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Bayesian Inversion for the WIPP groundwater flow problem Problem setting and motivation

UQ Problem
Radioactive Waste Repository Site Assessment

Waste Isolation Pilot Plant (WIPP)
Carlsbad, New Mexico

Groundwater transport of
radionuclides in transmissive
Culebra layer

Uncertainty in hydraulic
conductivity

Quantity of interest: travel time to
boundary of WIPP site

Approach: Model uncertainty (lack
of knowledge) stochastically.
Propagate random input data to
travel time.
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Bayesian Inversion for the WIPP groundwater flow problem Problem setting and motivation

Groundwater Flow Model

Stationary Darcy flow q = −K∇p q : Darcy flux

K : hydraulic conductivity

p : hydraulic head

mass conservation div u = 0 u : pore velocity

q = φu φ : porosity

transmissivity T = Kb b : aquifer thickness

Particle transport ẋ(t) = −T (x)

bφ
∇p(x) x : particle position

x(0) = x0 x0 : release location

Quantity of interest s: log10 of travel time of particle to reach WIPP boundary,
in particular, its cumulative distribution function (cdf).
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Bayesian Inversion for the WIPP groundwater flow problem Problem setting and motivation

PDE with Random Coefficient

Mixed form of Darcy equations:

T−1(x)u(x) +∇p(x) = 0, p|∂D = p0,

div u(x) = 0, x ∈ D.

Model T as a random field (RF) T = T (x, ω), ω ∈ Ω, with respect to underlying
probability space (Ω,A,P).

Assumptions:

T has finite mean and covariance

T (x) = E [T (x, ·)] , x ∈ D,

CovT (x, y) = E
[(
T (x, ·)− T (x)

) (
T (y, ·)− T (y)

)]
, x, y ∈ D.

T is lognormal, i.e., Z (x, ω) := logT (x, ω) is a Gaussian RF.

CovZ is stationary, isotropic, and of Matérn type.
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Bayesian Inversion for the WIPP groundwater flow problem Obtaining the prior

WIPP Data
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WIPP site boundary

transmissivity measurements at 38
test wells

head measurements at 33 test wells,
used to obtain boundary data via
statistical interpolation (kriging)

constant layer thickness of b = 8m

constant porosity of φ = 0.16

SANDIA Nat. Labs reports
[Caufman et al., 1990]

[La Venue et al., 1990]
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Bayesian Inversion for the WIPP groundwater flow problem Obtaining the prior

Prior Probabilistic Model of Transmissivity
Merge transmissivity data with statistical model

Given: Measurements of log transmissivity (xj , κj), j = 1, . . . ,N

Assumptions:

Linear model κ(x) =
∑n

i=1 βi fi (x) for mean

Matérn covariance structure for fluctuations around mean

Procedure:

(1) {fi}ni=1 yield point estimates of parameters in Matérn covariance function via
restricted maximum likelihood estimation (REML).

(2) Krige RF logT : best linear prediction of κ(x) based on measurements (for
Gaussian RF coincides with conditioning on observations).

(3) Approximate logT by truncated Karhunen-Loève expansion.
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Bayesian Inversion for the WIPP groundwater flow problem Obtaining the prior

Matérn Family of Covariance Kernels

c(x, y) = cθ(r) =
σ2

2ν−1 Γ(ν)

(
2
√
ν r

ρ

)ν
Kν

(
2
√
ν r

ρ

)
, r = ‖x− y‖2

Kν : modified Bessel function of order ν

Parameters θ = (σ2, ρ, ν) σ2 : variance

ρ : correlation length

ν : smoothness parameter

Special cases:

ν = 1
2

: c(r) = σ2 exp(−
√

2r/ρ) exponential covariance

ν = 1 : c(r) = σ2
(

2r
ρ

)
K1

(
2r
ρ

)
Bessel covariance

ν →∞ : c(r) = σ2 exp(−r 2/ρ2) Gaussian covariance

Smoothness: Realizations Z(·, ω) are k times differentiable ⇔ ν > k.
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Bayesian Inversion for the WIPP groundwater flow problem Obtaining the prior

Kriging
Best unbiased linear prediction

Given RF κ with known covariance and observations {κ(xj) = κj}Nj=1, approximate

E
[
κ|{κ(xj) = κj}Nj=1

]
by linear prediction

κ̂(x) = m0(x) +
N∑
j=1

mj(x)κ(xj)

such that it is unbiased E [κ̂(x)] = E [κ(x)] and optimal

E
[
(κ̂(x)− κ(x))2

]
→ min

m0,...,mN

!

Variants: Simple Kriging (assumes known mean)
Universal Kriging (assumes linear regression model for mean)
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Bayesian Inversion for the WIPP groundwater flow problem Obtaining the prior

Kriging
WIPP results

We assume constant but unknown mean κ̄(x) ≡ β.
REML estimates for covariance: σ2 = 18.9, ρ = 9865, ν = 0.59.
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Bayesian Inversion for the WIPP groundwater flow problem Obtaining the prior

Parametrization of Input RF
Karhunen-Loève expansion

κ(x, ω) = κ̄(x) +
∞∑

m=1

√
λm φm(x) ξm(ω)

converges in L∞(D) and L2
P(Ω), where

{(λm, φm)}m∈N eigenpairs of covariance operator

(Cφ)(x) =

∫
D

φ(y) Covκ(x, y) dy,

{ξm}m∈N ⊂ L2
P(Ω), E [ξm] = 0, E [ξkξm] = δk,m.

Truncation after M terms yields RF κM with

E
[
‖κ− κM‖2

L2(D)

]
=

∞∑
m=M+1

λm.
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Bayesian Inversion for the WIPP groundwater flow problem Obtaining the prior

WIPP KL Modes
Conditioned on 38 transmissivity observations

unkriged, m = 1, 2, 9, 16

kriged, m = 1, 2, 9, 16
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion using MCMC

The Inverse Problem
Bayesian Approach

exp(−κ)u = −∇p, div u = 0, p|∂D = p0

Further reduction of uncertainty using head measurements:

Finite number of observations of p: y = Q(p) = Q(p(κ)) ∈ Rk .

Measurement noise: d = y + ε, ε ∼ N(0,Γ)

Prior measure µ0 for κ ∈ span{φ1, . . . , φM} ⊂ L∞(D) by measurements of κ

Bayes theorem yields conditional distribution µd of κ|d

dµd

dµ0
∝ exp(Φ(κ)), Φ(κ) =

1

2
‖d− G (κ)‖2

Γ−1 , G = Q ◦ p.

Goal: Compute cdf of QoI s(κ) according to κ ∼ µd.
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion using MCMC

Bayesian Inversion for WIPP
Sampling from the posterior

Markov Chain Monte Carlo (MCMC)

Construct Markov chain with stationary distribution µd.

Sample sequence usually highly correlated, need for subsampling.

Prior model for κ:

κM(x, ξ) = φ0(x) +
M∑

m=1

φm(x) ξm, ξ = (ξ1, . . . , ξm) ∼ N(0, I ),

Parametrization: prior on ξ ∈ RM instead of κ ∈ L∞(D)

µ0 ∼ N(0, I ) on RM ,

Data: head measurements d = (p(x1), . . . , p(xk)) ∈ Rk , here k = 33.

Due to high dimension M: pCN-MCMC proposed in [Cotter et. al, 2012]
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion using MCMC

WIPP: MH-MCMC
Preliminary Results for M = 1000

0 1000 2000 3000 4000 5000
−3

−2

−1

0

1

2

3

4

5

iteration

ξ
1

B. Sprungk (TU Chemnitz) Bayesian Inversion of WIPP Warwick, June 2013 19 / 40



Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion using MCMC

WIPP: MH-MCMC
Preliminary Results for M = 1000

0 1000 2000 3000 4000 5000
−3

−2

−1

0

1

2

3

4

5

ξ
1

iteration/100

B. Sprungk (TU Chemnitz) Bayesian Inversion of WIPP Warwick, June 2013 19 / 40



Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion using MCMC

WIPP: MH-MCMC
Preliminary Results for M = 1000

Comparing pCN and standard Random Walk
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion using MCMC

WIPP: Posterior Data Fit
Preliminary Results for M = 1000
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion using MCMC

WIPP: Posterior distribution of ξ
Preliminary Results for M = 1000
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion using MCMC

WIPP: Posterior distribution of QoI
Preliminary Results for M = 1000

Particle trajectories according to prior
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion via EnKF

Inversion via EnKF
Background

EnKF derived from Kalman filter for state estimation for incompletely
observed (stochastic) nonlinear dynamics.

Yields linear update of state estimate and estimation error by linear update of
the ensemble

State estimation by mean of ensemble, estimation error by covariance of
ensemble.

Can be applied to time-independent problems, too, e.g. elliptic PDEs.

Recent application of linear Bayesian update for UQ for PDE models
[Matthies et. al, 2012]

ξd(ω) = ξ(ω) + K(d− G (ξ(ω))− ε(ω)),

where K = Covξ,G(ξ) [CovG(ξ) + Covε]−1 ∈ RM×k .

⇒ Yields posterior random variable ξd instead of posterior measure µd.
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion via EnKF

Inversion via EnKF
Interpretation in Bayesian (statistics) context

Set Y(ω) = G (ξ(ω)), D(ω) = Y(ω) + ε(ω) and

ϕ̂(D) = E[ξ] + K
(
D− E[G (ξ)]

)
.

ϕ̂(D) linear approximation of E[ξ|D] = ϕ∗(D):

ϕ̂ = argminϕ∈span{1,D} E
[
‖ξ − ϕ(D)‖2

]

E[ξd] = ϕ̂(d) and Cov(ξd) = E[‖ξ − ϕ̂(D)‖2] (independent of d)

In particular, for rd := ϕ∗(d)− ϕ̂(d)

Cov(ξd) =

∫
Rk

(
Cov(ξ|δ) + rδr>δ

)
pD(δ)dδ,

where pD density of P ◦D−1.
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion via EnKF

Inversion via EnKF
Results

EnKF using nk even batches d = (d1 . . . , d33) = (d̄1, . . . , d̄nk ) for nk updates.
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion via EnKF

Inversion via EnKF
Results

Using Gaussian approximation with final ensemble mean and covariance for UQ.
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion via EnKF

Inversion via EnKF
Results
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion via EnKF

Inversion via EnKF
Comparison with MCMC

Errors relative to MCMC

‖κ(ξMCMC)− κ(ξEnKF)‖L2(D)

‖κ(ξMCMC)‖L2(D)

‖Cov(κ(ξMCMC))− Cov(κ(ξEnKF))‖L2(D)⊗L2(D)

‖Cov(κ(ξMCMC))‖L2(D)⊗L2(D)

no. updates rel. error mean rel. error cov rel. data misfit
1 0.5728 0.2752 0.0026
3 0.3333 0.2578 0.0018

11 0.3516 0.2785 0.0017
MCMC - - 0.0011
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Bayesian Inversion for the WIPP groundwater flow problem Bayesian Inversion via EnKF

Observations

Need M = 300 KL modes to explain the data well.

Main changes from prior to posterior in the first, say, 100 KL modes.

For very high KL modes basically no change.

Significant uncertainty reduction by incooperating head data (total variance
reduced by 25%).

Need to take into account M = 1000 KL modes for accurate estimation of
posterior cdf of QoI.

Perspectives:

Run inversion (MCMC) only in active dimensions where significant change
from prior to posterior.

Use surrogates for solving parametric PDE in these parameters for computing
Hastings ratio.

Estimate posterior cdf of QoI according to posterior in active and prior in
inactive dimensions.
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Gauss-Newton (preconditioned) MH-MCMC methods

Next
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2 Gauss-Newton (preconditioned) MH-MCMC methods
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Gauss-Newton (preconditioned) MH-MCMC methods

Motivation

Observation:

Sufficiently small prior variance yields approx. linear relationship between ξ and
p(ξ).

Thus, for µ0 ∼ N(0,Σ0), ε ∼ N(0,Γ), posterior is approximately Gaussian, too,

µd ≈ N ( K(d− G (0)), Σ0 −KLΣ0) ,

where L = ∇ξG (0) and K = Σ0L> (LΣ0L> + Γ)−1. [Cliffe & Jackson, 2001]

For target µd ∼ N(0,Σ) optimal Random-Walk proposal is q(ξ,dη) ∼ N(ξ, s2Σ).
[Roberts & Rosenthal, 2001]
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Gauss-Newton (preconditioned) MH-MCMC methods

Example
1D toy problem

−∇(exp(κ)∇p) = 0 in D = [0, 100], p(0) = 0, p(100) = 100,

κ(x , ξ) =
∑10

m=1 cmξm 1[ m−1
10 , m10 ](x/100), ξm ∼ N(0, 1) iid,

Qp = (p(15), p(35), p(65), p(85))>, ε ∼ N(0, 0.01I4).

Synthetic data: ξtrue draw from µ0
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10 , m10 ](x/100)

0 200 400 600 800 1000
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ACRF of ξ
5

lag

 

 

standard RW

preconditioned RW

B. Sprungk (TU Chemnitz) Bayesian Inversion of WIPP Warwick, June 2013 34 / 40



Gauss-Newton (preconditioned) MH-MCMC methods

Improvement
Stochastic Gauss-Newton

Local linearization for Random-Walk proposal:

q(ξ,dη) ∼ N(ξ, s2Σ(ξ)), Σ(ξ) = Σ0 − Σ0L>ξ (LξΣ0L>ξ + Γ)−1LξΣ0,

where Lη = ∇ξG (η).

Note Σ(ξ) = (LT
ξ ΓLξ + Σ0)−1 is inverse Hessian of

1

2
‖d− G̃ (ξ)‖2

Γ−1 +
1

2
‖ξ − ξ0‖2

Σ−1
0

with linearized G̃ (η) = G (ξ) +∇ξG (ξ)(η − ξ).

Yields stochastic Gauss-Newton method (cf. [Martin et al., 2011])

q(ξ,dη) ∼ N

(
ξ − s2

2
∇ξJ(ξ) Σ(ξ), Σ(ξ)

)
,

where J(ξ) = 1
2‖d− G (ξ)‖2

Γ−1 + 1
2‖ξ − ξ0‖2

Σ−1
0

.
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Gauss-Newton (preconditioned) MH-MCMC methods

Remarks on stochastic Gauss-Newton (sGN)

sGN is preconditioned MALA with preconditioner Σ(ξ) = (LT
ξ ΓLξ + Σ0)−1,

cf. [Girolami & Calderhead, 2011].

Σ(ξ) positive semi-definite in contrast to true Hessian of J.

Computing Σ0 − Σ0L>ξ (LξΣ0L>ξ + Γ)−1LξΣ0 requires only inverse of
k × k-matrix

∇ξG (η) easily computable via adjoint method.

Since adjoint equations as original PDE, except for source term, they allow
for the same surrogate (e.g. stochastic collocation).
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Gauss-Newton (preconditioned) MH-MCMC methods

Example
1D toy problem

−∇(exp(κ)∇p) = 0 in D = [0, 100], p(0) = 0, p(100) = 100,

Synthetic data: ξtrue ∼ N(1, 0.5 I10), κtrue(x) =
∑

m ξtrue,m 1[ m−1
10 , m10 ](x/100)
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Gauss-Newton (preconditioned) MH-MCMC methods

Example
1D toy problem
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Gauss-Newton (preconditioned) MH-MCMC methods

Example
1D toy problem

−∇(exp(3κ)∇p) = 0 in D = [0, 100], p(0) = 0, p(100) = 100,

Synthetic data: ξtrue ∼ µ0, κtrue(x) =
∑

m 3cmξtrue,m 1[ m−1
10 , m10 ](x/100)
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Conclusions
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Conclusions

Concluding Remarks

Bayesian Inversion / MCMC challenging for WIPP problem due to high
parameter dimension and high chain correlation.

Possible remedy: reduced set of active dimensions for Bayesian inversion,
advanced MCMC methods and surrogates for solving PDE.

sGN methods exploit geometrical structure of posterior as stochastic Newton
and Riemann manifold MCMC methods for possibly less cost

Extension and further analysis of sGN (and preconditioned RW) to infinite
dimensions to be done.

Further goal: adaptive refinement of stochastic collocation surrogates for
MCMC (necessary if posterior locates in tails of prior).
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Conclusions

Thank you for your attention!
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