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Large-scale computation under uncertainty

Inverse electromagnetic scattering

Randomness

Random errors in measurements are unavoidable
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Large-scale computation under uncertainty

Full wave form seismic inversion

Randomness

Random errors in seismometer measurements are unavoidable

Tan Bui-Thanh (ICES, UT Austin) Large-Scale Bayesian Inversion 3 / 30



Large-scale uncertainty quantification in high dimensions

Common challenge

Large-scale PDE forward solve (more than 108 DOFs)

High dimensional parameter spaces (curse of dimensionality)

Uncertainty Quantification (randomness)

Solution 1: Reduce-then-sample

Exploit higher order derivatives to construct

an accurate surrogate model

that is inexpensive to solve

Solution 2: Sample-then-reduce

Work directly with high-fidelity model but only explore important sub-
spaces/directions
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Outline

Reduce-then-sample

Approach: Hessian-based adaptive Gaussian Process

Application: Inverse Shape Electromagnetic Scattering

Sample-then-reduce

Approach: Gaussian approximation and MCMC

Application: Full Wave Form Seismic Wave Inversion
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Reduce-then-sample

Approach: Hessian-based adaptive Gaussian Process

Application: Inverse Shape Electromagnetic Scattering
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Inverse Shape Electromagnetic Scattering Problem

Maxwell Equations:

∇×E = −µ∂H

∂t
, (Faraday)

∇×H = ε
∂E

∂t
, (Ampere)

πpost(u|yobs) ∝ πpr(u)× πlike(yobs|u)︸ ︷︷ ︸
Computationally expensive forward model:y=G(u)

Approximate the likelihood

Reduced basis method, polynomial chaos, and etc

Approximate the posterior

Propose an Hessian-based Adaptive Gaussian Process response surface
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Hessian-based Adaptive Gaussian Process

Main idea (“mitigating” the curse of dimensionality)

1 Use Adaptive Sampling Algorithm to find the modes

2 Approximate the covariance matrix (Hessian inverse)

3 Partition parameter space using membership probabilities

4 Approximate the posterior with local Gaussian in subdomains

5 Glue all the local Gaussian approximations
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Inverse shape electromagnetic scattering
discontinuous Galerkin discretization with 80,892 state variables
24 shape parameters
1 million MCMC simulations for the Gaussian process response surface
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99.99% credibility envelope
Sample posterior mean
Exact shape
Deterministic solution

Offline time

Gaussian process 33 hours

Exact Posterior 0 hours

Online time

Gaussian process 0.96 hours

Exact Posterior 8802.35 hours

Details in: Bui-Thanh, T., Ghattas, O., and Higdon, D., Adaptive Hessian-based
Non-stationary Gaussian Process Response Surface Method for Probability Density
Approximation with Application to Bayesian Solution of Large-scale Inverse Problems, SIAM
Journal on Scientific Computing, 34(6), pp. A2837–A2871, 2012.
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Sample-then-reduce

Approach: Gaussian approximation and MCMC

Application: Full Wave Form Seismic Wave Inversion
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Full wave form seismic wave inversion

∂E

∂t
=

1

2

(
∇v +∇Tv

)
,

ρ
∂v

∂t
= ∇ · (CE) + f

Strain-velocity formulation

• I: fourth-order identity tensor,

• I: second-order identity tensor,

• f : external volumetric forces,

• C: four-order material tensor.

Animated by Greg Abram

• E: strain tensor,

• v: velocity vector,

• ρ: density,

• ei: ith unit vector,

Inverse problem statement

Earth surface velocity at given locations is recorded

Infer the wave velocities cs =
√
µ/ρ and cp =

√
(λ+ 2µ) /ρ
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Infinite dimensional Bayesian statistical inference
Bayes’ theorem in infinite dimensions

A Bayes’ theorem in infinite dimensional spaces (Stuart 2010)

dµ

dµ0
(u) ∝ exp

(
−Φ

(
yobs,u

))
defines the Radon-Nikodym derivative of the posterior probability measure
µ with respect to the prior measure µ0.

µ0: prior probability measure

µ: posterior probability measure

Φ
(
yobs,u

)
: misfit functional

u: unknown parameter

yobs: observation data

Tan Bui-Thanh (ICES, UT Austin) Large-Scale Bayesian Inversion 12 / 30



Infinite dimensional Bayesian statistical inference
Prior smoothness

Definitions and assumptions

Prior distribution of u is a Gaussian measure µ0 = N (u0,C0) on
L2 (Ω)

C0 = A−α is the prior covariance operator: trace class operator

A is a Laplace-like operator, e.g., A = θI − β∆.

u0 lies in the Cameron-Martin space E = R
(
C
1/2
0

)
= Hα of C0

Prior smoothness

Assume α > d/2 and m0 ∈ Hα, then the Gaussian measure µ0 =
N
(
m0,A

−α) has full measure on C
(
Ω
)
, namely, µ0

(
C
(
Ω
))

= 1.

We choose α = 2 for d = 3
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Infinite dimensional Bayesian statistical inference
Linearized Bayesian solution about the MAP

Compute the MAP

Linearize the forward map about the MAP yobs = f0 +A (u) + η

Posterior becomes a Gaussian measure

u|yobs ∼ µ = N (m,C) ,

posterior mean

m = E [u] = u0 + C0A
∗ (Γ +AC0A

∗)−1
(
yobs − f0 −Au0

)
posterior covariance operator

C =
(
A∗Γ−1A+ C−1

0

)−1
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Infinite dimensional Bayesian statistical inference
Linearized Bayesian solution: Low rank approximation

posterior covariance operator: A low rank approximation

C =
(
A∗Γ−1A+ C−1

0

)−1

= C
1/2
0

(
C
1/2
0 A∗Γ−1A C

1/2
0 + I

)−1
C
1/2
0

≈ C
1/2
0 (V rΛrV

∗
r + I)−1C

1/2
0

= C0 − C
1/2
0 V rDrV

∗
rC

1/2
0

Low rank approximation only involves incremetal forward and
incremental adjoint solve

Then use Sherman-Morrison-Woodbury

Relative to the prior uncertainty, the posterior uncertainty is reduced
when observations are made.
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The gradient computation
Gradient expression (for general tensor C) given by

G(C) :=

∫ T

0

[
1

2
(∇w + ∇wT )⊗E

]
dt+ R

′(C)

where v,E satisfy the forward wave propagation equations

ρ
∂v

∂t
−∇ · (CE) = f in Ω× (0, T )

−C
∂E

∂t
+

1

2
C(∇v + ∇vT ) = 0 in Ω× (0, T )

ρv = CE = 0 in Ω× {t = 0}
CEn = 0 on Γ× (0, T )

w,D (adjoint velocity, strain) satisfy the adjoint wave propagation equations

−ρ∂w
∂t
−∇ · (CD) = −B(v − vobs) in Ω× (0, T )

C
∂D

∂t
+

1

2
C(∇w + ∇wT ) = 0 in Ω× (0, T )

ρw = CD = 0 in Ω× {t = T}
CDn = 0 on Γ× (0, T )
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Computation of action of Hessian in given direction
Action of the Hessian operator in direction C̃ at a point C given by

H(C)C̃ :=

∫ T

0

[
1

2
(∇w̃ + ∇w̃T )⊗E +

1

2
(∇w + ∇wT )⊗ Ẽ

]
dt+ R

′′(C)C̃

where ṽ, Ẽ satisfy the incremental forward wave propagation equations

ρ
∂ṽ

∂t
−∇ · (CẼ) = ∇ · (C̃E) in Ω× (0, T )

−C
∂Ẽ

∂t
+

1

2
C(∇ṽ + ∇ṽT ) = 0 in Ω× (0, T )

ρṽ = CẼ = 0 in Ω× {t = 0}

CẼn = −C̃En on Γ× (0, T )

and w̃, D̃ satisfy the incremental adjoint wave propagation equations

−ρ∂w̃
∂t
−∇ · (CD̃) = ∇ · (C̃D)−Bṽ in Ω× (0, T )

C
∂D̃

∂t
+

1

2
C(∇w̃ + ∇w̃T ) = 0 in Ω× (0, T )

ρw̃ = CD̃ = 0 in Ω× {t = T}

CD̃n = −C̃Dn on Γ× (0, T )
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Infinite dimensional Bayesian statistical inference
Linearized Bayesian solution: Low rank approximation

posterior covariance operator: A low rank approximation

C =
(
A∗Γ−1A+ C−1

0

)−1

= C
1/2
0

(
C
1/2
0 A∗Γ−1A C

1/2
0 + I

)−1
C
1/2
0

≈ C
1/2
0 (V rΛrV

∗
r + I)−1C

1/2
0

= C0 − C
1/2
0 V rDrV

∗
rC

1/2
0

Low rank approximation only involves incremetal forward and
incremental adjoint solve

Then use Sherman-Morrison-Woodbury

Relative to the prior uncertainty, the posterior uncertainty is reduced
when observations are made.
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Linearized Bayesian solution: Why low rank approximation?
Compactness of the Hessian in inverse acoustic scattering

Theorem

Let (1− n) ∈ Cm,α0 , where n is the refractive index, m ∈ N ∪ {0} , α ∈ (0, 1).
The Hessian is a compact operator everywhere.

Coupled FEM-BEM method Eigenvalues of Gauss-Newton Hessian

Details in:

T. Bui-Thanh and O. Ghattas, Analysis of the Hessian for inverse scattering problems.
Part II: Inverse medium scattering of acoustic waves. Inverse Problems, 28, 055002, 2012.

T. Bui-Thanh and O. Ghattas, Analysis of the Hessian for inverse scattering problems.
Part I: Inverse shape scattering of acoustic waves. Inverse Problems 2012 Highlights
Collection, 28, 055001, 2012.
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Convergence for non-conforming hp-discretization

Theorem

Assume qe ∈ [Hse (De)]
d
, se ≥ 3/2 with d = 6 for electromagnetic case and

d = 12 for elastic–acoustic case. In addition, suppose qd(0) = Πq(0), and the
mesh is affine and non-conforming. Then, the discontinuous Galerkin spectral
element solution qd converges to the exact solution q, i.e., there exists a constant
C that depends only on the angle condition of De, s, and the material constants
µ and ε (λ and µ for elastic–acoustic case) such that

‖q (t)− qd (t)‖DNel ,d ≤C
∑
e

hσe
e

Nse
e
‖q (t)‖[Hse (De)d]

+ C
∑
e

t
h
σe−1/2
e

N
se−1/2
e

max
[0,t]
‖q (t)‖[Hse (De)]d ,

with he = diam (De), σe = min {pe + 1, se}, and ‖·‖Hs(De) denoting the usual
Sobolev norm

Details in: T. Bui-Thanh and O. Ghattas, Analysis of an hp-non-conforming discontinuous
Galerkin spectral element method for wave propagations, SIAM Journal on Numerical Analysis,
50(3), pp. 1801–1826, 2012.
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Scalability of global seismic wave propagation on Jaguar

Strong scaling: 3rd order DG, 16,195,864 elements, 9.3 billion DOFs
#cores time [ms] elem/core efficiency [%]

1024 5423.86 15817 100.0
4096 1407.81 3955 96.3
8192 712.91 1978 95.1

16384 350.43 989 96.7
32768 211.86 495 80.0
65536 115.37 248 73.5

131072 57.27 124 74.0
262144 29.69 62 71.4

Strong scaling: 6th order DG, 170 million elements, 525 billion DOFs
# cores meshing wave prop par eff Tflops

time (s) per step (s) wave

32,640 6.32 12.76 1.00 25.6
65,280 6.78 6.30 1.01 52.2

130,560 17.76 3.12 1.02 105.5
223,752 <25 1.89 0.99 175.6

Meshing time = time for parallel generation of the mesh (adapted to local wave speed)
prior to wave propagation solution

Wave prop per step is the runtime (s) per time step of the wave propagation solve

Tflops is double precision teraflops/s based on PAPI
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An example of global seismic inversion

inversion field: cp in acoustic wave equation

prior mean: PREM (radially symmetric model)

“truth” model: S20RTS (Ritsema et al.), (laterally heterogeneous)

Piecewise-trilinear on same mesh as forward/adjoint 3rd order dG fields

dimensions: 1.07 million parameters, 630 million field unknowns

Final time: T = 1000s with 2400 time steps

A single forward solve takes 1 minute on 64K Jaguar cores

“truth”, sources (black) MAP, receivers (white)
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Uncertainty quantification

C ≈ C0 − C
1/2
0 V rDrV

∗
rC

1/2
0

A slice through the equator and isosurfaces in the left hemisphere of
variance reduction

Tan Bui-Thanh (ICES, UT Austin) Large-Scale Bayesian Inversion 24 / 30



Samples from prior and posterior distributions

Top row: samples from prior

Bottom row: samples from posterior

Far right: MAP estimate

Details in:
Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., and Wilcox,
L.C.,Extreme-scale UQ for Bayesian inverse problems governed by PDEs, ACM/IEEE
Supercomputing SC12, Gordon Bell Prize Finalist, 2012.
Bui-Thanh, T., Ghattas, O., Martin, J., and Stadler, G., A computational framework for
infinite-dimensional Bayesian inverse problems. Part I: The linearized case, SIAM Journal
on Scientific Computing, Submitted, 2012.
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MCMC Simulation for Seismic inversion

1 / 1

prior distribution

posterior distribution

posterior sample

Use Gaussian approximation as proposal

15,587 samples, acceptance rate 0.28

96 hours on 2048 cores
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Discretization of infinite dimensional Bayesian inversion
Error analysis and uncertainty quantification for 2D inverse shape acoustic scattering

Shape r = exp (u), where u ∈ Cs,α [0, 2π], s ≥ 2 and 0 ≤ α ≤ 1

Discretize µ0 using Karhunen-Loève truncation with m terms

Discretize the forward equation using n-th order Nyström scheme

Theorem

dHellinger (µ, µn,m) ≤ c
(

1

(2n)s−1 +
logm

ms−1+α

)
,

‖EM‖L2[0,2π] ≤ c
(

1

(2n)s−1 +
logm

ms−1+α

)
,

‖EC‖L2[0,2π]⊗L2[0,2π] ≤ c
(

1

(2n)s−1
+

logm

ms−1+α

)
.

Details in: Bui-Thanh, T., and Ghattas, O., An Analysis of Infinite Dimensional Bayesian

Inverse Shape Acoustic Scattering and its Numerical Approximation, SIAM Journal on

Uncertainty Quantification, Submitted, 2012.
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Conclusions
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Conclusions: Reduce-Then-Sample

Inverse shape electromagnetic scattering

1 Statistical inversion via the Bayesian framework

2 Expensive forward solve

3 Monte Carlo sampling the posterior in high dimensions is too
expensive

Approach and main results

Hessian-based Piecewise Gaussian approximation to the posterior

Automatically partion high dimensional parameter spaces without
meshing

Inverse solution comes with quantifiable uncertainty

More than three order of magnitudes saving in time
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Conclusions: Sample-Then-Reduce

Full wave form seismic inversion
1 Infinite dimensional Bayesian inference

2 Doubly infinite dimensional problem: both state and parameter live in
infinite dimensional spaces

3 Very expensive forward solve even on supercomputers

Approach and Main results

Discontinuous Galerkin for forward PDE

Continuous FEM for prior with multigrid

Exploit the ill-posedness and hence the compactness of the Hessian

Able to solve statistical inverse problem with more than one million
parameters with more than three orders of magnitude speedup

Gaussian approximation seems to be good in this case

Inverse solution comes with quantifiable uncertainty and more
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