the model predictions of production data (flow rates, BHP).
@ y" production data corrupted by noise.

@ [ covariance of the observational noise.

In the Bayesian framework: upap maximizes the posterior
p(u) < exp(—J(u))) (i.e. MAP estimator)
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Standard approach for history matching

Deterministic framework: Tikhonov

J(u, y") = HF YRy — G + 5 HC V2 u -k

regularization

In theory we have stability
It can be shown that if yx — y" then

ux = argmin J(u, y*) — u = argmin J(u, y")
ueX ueX

...but in practice

The stability in the computation of arg min,cx J(u, y) depends on the
selection of I' and C. Typical choices may lead to lack of robustness
and even numerical instabilities.

v
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Proposed approach: lterative regularization (IR)

General idea
Compute stable and robust approximations

uip = argmin &(u, y") = argmin \|F 12(ym — G(u))|3

Enforcing geologic constraints

Prior mean is used to initialize the IR approach (i.e. ug = ).

Prior error covariance is used in the regularization applied in the inner
loop of the algorithm (via penalization of the increment in the norm
1C7172 - 1x).

Iterative regularization methods have been widely used in the solution
of inverse problems [Hanke 1997, Kaltenbacher, 2010].

We extend this ideas to RML and ensemble Kalman methods where
the aim is to capture aspects of the posterior.
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Numerical Instabilities of standard approaches for minimizing
J(u,y") = SIFR(y" = G)If + IICT2(u - D)lI%

Example: Gauss-Newton (GN) vy, 1 = U + kmAu
[DG*(um)l”1 DG(um) + C~ 1| Au
= DG* (") "ly" — G(Um)) — C" (U — 1))

It is well known that GN for history matching results in “poor estimates”.

v

DG*(um)T ' DG(up) + C~ this is ill-conditioned for the typical choices
of 'and C.

Partial fix: Levenberg-Marquardt
[Dc;*(um)r—1 DG(um) + C~' + AmC~'| Au
= DG*(u")'[y" = G(um)) — C~"(um — 1))

for some Ay > 0.
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Standard Levenberg-Marquardt

The LM parameter

Ao = max{/J(up)/ Ny, J(Up)/ Ny}, where Ny is the number of
observations.

m+1 10Am  if J(Umst) > J(Um)

The LM stopping criteria

|J(Umi1) — J(Unm)|

[lUm-+1 — uml[x
J(Umy1)

[|Um 11 x

€0, < €1
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1

Failure of standard LM (without further regularization)

Example of how some choices of I' and C may lead to instabilities on
the minimizer of

Ju,y") =5 W1W Gwmw+\w1ﬂu o)llx
Let us fix I' (consistent with our synthetic data) and parameterize C as
C=x"1Co

with Cy fixed (spherical covariance function).

Remark

The parameter x enables us to control the size of the prior term
relative to the data misfit

— K — _
J(,y") = 2Ty = G+ alICo - )

N —
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Synthetic experiment
Model: Oil-water incompressible reservoir. Injection wells subject to water

injection. Production wells subject to total flow rates.
Measure variables: BHP at the injectors and oil/water rates at the producers.

Well locations
=ES - P6 = R4
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True is generated from N(u, Cp).
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Lack of stability with small x’'s

J(u,y") = JIF12(pm — G))II2 + 511G, 2 (u - 1)|%

Well locations
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Lack of stability with small «'s

---k=10 ---x=10

1 —x=1 H —x=1
_1 1.8 1
== k=25x10 == k=25x10
oF —x= 10" —x= 10"
16

S

N

log-objective functional

5 10 5 10
iteration number iteration number

These criteria fail to provide “reasonable” estimates.

|J(Ums1) — J(Um)| o l|Ums+1 — Uml|x
J(Um1) - [ Um1llx

< €4
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History matching with small «'s
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Standard LM without further regularization

(C = k~1Cp). Small k= lack of stability. Large » =lack of fidelity.

k=1 k=2.5x107" x=10""

P

k=10 k=5x 10° k=5x 10°

Standard LM results could be improved if further regularization methods (e.g.
TSVD) is applied.
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lterative regularization (Regularizing LM)

up = argminyex 3||F~"/2(y" — G(u))|[2. Robust under the selection of
k. Cis used in the inner loop for regularization.

Kk=1

x=10

(Warwick University)

k=2.5x 10"

Iterative regularization for data assimilation

k=10""

k=5x 10°

Marco Iglesias

17/38



Iterative regularization
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lterative regularization

We want to compute stable approximations to the minimizer of

o(u,y") = EIIr 2(y" — G)I%

We are interested in nonlinear IP so we do it iteratively
Compute v} = Auf, + up, such that Aug, minimizes

J™(w) = [T (v~ Gulp) — DG(uw) 3

The linearized IP is also ill-posed.
Regularizing LM of Hanke [Hanke, 1997, 2010]
Compute Auh(am) = argmin,c xJ},(W, am), where

1 -
Jim(w, am) = ||r VR(y" — G(up) — DG(Up)w)|IF + Zoml|C2w]lk
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Key aspects of the Regularizing LM

Regularizing LM of Hanke
Compute Auh(am) = argmin,c xJ},(W, am), where

1, 1 _
(W, am) = 5[IF2(y" = G(up) — DGURW)IIF + Saml|CV 2wk

v

Regularizing LM parameter (discrepancy principle)
IT=12(y" — G(um) — DG(um)Aup(am)II§ > p?|IT"2(y" — Glum))I§

for some p € (0,1).

Regularizing LM stopping criteria (discrepancy principle)

IFV20y7 — Gl )y < 76 < |IT72(y" — Gl

for 7 > 1/p where § = ||[[~1/25||y is the noise level
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Iterative regularization

Numerical Experiments. lterative regularization (Regularizing LM)

up = argminyex 3||F~"/2(y" — G(u))|[2. Robust under the selection of
K.

k=2.5x 107" k=10""

k=5x 10° k=5x 10°
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Small and big ~'s
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Iterative regularizati

History matching with all <’s
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Approximating the Bayesian posterior

Outline

0 Approximating the Bayesian posterior
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Applications of IR for approximating the Bayesian posterior

Recall the Randomized Maximum Likelihood (RML) method

i) = argmin { S| 2(/0) — G)I + HlIc2(w - w0}

Randomizing IR

oY) = argmin {%HI”1/2(}/U) - G(U))H%’}

with initial guess ug) = ul) and (enforcing geologic constraint C as before).

v

We assess the proposed approach in terms of capturing the Bayesian
posterior. We use an MCMC method for functions that scales well with
respect to the parameter space and enable us to develop Benchmarks
of moderate size [lglesias/Law/Stuart, 2013].
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Approximating the Bayesian posterior

Approximating the posterior. Case 1.

Here RML is computed with the standard LM of the previous section.

IR

MCMC MAP RML

P05 _ oPo® 5
‘ Method ‘ ”‘”luposﬁ’” ”Hamsu” ‘ cost
MCMC 0.000 0.000 5.0 x 10’ FM
MAP 0.396 0.192 n
RML (N, = 100) 0.401 0.419 100n
IR (N. = 100) 0.318 0.384 100n

FM=forward model evaluations; n=cost of computing the MAP
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Approximating the Bayesian posterior

Approximating the posterior. Case 2 (more measurements in time).

MCMC

‘ Method "T’l’:p;“l’” ”‘ﬂ’:p;ﬁ” cost ‘
MCMC 0.000 0.000 5.0 x 10’ FM
MAP 0.553 0.2338 n
RML (N, = 100) 0.453 0.855 100n
IR (N = 100) 0.326 0.519 100n

FM=forward model evaluations; n=cost of computing the MAP
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Approximating the Bayesian posterior

Approximating the posterior. Case 2 (more measurements in time).
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Regularizing ensemble Kalman-based method
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Regularizing ensemble Kalman-based method

Regularizing ensemble Kalman-based method

Inverse problem
Fin u given y" = G(u) +n

Artificial Dynamics via state augmentation

Define
z= ( ll/JV ) , =(2) = ( Gélu) > ) Zni1 = =(25).

and then data is, for H = (0, /),

Yn=Hzp+nn where 7, ~ N(0,T).

State Estimation

Try to estimate z, given y, = y" + &n, & ~ N(O,T) (perturbed
observations).

v
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Regularizing ensemble Kalman-based method

A Regularizing Kalman method

Prediction Step

201 ==@?), jefr- ) J
Compute ensemble mean and covariance zh =5, 20
Coat = § 4 (@0 = 2h, )20 = 20,407
Analysis Step

_ f
20 = argmin, (311" /2(yncr — HRIP + $11CFy (2 — 28I

203 = (HCprHT + ol) (v — HZY™), je {1, J}.

Perturbed Observations Data
Yh=Yn+ih, i~ N(O.T)
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Regularizing ensemble Kalman-based method

A Regularizing Kalman method
Analysis Step
209 = axgmin, (3 17="/2(ymes — H2)IP + 511G (2~ 28D)IP)

298 — (HCp HT + o)~ (yf — HZY), je {1, J}

n+1 -

Regularizing LM parameter
IT=12(y" — Hzg )y = pl T V2(y" = Hzhh)lly

for some p € (0,1).

Regularizing LM stopping criteria
Inspired by iterative regularization methods, we require

IE-12007 = Glumst)lly < 7IT~2nlly < IF~2(0" — G(un))lly

for 7 > 1/p where u, = H" Z2.
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Regularizing ensemble Kalman-based method

Performance of the regularizing EnKF

e=relative error with respect to the truth.

Truth

ozl | 41 2t | g
L% % #
o an 1 s
T
x (km)

unregularized ES (N_=100) unregularized ES (N_=1000) regularized ES (N_=100)
e e e

e =174% e=91% e=78%
cost = 100FM cost = 1000FM cost = 1000FM
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Regularizing ensemble Kalman-based method

Approximating the posterior

MCMC

05— SPoS
| Method | o | Ui cost
MCMC 0.000 0.000 5.0 x 10” FM
MAP 0.553 0.233 n
EnKF (Ne = 100) 0.540 0.510 1000FM
IR (Ne = 100) 0.326 0.487 100n

M=forward model evaluations; n=cost of computing the MAP
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Approximating the posterior with the regularizing EnKF

Well: P1 Well: P2
—IR —IR J
- --EnKF sof| - - ~EnKF i
- - meme - - MCMC '
— Prior sof| ——Prior ;
>
£
g 40|
Z
B
‘ g
| I
| 2
B \
\ o
01 02 03 f’ = 08 ng\ 1 02 03 05 ns’iiin 1
Final time water rate Final time water rate
Well: P6 Well: P8
—IR
. *f|- - -EnKF
- -Meme
— Prior
Z2 ¢
£ 3
$ 3
EX z
H L
K] K]
Lo 25

(Warwick University)

Iterative regularization for data assimilation

Marco Iglesias

35/38



Regularizing ensemble Kalman-based method

Summary

@ lterative regularization provides robust algorithms to compute
approximate solutions to inverse problems in reservoir modeling.

@ Ideas of IR methods can be extended to ensemble-based
techniques that can be use to approximate the Bayesian posterior.

@ In particular, a regularizing ES based on IR ideas has been
proposed and synthetic experiments indicate this method is a
robust derivative-free iterative solver for the solution of nonlinear
ill-posed inverse problems.

@ Further investigations are required to establish the mathematical
properties of these approximations.
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Regularizing ensemble Kalman-based method
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Regularizing ensemble Kalman-based method
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