# Sparsity in Bayesian Inversion of Parametric Operator Equations 

## Christoph Schwab

## joint with Claudia Schillings

Ackn.: A. Cohen, R. DeVore, A. Stuart

June 20, 2013
EH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

## Outline

(9) Bayesian Inversion of Parametric Operator Equations
(2) Sparsity of Parametric Forward Solution
(3) Sparsity of the Posterior Density

4 Sparse Quadrature
(5) Numerical Results

- Parametric Parabolic Problem

6 Summary

## Bayesian Inverse Problems (Stuart 2010)

Goal: Expected response in Qol over all uncertain parameters $u \in X$, conditional on noisy data $\delta$

$$
\delta=\mathcal{G}(u)+\eta, \quad \mathcal{G}=\mathcal{O} \circ G
$$

- $X$ (separable Banach) space of uncertainties
- $G: X \mapsto \mathcal{X}$ uncertainty-to-solution map
- $\mathcal{O}: \mathcal{X} \mapsto \mathbb{R}^{K}$ observation operator, $\mathcal{O} \in\left(\mathcal{X}^{\prime}\right)^{K}$
- $\mathcal{G}: X \mapsto \mathbb{R}^{K}$ uncertainty-to-observation map, $\mathcal{G}=\mathcal{O} \circ G$
- $\eta \in \mathbb{R}^{K}$ additive observational noise ( $\eta \sim \mathcal{N}(0, \Gamma)$ ), noise (co)variance $\Gamma>0$.


## Linear Operator Equation with operator uncertainty

$$
\text { Given } f \in \mathcal{Y}^{\prime} \text { and } u \in X, \text { find } q \in \mathcal{X}: \quad A(u ; q)=f
$$

with $A \in \mathcal{L}\left(\mathcal{X}, \mathcal{Y}^{\prime}\right), \mathcal{X}, \mathcal{Y}$ reflexive Banach spaces, $\mathfrak{a}(v, w):=\mathcal{Y}\langle w, A v\rangle_{\mathcal{Y}^{\prime}} \forall v \in \mathcal{X}, w \in \mathcal{Y}$ induced bilinear form; $q(u)=G(u):=(A(u ; q))^{-1} f, \quad \mathcal{G}(u):=\mathcal{O}(G(u))$

## Bayesian Inverse Problems (Stuart 2010)

Goal: Expected response in Qol over all uncertain parameters $u \in X$, conditional on noisy data $\delta$

$$
\delta=\mathcal{G}(u)+\eta, \quad \mathcal{G}=\mathcal{O} \circ G
$$

- $X$ (separable Banach) space of uncertainties
- $G: X \mapsto \mathcal{X}$ uncertainty-to-solution map
- $\mathcal{O}: \mathcal{X} \mapsto \mathbb{R}^{K}$ observation operator, $\mathcal{O} \in\left(\mathcal{X}^{\prime}\right)^{K}$
- $\mathcal{G}: X \mapsto \mathbb{R}^{K}$ uncertainty-to-observation map, $\mathcal{G}=\mathcal{O} \circ G$
- $\eta \in \mathbb{R}^{K}$ additive observational noise $(\eta \sim \mathcal{N}(0, \Gamma)$ ), noise (co)variance $\Gamma>0$.

Bayes LSQ potential $\Phi_{\Gamma}: X \times \mathbb{R}^{K} \rightarrow \mathbb{R}$

$$
\Phi_{\Gamma}(u ; \delta):=\frac{1}{2}\left((\delta-\mathcal{G}(u))^{\top} \Gamma^{-1}(\delta-\mathcal{G}(u))\right)
$$

## Bayesian Inverse Problems (Stuart 2010)

Bayes' Theorem:

- Expected value of Qol $\phi(u)$ w.r. to posterior measure $\mu^{\delta}$, conditional on given data $\delta$

$$
\mathbb{E}^{\mu^{\delta}}[\phi]=\frac{1}{Z_{\Gamma}} \int_{u \in X} \exp \left(-\Phi_{\Gamma}(u ; \delta)\right) \phi(u) d \mu_{0}(u)
$$

Normalization constant $Z_{\Gamma}=\mathbb{E}^{\mu_{0}}\left[\exp \left(-\Phi_{\Gamma}(u ; \delta)\right)\right]$.

- $\mu^{\delta}$-expectation over all uncertainties $u \in X$
- Standard Approach: sampling (w.r. to unknown measure $\mu^{\delta}$ !) MCMC; Rate $\sim \#(\text { PDEsolves })^{-1 / 2}$

Present work: reformulation of $\mu^{\delta}$-expectation over all $u \in X$ as an infinite dimensional, deterministic quadrature problem; sparsity of integrands; adaptive Smolyak; massively parallel implementation.

## Bayesian Inverse Problems (Stuart 2010)

Parametrization of uncertainty $u \in X$ (eg. KL, MRA, ...)

$$
u=u(\boldsymbol{y}):=\langle u\rangle+\sum_{j \in \mathbb{J}} y_{j} \psi_{j} \in X, \quad \boldsymbol{y}=\left(y_{j}\right)_{j \in \mathbb{J}} \in U
$$

- $y=\left(y_{j}\right)_{j \in J}$ i.i.d sequence of real-valued random variables $y_{j} \sim \mathcal{U}(-1,1)$
- $\langle u\rangle, \psi_{j} \in X, \quad b_{j}:=\left\|\psi_{j}\right\|_{X}, \quad\left(b_{j}\right)_{j \geq 1} \in \ell^{1}(\mathbb{J})$,
- $\mathbb{J}$ finite $(\mathbb{J}=\{1,2, \ldots, J\})$ or countably infinite $(\mathbb{J}=\mathbb{N})$ index set

Bayesian prior probability measure on uncertain parameters $y$

$$
\mu_{0}:=\bigotimes_{j \in \mathbb{J}} \pi_{j}, \quad \text { non-gaussian, eg. uniform: } \pi_{j}=\frac{1}{2} \lambda_{1}
$$

- $(U, \mathcal{B})=\left([-1,1]^{J}, \otimes_{j \in \mathcal{J}} \mathcal{B}^{1}[-1,1]\right)$ measurable space


## $(p, \varepsilon)$ Analyticity (Chkifa, Cohen, DeVore \& CS 2012)

$(p, \varepsilon): 1$ (uniform well-posedness)
For each $\boldsymbol{y} \in U$, there exists a unique realization $u(\boldsymbol{y}) \in X$ and a unique solution $q(\boldsymbol{y}) \in \mathcal{X}$ of the forward problem. This solution satisfies the a-priori estimate

$$
\forall \boldsymbol{y} \in U: \quad\|q(\boldsymbol{y})\|_{\mathcal{X}} \leq C_{0}(\boldsymbol{y}),
$$

where $U \ni \boldsymbol{y} \mapsto C_{0}(\boldsymbol{y}) \in L^{1}\left(U, \mu_{0}\right)$.

## $(p, \varepsilon): 2$ (holomorphy)

There exist $0 \leq p \leq 1$ and $b=\left(b_{j}\right)_{j \in \mathrm{~J}} \in \ell^{p}(\mathbb{J})$ such that for $0<\varepsilon \leq 1$, there exist $0<C_{\varepsilon}<\infty$ and $\rho=\left(\rho_{j}\right)_{j \in \mathrm{~J}}, \rho_{j}>1$ such that

$$
\sum_{j \in \mathrm{~J}}\left(\rho_{j}-1\right) b_{j} \leq \varepsilon,
$$

and $U \ni \boldsymbol{y} \mapsto q(\boldsymbol{y}) \in \mathcal{X}$ admits holomorphic extension to $\mathcal{E}_{\rho}:=\prod_{j \in \mathrm{~J}} \mathcal{E}_{\rho_{j}} \subset \mathbb{C}^{\mathbb{J}}$

$$
\forall z \in \mathcal{E}_{\rho}: \quad\|q(z)\|_{\mathcal{X}} \leq C_{\varepsilon} .
$$

## $(p, \varepsilon)$-Analyticity $\Longrightarrow$ Sparsity

## Theorem (Sparsity)(Chkifa, Cohen, DeVore \& CS)

Assume $q(\boldsymbol{y})=G(u(\boldsymbol{y}))$ is $(p, \varepsilon)$-analytic. Then

$$
\forall \boldsymbol{y} \in U: \quad q(\boldsymbol{y})=\sum q_{\nu}^{P} \mathcal{P}_{\nu}(\boldsymbol{y})
$$

with unconditional convergence in $L^{\infty}\left(U, \mu_{0} ; \stackrel{\mathcal{F})}{ }\right.$, where

$$
\begin{array}{r}
\mathcal{P}_{\nu}(\boldsymbol{y}):=\bigotimes_{j \geq 1} P_{\nu_{j}}\left(y_{j}\right) \quad \text { (Tensor Legendre Polynomials) } \\
\nu \in \mathcal{F}:=(\mathbb{J} \cup\{0\})_{\text {fnite }}^{\mathbb{N}}, P_{k}(1)=1,\left\|P_{k}\right\|_{L^{\infty}(-1,1)}=1, \quad k=0,1, \ldots
\end{array}
$$

- There exists sequence of nested, monotone $\Lambda_{N}^{P} \subset \mathcal{F}$ with $\#\left(\Lambda_{N}^{P}\right) \leq N$ such that

$$
\sup _{\boldsymbol{y} \in U}\left\|q(\boldsymbol{y})-\sum_{\nu \in \Lambda_{N}^{P}} q_{\nu}^{P} \mathcal{P}_{\nu}(\boldsymbol{y})\right\|_{\mathcal{X}} \leq C(p, \boldsymbol{q}) N^{-(1 / p-1)}
$$

## Bayesian Inverse Problem

## Bayes' Theorem (parametric; CS \& A.M. Stuart 2010)

Assume $\left.\mathcal{G}(u)\right|_{u=\langle u\rangle+\sum_{j \in \mathrm{~J}} y_{j} \psi_{j}}: U \mapsto \mathbb{R}$ bounded and continuous.
Then $\mu^{\delta}$ is a.c. with respect to $\mu_{0}$ :

$$
\frac{d \mu^{\delta}}{d \mu_{0}}(\boldsymbol{y})=\frac{1}{Z_{\Gamma}} \Theta_{\Gamma}(\boldsymbol{y})
$$

with posterior density $\Theta_{\Gamma}$ given by

$$
\Theta_{\Gamma}(\boldsymbol{y})=\left.\exp \left(-\Phi_{\Gamma}(u ; \delta)\right)\right|_{u=\langle u\rangle+\sum_{j \in \mathrm{~J}} y_{j} \psi_{j}}, \quad \boldsymbol{y} \in U
$$

and normalization constant

$$
Z_{\Gamma}:=\int_{U} \Theta_{\Gamma}(\boldsymbol{y}) d \mu_{0}(\boldsymbol{y})
$$

## Bayesian Inverse Problem

Expectation of Quantity of Interest (Qol) $\phi: X \rightarrow S$

$$
\mathbb{E}^{\mu^{\delta}}[\phi(u)]=\left.\frac{1}{Z_{\Gamma}} \int_{U} \exp \left(-\Phi_{\Gamma}(u ; \delta)\right) \phi(u)\right|_{u=\langle u\rangle+\sum_{j \in \mathrm{~J}} y_{j} \psi_{j}} d \mu_{0}(\boldsymbol{y})=: \frac{Z_{\Gamma}^{\prime}}{Z_{\Gamma}}
$$

with $Z_{\Gamma}:=\int_{y \in U} \exp \left(-\frac{1}{2}\left((\delta-\mathcal{G}(u))^{\top} \Gamma^{-1}(\delta-\mathcal{G}(u))\right)\right) d \mu_{0}(\boldsymbol{y}), \quad \Gamma>0$.

- Reformulation of the forward problem with uncertain, distributed input parameter $u \in X$ as infinite-dimensional, parametric-deterministic problem
- Parametric posterior density $\Theta_{\Gamma}(\boldsymbol{y})$ of $\mu^{\delta}$ with respect to the (non-Gaussian) prior $\mu_{0}$
- Deterministic, adaptive quadrature for $Z_{\Gamma}^{\prime}$ and $Z_{\Gamma}$ to compute the posterior expectation of Qol, given data $\delta$
$\Rightarrow$ Efficient algorithm to approximate expectations conditional on given data with dimension-independent rates of convergence $>1 / 2$


## Sparsity of the Posterior Density

## Theorem (CI. Schillings and CS 2013)

Assume that the forward solution map $U \ni \boldsymbol{y} \mapsto q(\boldsymbol{y})$ is $(p, \varepsilon)$-analytic for some $0<p<1$ and $\varepsilon>0$.
Then the Bayesian posterior density $\Theta_{\Gamma}(\boldsymbol{y})$ is, as a function of the parameter $\boldsymbol{y}$, likewise $(p, \varepsilon)$-analytic and, therefore, $p$-sparse.

## Examples:

- affine-parametric, linear operator equations
- semilinear elliptic PDEs (Hansen \& CS; Math. Nachr. 2013)
- parametric initial value ODEs
(Hansen \& CS; Vietnam J. Math. 2013)
- elliptic multiscale problems (Hoang \& CS; Analysis and Applications 2012)


## $N$-term Approximation Rates

Theorem (CI. Schillings and CS 2013)
Assume that the uncertainty-to-observation map $\mathcal{G}(u(\boldsymbol{y})): U \mapsto \mathbb{R}^{K}$ is ( $p, \varepsilon$ )-analytic for some $0<p<1$.
Then exists a nested sequence $\left(\Lambda_{N}^{\Theta}\right)_{N \geq 1} \subset \mathcal{F}$ of monotone sets $\Lambda_{N}^{\Theta} \subset \mathcal{F}$ such that $\#\left(\Lambda_{N}^{\Theta}\right) \leq N$ and such that, for all $N$,

$$
\sup _{y \in U}\left\|\Theta_{\Gamma}(\boldsymbol{y})-\sum_{\nu \in \Lambda_{N}} \theta_{\nu} \mathcal{P}_{\nu}(\boldsymbol{y})\right\|_{\mathcal{X}} \leq C(\Gamma, p) N^{-s}, s:=\frac{1}{p}-1 .
$$

Evaluation of $\mathbb{E}^{\mu^{\delta}}[\phi]$ by Adaptive Smolyak quadrature algorithm with convergence rate $N^{-(1 / p-1)}$ ( $N=$ \# PDE solves). $\Lambda_{N}^{P}=$ ? Either direct construction from sets $\Lambda_{N}^{G}$ in adaptive sGFEM (CS \& Stuart (2010)), or b) adaptive Smolyak or ...

## Smolyak: Univariate Quadratures

Family of univariate quadratures (for coordinate measures)

$$
Q^{k}(\mathrm{~g})=\sum_{i=0}^{n_{k}} w_{i}^{k} \cdot g\left(z_{i}^{k}\right)
$$

with $\mathrm{g}:[-1,1] \mapsto \mathcal{S}$ for state space $\mathcal{S}$

- $\left(Q^{k}\right)_{k \geq 0}$ sequence of univariate quadrature formulas
- $\left(z_{j}^{k}\right)_{j=0}^{n_{k}} \subset[-1,1]$ with $z_{j}^{k} \in[-1,1], \forall j, k$ and $z_{0}^{k}=0, \forall k$ quadrature points
- $w_{j}^{k}, 0 \leq j \leq n_{k}, \forall k \in \mathbb{N}_{0}$ quadrature weights

Assumption
(i) $\left(I-Q^{k}\right)\left(v_{k}\right)=0, \quad \forall v_{k} \in \mathbb{S}_{k}:=\mathbb{P}_{k} \otimes \mathcal{S}, \mathbb{P}_{k}=\operatorname{span}\left\{y^{j}: j \in \mathbb{N}_{0}, j \leq k\right\}$ with $I\left(v_{k}\right)=\int_{[-1,1]} v_{k}(y) \lambda_{1}(d y)$
(ii) $w_{j}^{k}>0$,
$0 \leq j \leq n_{k}, \forall k \in \mathbb{N}_{0}$.

## Smolyak: Univariate Quadratures

Family of univariate quadratures (for coordinate measures)

$$
Q^{k}(\mathrm{~g})=\sum_{i=0}^{n_{k}} w_{i}^{k} \cdot g\left(z_{i}^{k}\right)
$$

with $\mathrm{g}:[-1,1] \mapsto \mathcal{S}$ for state space $\mathcal{S}$

- $\left(Q^{k}\right)_{k \geq 0}$ sequence of univariate quadrature formulas
- $\left(z_{j}^{k}\right)_{j=0}^{n_{k}} \subset[-1,1]$ with $z_{j}^{k} \in[-1,1], \forall j, k$ and $z_{0}^{k}=0, \forall k$ quadrature points
- $w_{j}^{k}, 0 \leq j \leq n_{k}, \forall k \in \mathbb{N}_{0}$ quadrature weights

Univariate quadrature difference operator

$$
\Delta_{j}=Q^{j}-Q^{j-1}, \quad j \geq 0
$$

with $Q^{-1}=0$ and $z_{0}^{0}=0, w_{0}^{0}=1$

## Smolyak: Univariate Quadratures

Family of univariate quadratures (for coordinate measures)

$$
Q^{k}(\mathrm{~g})=\sum_{i=0}^{n_{k}} w_{i}^{k} \cdot \mathrm{~g}\left(z_{i}^{k}\right)
$$

with $\mathrm{g}:[-1,1] \mapsto \mathcal{S}$ for state space $\mathcal{S}$

- $\left(Q^{k}\right)_{k \geq 0}$ sequence of univariate quadrature formulas
- $\left(z_{j}^{k}\right)_{j=0}^{n_{k}} \subset[-1,1]$ with $z_{j}^{k} \in[-1,1], \forall j, k$ and $z_{0}^{k}=0, \forall k$ quadrature points
- $w_{j}^{k}, 0 \leq j \leq n_{k}, \forall k \in \mathbb{N}_{0}$ quadrature weights

Univariate quadrature operator rewritten as telescoping sum

$$
Q^{k}=\sum_{j=0}^{k} \Delta_{j}
$$

with $\mathcal{Z}^{k}=\left\{z_{j}^{k}: 0 \leq j \leq n_{k}\right\} \subset[-1,1]$ set of points corresponding to $Q^{k}$

## Smolyak: Tensorization

Tensorized multivariate quadrature operators

$$
\mathcal{Q}_{\nu}=\bigotimes_{j \geq 1} Q^{\nu_{j}}, \quad \Delta_{\nu}=\bigotimes_{j \geq 1} \Delta_{\nu_{j}}
$$

with associated set of collocation points $\mathcal{Z}^{\nu}=\times_{j \geq 1} \mathcal{Z}^{\nu_{j}} \subset U$

- If $\nu=0_{\mathcal{F}}$, then $\Delta_{\nu} g=Q^{\nu} g=g\left(z_{0_{\mathcal{F}}}\right)=g\left(0_{\mathcal{F}}\right)$
- If $0_{\mathcal{F}} \neq \nu \in \mathcal{F}$, with $\hat{\nu}=\left(\nu_{j}\right)_{j \neq i}$

$$
Q^{\nu} g=Q^{\nu_{i}}\left(t \mapsto \bigotimes_{j \geq 1} Q^{\hat{\nu}_{j}} g_{t}\right), \quad i \in \mathbb{I}_{\nu}
$$

and

$$
\Delta_{\nu} g=\Delta_{\nu_{i}}\left(t \mapsto \bigotimes_{j \geq 1} \Delta_{\hat{\nu}_{j}} g_{t}\right), \quad i \in \mathbb{I}_{\nu},
$$

for $g \in \mathcal{Z}, g_{t}$ is the function defined on $\mathcal{Z}^{\mathbb{N}}$ by
$g_{t}(\hat{y})=g(y), y=\left(\ldots, y_{i-1}, t, y_{i+1}, \ldots\right), i>1$ and $y=\left(t, y_{2}, \ldots\right), i=1$

## Sparse Smolyak Quadrature Operator

For any finite monotone set $\Lambda \subset \mathcal{F}, Q_{\Lambda}$ is defined by

$$
\mathcal{Q}_{\Lambda}=\sum_{\nu \in \Lambda} \Delta_{\nu}=\sum_{\nu \in \Lambda} \bigotimes_{j \geq 1} \Delta_{\nu_{j}}
$$

with associated Smolyak grid $\mathcal{Z}_{\Lambda}=\cup_{\nu \in \Lambda} \mathcal{Z}^{\nu}$

## Theorem (CI. Schillings and CS 2013)

For any finite monotone index set $\Lambda_{N} \subset \mathcal{F}$, the sparse quadrature $\mathcal{Q}_{\Lambda_{N}}$ is exact for any polynomial $g \in \mathbb{P}_{\Lambda_{N}}$, i.e. it holds

$$
\mathcal{Q}_{\Lambda_{N}}(g)=I(g), \quad \forall g \in \mathbb{S}_{\Lambda_{N}}:=\mathbb{P}_{\Lambda_{N}} \otimes \mathcal{S}
$$

with $\mathbb{P}_{\Lambda_{N}}=\operatorname{span}\left\{y^{\nu}: \nu \in \Lambda_{N}\right\}$, i.e. $\mathbb{S}_{\Lambda_{N}}=\operatorname{span}\left\{\sum_{\nu \in \Lambda_{N}} s_{\nu} y^{\nu}: s_{\nu} \in \mathcal{S}\right\}$, and $I(g)=\int_{U} g(\boldsymbol{y}) \mu_{0}(d \boldsymbol{y})$.

## Convergence Rates for Adaptive Smolyak Integration

## Corollary (Cl. Schillings and CS 2013)

Assume that the forward solution map $U \ni \boldsymbol{y} \mapsto q(\boldsymbol{y})$ is $(p, \varepsilon)$-analytic for some $0<p<1$ and $\varepsilon>0$.

Then exists $\left(\Lambda_{N}\right)_{N \geq 1}$ of monotone index sets $\Lambda_{N} \subset \mathcal{F}$ such that $\# \Lambda_{N} \leq N$ and

$$
\left|Z_{\Gamma}-\mathcal{Q}_{\Lambda_{N}}\left[\Theta_{\Gamma}\right]\right| \leq C^{1}(\Gamma, p) N^{-s},
$$

with $s=1 / p-1$, and, for $\Psi_{\Gamma}(\boldsymbol{y}):=\Theta_{\Gamma}(\boldsymbol{y}) \phi(u(\boldsymbol{y}))$,

$$
\left\|Z_{\Gamma}^{\prime}-\mathcal{Q}_{\Lambda_{N}}\left[\Psi_{\Gamma}\right]\right\|_{\mathcal{S}} \leq C^{2}(\Gamma, p) N^{-s} .
$$

with $Z_{\Gamma}^{\prime}=I\left[\Psi_{\Gamma}\right]=\int_{U} \Psi_{\Gamma}(\boldsymbol{y}) d \mu_{0}(\boldsymbol{y}), C^{1}, C^{2}>0$ independent of $N$.
Remark: $\quad$ SAME index set $\Lambda_{N}$ for BOTH, $Z_{\Gamma}$ and $Z_{\Gamma}^{\prime}$.

## Convergence Rates for Adaptive Smolyak Integration

 Remark: $\quad S A M E$ index set $\Lambda_{N}$ for BOTH, $Z_{\Gamma}$ and $Z_{\Gamma}^{\prime}$.Sketch of proof

- Relating the quadrature error with Legendre gpc coefficients

$$
\left|I\left[\Theta_{\Gamma}\right]-\mathcal{Q}_{\Lambda}\left[\Theta_{\Gamma}\right]\right| \leq 2 \cdot \sum_{\nu \notin \Lambda} \gamma_{\nu}\left|\theta_{\nu}^{P}\right|
$$

and

$$
\left\|I\left[\Psi_{\Gamma}\right]-\mathcal{Q}_{\Lambda}\left[\Psi_{\Gamma}\right]\right\|_{\mathcal{S}} \leq 2 \cdot \sum_{\nu \notin \Lambda} \gamma_{\nu}\left\|\psi_{\nu}^{P}\right\|_{\mathcal{S}}
$$

for any monotone index set $\Lambda \subset \mathcal{F}$, where $\gamma_{\nu}:=\prod_{j \in \mathrm{~J}}\left(1+\nu_{j}\right)^{2}$.

- $\left(\gamma_{\nu}\left|\theta_{\nu}^{P}\right|\right)_{\nu \in \mathcal{F}} \in \ell^{\rho}(\mathcal{F})$ and $\left(\gamma_{\nu}\left\|\psi_{\nu}^{P}\right\|_{\mathcal{X}}\right)_{\nu \in \mathcal{F}} \in \ell^{\rho}(\mathcal{F})$.
$\Rightarrow \exists$ sequence $\left(\Lambda_{N}\right)_{N \geq 1}$ of monotone sets $\Lambda_{N} \subset \mathcal{F}, \# \Lambda_{N} \leq N$, such that the Smolyak quadrature w.r. to $\left(\Lambda_{N}\right)_{N \geq 1}$ converges with order $1 / p-1$.


## Adaptive Construction of $\left\{\Lambda_{N}\right\}_{N \geq 1}$

## Successive identification of $N$ largest Smolyak contributions

$$
\left|\Delta_{\nu}(\Theta)\right|=\left|\bigotimes_{j \geq 1} \Delta_{\nu_{j}}(\Theta)\right|, \quad \nu \in \mathcal{F}
$$

A. Chkifa, A. Cohen and Ch. Schwab. High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs, JFoCM 2013.

Set of reduced neighbors

$$
\mathcal{N}(\Lambda):=\left\{\nu \notin \Lambda: \nu-e_{j} \in \Lambda, \forall j \in \mathbb{I}_{\nu} \text { and } \nu_{j}=0, \forall j>j(\Lambda)+1\right\}
$$

with $j(\Lambda)=\max \left\{j: \nu_{j}>0\right.$ for some $\left.\nu \in \Lambda\right\}, \mathbb{I}_{\nu}=\left\{j \in \mathbb{N}: \nu_{j} \neq 0\right\} \subset \mathbb{N}$

## Adaptive Construction of $\left\{\Lambda_{N}\right\}_{N \geq 1}$

1: function ASG
2: $\quad$ Set $\Lambda_{1}=\{0\}, k=1$ and compute $\Delta_{0}(\Theta)$.
3: $\quad$ Determine the set of reduced neighbors $\mathcal{N}\left(\Lambda_{1}\right)$.
4: $\quad$ Compute $\Delta_{\nu}(\Theta), \forall \nu \in \mathcal{N}\left(\Lambda_{1}\right)$.
5: $\quad$ while $\sum_{\nu \in \mathcal{N}\left(\Lambda_{k}\right)}\left|\Delta_{\nu}(\Theta)\right|>t o l$ do
Pick $\nu$ from $\mathcal{N}\left(\Lambda_{k}\right)$ w. largest $\left|\Delta_{\nu}\right|$ and set $\Lambda_{k+1}:=\Lambda_{k} \cup\{\nu\}$.
Determine the set of reduced neighbors $\mathcal{N}\left(\Lambda_{k+1}\right)$.
Compute $\Delta_{\nu}(\Theta), \forall \nu \in \mathcal{N}\left(\Lambda_{k+1}\right)$.
Set $k=k+1$.
10: end while
11: end function
T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature, Computing, 2003

## Numerical Experiments

Model parametric parabolic problem

$$
\begin{array}{rl}
\partial_{t} q(t, x)-\operatorname{div}(u(x) \nabla q(t, x))=100 \cdot t x & (t, x) \in T \times D, \\
q(0, x)=0 & x \in D, \\
q(t, 0)=q(t, 1)=0 & t \in T
\end{array}
$$

with

$$
u(x, y)=\langle u\rangle+\sum_{j=1}^{64} y_{j} \psi_{j}, \text { where }\langle u\rangle=1 \text { and } \psi_{j}=\alpha_{j} \chi_{D_{j}}
$$

where $D_{j}=\left[(j-1) \frac{1}{64}, j \frac{1}{64}\right], y=\left(y_{j}\right)_{j=1, \ldots, 64}$ and $\alpha_{j}=\frac{1.8}{j \varsigma}, \zeta=2,3,4$.

- Finite element method using continuous, piecewise linear ansatz functions in space, backward Euler scheme in time
- Uniform mesh with meshwidth $h_{T}=h_{D}=2^{-10}$
- LAPACK's DPTSV routine


## Numerical Experiments

Find the expected system response, given (noisy) data

$$
\delta=\mathcal{G}(u)+\eta,
$$

Expectation of interest $Z_{\Gamma}^{\prime} / Z_{\Gamma}$

$$
\begin{aligned}
Z_{\Gamma}^{\prime} & =\left.\int_{U} \exp \left(-\Phi_{\Gamma}(u ; \delta)\right) \phi(u)\right|_{u=\langle u\rangle+\sum_{j=1}^{64} y_{j} \psi_{j}} d \mu_{0}(\boldsymbol{y}) \\
Z_{\Gamma} & =\left.\int_{U} \exp \left(-\Phi_{\Gamma}(u ; \delta)\right)\right|_{u=\langle u\rangle+\sum_{j=1}^{64} y_{j} \psi_{j}} d \mu_{0}(\boldsymbol{y})
\end{aligned}
$$

- Observation operator $\mathcal{O}$ consists of system responses at $K$ observation points in $T \times D$ at $t_{i}=\frac{i}{2^{N_{K, T}}}, i=1, \ldots, 2^{N_{K, T}}-1, x_{j}=\frac{j}{2^{N_{K}, D}}, k=1, \ldots, 2^{N_{K, D}}-1, o_{k}(\cdot, \cdot)=\delta\left(\cdot-t_{k}\right) \delta\left(\cdot-x_{k}\right)$ with $K=1, N_{K, D}=1, N_{K, T}=1, K=3, N_{K, D}=2, N_{K, T}=1, K=9, N_{K, D}=2, N_{K, T}=2$
- $\mathcal{G}: L^{\infty}(D) \rightarrow \mathbb{R}^{K}$, with $K=1,3,9, \phi(u)=G(u)$
- $\eta=\left(\eta_{j}\right)_{j=1, \ldots, K}$ iid with $\eta_{j} \sim \mathcal{N}(0,1), \eta_{j} \sim \mathcal{N}\left(0,0.5^{2}\right)$ and $\eta_{j} \sim \mathcal{N}\left(0,0.1^{2}\right)$


## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $\mathrm{Qol} Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3(\mathrm{~m}$.$) and \zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $\mathrm{Qol} Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, $L$ and $R L$ with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}),. \zeta=3(\mathrm{~m}$.) and $\zeta=4(\mathrm{r}$.$) .$

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $Q o l Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, $L$ and $R L$ with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $Q o l Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, $L$ and $R L$ with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $\mathrm{Qol} Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3(\mathrm{~m}$.$) and \zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $\mathrm{Qol} Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, $L$ and $R L$ with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $Q o l Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, $L$ and $R L$ with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $\mathrm{Qol} Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}),. \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $\mathrm{Qol} Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3(\mathrm{~m}$.$) and \zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $\mathrm{Qol} Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3(\mathrm{~m}$.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $Q o l Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3(\mathrm{~m}$.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $Q o l Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}), \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $\mathrm{Qol} Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences $\mathrm{CC}, \mathrm{L}$ and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{l}),. \zeta=3(\mathrm{~m}$.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}\left(0,0.5^{2}\right)$ and $\zeta=2$ (..), $\zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of $\mathrm{Qol} Z_{\Gamma}^{\prime}$ the cardinality of the index set $\Lambda_{N}$ based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}\left(0,0.1^{2}\right)$ and $\zeta=2(\mathrm{I}),. \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of Qol $Z_{\Gamma}^{\prime}$ with respect to the number of PDE solves needed based on the sequences CC, $L$ and $R L$ with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}),. \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the posterior expectation of Qol $Z_{\Gamma}^{\prime}$ with respect to the number of PDE solves needed based on the sequences CC, L and RL with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}\left(0,0.5^{2}\right)$ and $\zeta=2(\mathrm{l}),. \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$



Figure: Comparison of the error curves of the Posterior Expectation of Qol $Z_{\Gamma}^{\prime}$ with respect to the number of PDE solves needed based on the sequences CC, $L$ and $R L$ with $K=2^{N_{K}}-1, K=1,3,9, \eta \sim \mathcal{N}\left(0,0.1^{2}\right)$ and $\zeta=2(\mathrm{l}),. \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z^{\prime}$



Figure: Comparison of the $L^{\infty}$ error curves of $\mathrm{Qol} Z^{\prime}$ with respect to the cardinality of the index set $\Lambda_{N}$ based on the sequences CC , L and RL with $K=2^{N_{K}}-1, K=1,3,9$, $\eta \sim \mathcal{N}(0,1)$ and $\zeta=2(\mathrm{I}),. \zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z^{\prime}$



Figure: Comparison of the $L^{\infty}$ error curves of Qol $Z^{\prime}$ with respect to cardinality of the index set $\Lambda_{N}$ based on the sequences $\mathrm{CC}, \mathrm{L}$ and RL with $K=2^{N_{K}}-1, K=1,3,9$, $\eta \sim \mathcal{N}\left(0,0.5^{2}\right)$ and $\zeta=2$ (I.), $\zeta=3$ (m.) and $\zeta=4$ (r.).

## Posterior Expectation of Qol $Z^{\prime}$



Figure: Comparison of the $L^{\infty}$ error curves of $Q o l Z^{\prime}$ with respect to the cardinality of the index set $\Lambda_{N}$ based on the sequences CC , L and RL with $K=2^{N_{K}}-1, K=1,3,9$, $\eta \sim \mathcal{N}\left(0,0.1^{2}\right)$ and $\zeta=2(\mathrm{I}),. \zeta=3(\mathrm{~m}$.$) and \zeta=4$ (r.).

## Conclusions and Outlook

- deterministic, gpc-based data-adaptive quadrature for Bayesian inversion and estimation problems for parametric operator equations with distributed uncertainty $u$
- Dimension-independent convergence bound $C_{\Gamma} N^{-s}$
- $\Gamma$ independent rate $s=1 / p-1>1 / 2, \quad N=\#$ PDE-solves
- $\Gamma$ dependent constant $C_{\Gamma} \sim C \exp (-b / \Gamma), b, C>0$ ind. of $\Gamma$
- $\Gamma \downarrow 0$ ? Asymptotic Expansion

$$
\mathbb{E}^{\mu^{\delta}}[\phi(u)]=\frac{Z_{\Gamma}^{\prime}}{Z_{\Gamma}} \sim \sum_{k \geq 0} a_{k} \Gamma^{k} \quad \text { as } \quad \Gamma \downarrow 0
$$

$\Longrightarrow$ Richardson-Extrapolation w.r. to $\Gamma \downarrow 0$ (SC \& Schillings'13)

## Conclusions and Outlook

- deterministic, gpc-based data-adaptive quadrature for Bayesian inversion and estimation problems for parametric operator equations with distributed uncertainty $u$
- Dimension-independent convergence bound $C_{\Gamma} N^{-s}$
- $\Gamma$ independent rate $s=1 / p-1>1 / 2, \quad N=\#$ PDE-solves
- $\Gamma$ dependent constant $C_{\Gamma} \sim C \exp (-b / \Gamma), b, C>0$ ind. of $\Gamma$
- $\Gamma \downarrow 0$ ? Asymptotic Expansion

$$
\mathbb{E}^{\mu^{\delta}}[\phi(u)]=\frac{Z_{\Gamma}^{\prime}}{Z_{\Gamma}} \sim \sum_{k \geq 0} a_{k} \Gamma^{k} \quad \text { as } \quad \Gamma \downarrow 0
$$

$\Longrightarrow$ Richardson-Extrapolation w.r. to $\Gamma \downarrow 0$ (SC \& Schillings'13)

- Adaptive control of the discretization error of the forward problem with respect to significance in Smolyak detail $\Delta_{\nu}\left[\Psi_{\Gamma}\right]$
- No MCMC burn-in


## References

Calvi J-P and Phung Van M 2011 On the Lebesgue constant of Leja sequences for the unit disk and its applications to multivariate interpolation Journal of Approximation Theory 163 608-622

Calvi J-P and Phung Van M 2012 Lagrange interpolation at real projections of Leja sequences for the unit disk Proceedings of the American Mathematical Society 140 4271-4284

CHKIFA A 2013 On the Lebesgue constant of Leja sequences for the unit disk Journal of Approximation Theory 166 176-200
Chkifa A, Cohen A and Schwab C 2013 High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs JFoCM 2013

Cohen A, DeVore R and Schwab C 2011 Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs Analysis and Applications 9 1-37

Gerstner T and Griebel M 2003 Dimension-adaptive tensor-product quadrature Computing 71 65-87
Hansen M and Schwab C 2013 Sparse adaptive approximation of high dimensional parametric initial value problems Vietnam J. Math. 1-35

Hansen M, Schillings C and Schwab C 2012 Sparse approximation algorithms for high dimensional parametric initial value problems Proceedings 5th Conf. High Performance Computing, Hanoi(Springer LNCSE 2013)

Schillings C and Schwab C 2013 Sparse, adaptive Smolyak algorithms for Bayesian inverse problems (Inverse Problems)
Schwab C and Stuart A M 2012 Sparse deterministic approximation of Bayesian inverse problems Inverse Problems 28 045003

# Thank you for your attention \& comments 

Postdoctoral Fellowships www.sam.math.ethz.ch

