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Goal: sample from a distribution π(x) that is known only up to a
constant.

Construct ergodic stochastic dynamics whose invariant
distribution is π(x).

There are many different dynamics whose invariant distribution is
given by π(x).

Different discretizations of the corresponding SDE can behave
very differently, even fail to converge to π(x).

computational efficiency: choose the dynamics that converges to
equilibrium as quickly as possible.
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Consider the long time asymptotics of finite dimensional Itô
diffusions

dXt = b(Xt) dt + σ(Xt) dWt , (1)

where Wt is a standard Brownian motion in Rd .

This is a Markov process with generator

L = b(x) · ∇ +
1
2

Tr
(

Σ(x)D2
)

, (2)

where Σ = σσT .
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In order for π(x) to be the invariant distribution of Xt , we require
that it is the (unique) solution of the stationary Fokker-Planck
equation

∇ ·
(

−b(x)π(x) +
1
2
∇ · (Σ(x)π(x))

)

= 0, (3)

together with appropriate boundary conditions (if we are in a
bounded domain).

If the detailed balance condition

Js := −bπ +
1
2
∇ · (Σπ) = 0, (4)

is satisfied, then the process Xt is reversible wrt π(x).
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A stationary diffusion process Xt is reversible (wrt π(x)) if Xt and
XT−t have the same law for t ∈ [0,T ].

Time reversibility is equivalent to:
◮ The detailed balance condition (4);
◮ the generator L being self-adjoint in L2(Rd ;π(x)) (equivalently, the

Fokker-Planck operator L∗ = ∇ · (−b(x) + ∇Σ(x)) being
self-adjoint in L2(Rd ;π−1(x)));

◮ Xt having zero entropy production rate.
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There are (infinitely) many reversible diffusions that can be used in
order to sample from π(x):

◮ Either fix b(x) in the detailed balance equation (4) and choose the
diffusion matrix Σ(x), or,

◮ fix Σ(x) and choose the drift b(x).

The rate of convergence to equilibrium depends on the tails of the
distribution π(x) and on the choice of diffusion process Xt

(Stramer and Tweedie 1999, Bakry, Cattiaux, Guillin, 2008).

The overdampled Langevin dynamics, Σ = 2I, b(x) = ∇ logπ(x)

dXt = ∇ logπ(Xt) dt +
√

2dWt .

is not (always) the best choice.
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We can also use higher order Markovian models, for example the
underdamped Langevin dynamics

dqt = pt dt , dpt = ∇ log(π)(qt) dt − γpt dt +
√

2γ dWt . (5)

The generator is

L = p · ∇q + ∇q logπ(q) · ∇p + γ
(

− p · ∇p + ∆p
)

. (6)

We have convergence to the equilibrium distribution

ψ∞(p,q) =
1

(2π)N/2Z
π(q)e−p2/2.

The parameter γ > 0 in (5) can be tuned in order to optimize the
rate of convergence to equilibrium.
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To speed up convergence to the target distribution π(x):

Choose optimally (b(x), Σ(x)) within the class of reversible
diffusions.

Consider higher order Markovian models (underdamped
Langevin, generalized Langevin equations...) and optimize over
the set of parameters in these models, e.g. the friction coefficient
γ.

Consider time dependent temperature (simulated annealing):
Holley, Kusuoka, Stroock: Asymptotics of the spectral gap with
applications to the theory of simulated annealing (1989).
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To speed up convergence to the target distribution π(x) (contd.):

Choose an appropriate numerical scheme for the solution of the
underlying SDE: Stramer, Tweedie, Langevin-type models. I.
Diffusions with given stationary distributions and their
discretizations. (1999).

Use a Metropolis-Hastings alrgorithm (acceptance-rejection step):
Stramer, Tweedie, Langevin-type models. II. Self-targeting
candidates for MCMC algorithms. (1999).
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Choose optimally (b(x), Σ(x)) within the class of reversible diffusions:

Convergence to equilibrium is determined by the first nonzero
eigenvalue of the generator of Xt , which is a self-adjoint operator
in L2(Rd ;π(x)):

λ1 = min
φ∈D(L), φ 6=const

〈−Lφ, φ〉
‖φ‖2 . (7)

We want to maximize λ1 over the set of drift and diffusion
coefficients that satisfy the detailed balance condition (4). This
leads to a max-min problem for a self-adjoint operator:

λ1 = max
b,Σ,Js=0

min
φ∈D(L), φ 6=const

〈−Lφ, φ〉
‖φ‖2 . (8)
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If we stay within the class of reversible diffusions then it is
sufficient to consider spectral optimization problems for selfadjoint
operators.

When sampling from multimodal distributions (metastability...) it is
reasonable to expect that a well chosen space-dependent
diffusion coefficient can speed up convergence to equilibrium.
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Consider the overdamped Langevin dynamics

dXt = −∇V (Xt) dt +
√

2β−1 dWt . (9)

The law (PDF) ψt of Xt satisfies the Fokker-Planck equation

∂tψt = ∇ · (∇Vψt + ∇ψt) . (10)

Under appropriate assumptions on the potential, ψ∞ satisfies a
Poincaré inequality: there exists λ > 0 such that for all probability
density functions φ,

∫

RN

(

φ

ψ∞
− 1

)2

ψ∞dx ≤ 2
λ

∫

RN

∣

∣

∣

∣

∇
(

φ

ψ∞

)
∣

∣

∣

∣

2

ψ∞dx . (11)
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The optimal parameter λ in (11) is the spectral gap of the
Fokker-Planck operator ∇ · (∇V · +∇·), which is self-adjoint in
L2(RN , ψ−1

∞ dx).

(11) is equivalent to exponential convergence to equilibrium for (9):
for all initial conditions ψ0 ∈ L2(RN , ψ−1

∞ dx), for all times t ≥ 0,

‖ψt − ψ∞‖L2(ψ−1
∞ dx)

≤ e−λt‖ψ0 − ψ∞‖L2(ψ−1
∞ dx)

, (12)
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We will consider the nonreversible dynamics (Hwang et al 1993,
2005).

dX b
t =

(

−∇V (X b
t ) + b(X b

t )
)

dt +
√

2 dWt , (13)

where b is taken to be divergence-free with respect to the
invariant distribution ψ∞ dx :

∇ ·
(

be−V )

= 0. (14)

This ensures that ψ∞(x) dx is still the invariant measure of the
dynamics (13).

We can construct such vector fields by taking

b = J∇V , J = −JT . (15)
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The dynamics (13) is non-reversible: (X b
t )0≤t≤T has the same law

as (X−b
T−t)0≤t≤T and thus not the same law as (X b

T−t)0≤t≤T .

Equivalently, the system does not satisfy detailed balance–the
stationary probability flux is not zero.

From (15) it is clear that there are many (in fact, infinitely many)
different ways for modifying the reversible dynamics without
changing the invariant measure.
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We ask whether the addition of a nonreversible term can improve
the rate of convergence to equilibrium and, if so, whether there
exists an optimal choice for the perturbation.

This question leads to a min-max problem:

max
b∈A

min Re
(

σ(−Lb)
)

.

where
Lb = (−∇V + b) · ∇ + ∆.

We are perturbing a self-adjoint operator L with discrete spectrum
by adding an antisymmetric operator that preserves the null space
of L. We want to find the antisymmetric perturbation that
maximizes the spectral gap.
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The reversible case is the worst (Hwang et al 2005):
◮ Convergence to equilibrium (measured in L2(Rd , ψ−1

∞
)) is slowest

for the reversible case.
◮ In other words: the spectral gap is the smallest for the self-adoint

problem.
◮ Related work on Poincare and logarithmic Sobolev inequalities for

nonreversible diffusions (Arnold, Carlen, Ju 2008).

Intuition: the addition of a nonreversible (Hamiltonian) part
introduces a drift that can help the system escape from
metastable states.
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We consider the nonreversible dynamics

dXt = (−I + δJ)∇V (Xt ) dt +
√

2β−1 dWt , (16)

with δ ∈ R and J the standard 2 × 2 antisymmetric matrix, i.e.
J12 = 1, J21 = −1. For this class of nonreversible perturbations
the parameter that we wish to choose in an optimal way is δ.

However, the numerical experiments will illustrate that even a
non-optimal choice of δ can significantly accelerate convergence
to equilibrium.

We will use the potential

V (x , y) =
1
4
(x2 − 1)2 +

1
2

y2. (17)
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Figure: Second moment as a function of time for (16) with the potential (17).
We take 0 initial conditions and β−1 = 0.1.

G.A. Pavliotis (Imperial College London) Nonreversible Diffusions 20 / 43



The upper bound for the reversible dynamics (9) is still valid:

‖ψb
t − ψ∞‖L2(ψ−1

∞ dx)
≤ e−λt‖ψb

0 − ψ∞‖L2(ψ−1
∞ dx)

. (18)

Adding a non-reversible part to the dynamics cannot be worse
than the original dynamics (9) (where b = 0) in terms of
exponential rate of convergence.

Our main result is that for a linear drift it is possible to choose b in
order to obtain convergence at exponential rate of the form:

‖ψb
t − ψ∞‖L2(ψ−1

∞ dx)
≤ C(V , b)e−λt‖ψb

0 − ψ∞‖L2(ψ−1
∞ dx)

, (19)

with λ > λ and C(V ,b) > 1.
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Let V (x) = 1
2xT Sx . The nonreversible perturbations that

satisfy (14) are of the form

b(x) = −Ax

A = JS , with J = −JT . (20)

The corresponding SDE is

dX J
t = −(I + J)SX J

t dt +
√

2 dWt . (21)

The invariant distribution is

ψ∞(x) =
det(S)1/2

(2π)N/2
exp

(

−xT Sx
2

)

. (22)
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Theorem

Define BJ = (I + J)S . Then

max
J∈AN (R)

min Re (σ(BJ)) =
Tr(S)

N
. (23)

Furthermore, one can construct matrices Jopt ∈ AN(R) such that the
maximum in (23) is attained. The matrix Jopt can be chosen so that the
semigroup associated to BJopt satisfies the bound

∥

∥

∥
e−(I+Jopt)St

∥

∥

∥
≤ C(1)

N κ(S)1/2 exp
(

−Tr(S)

N
t
)

, (24)

where κ(S) = ‖S‖ ‖S−1‖ denotes the condition number.
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Theorem

For BJ = (I + J)S with J ∈ AN , the drift-diffusion operator
LJ = −(BJx).∇ + ∆ defined in L2(RN , ψ∞dx ; C) with domain of
definition

D(LJ) =
{

u ∈ L2(RN , ψ∞dx ; C) , LJu ∈ L2(RN , ψ∞dx ; C)
}

generates a contraction semigroup (etLJ )t≥0 and it has a compact
resolvent. Optimizing its spectrum with respect to J gives

max
J∈AN (R)

min Re (σ(−LJ)) =
Tr(S)

N
. (25)
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Theorem (contd.)

Furthermore, the maximum in (25) is attained for the matrices
Jopt ∈ AN(R) constructed as before. The matrix Jopt can be chosen so
that

∥

∥

∥

∥

etLJopt u −
(

∫

RN
uψ∞dx

)∥

∥

∥

∥

L2(ψ∞dx)

≤ C(2)
N κ(S)7/2 exp

(

−Tr(S)

N
t
)

∥

∥

∥

∥

u −
(

∫

RN
uψ∞dx

)
∥

∥

∥

∥

L2(ψ∞dx)

(26)

holds for all u ∈ L2(RN , ψ∞dx ; C) and all t ≥ 0.
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Corollary

Let us consider the Fokker Planck equation associated to the
dynamics (21) on X J

t :

∂tψ
J
t = ∇ ·

(

BJx ψJ
t + ∇ψJ

t

)

, (27)

where BJ = (I + J)S. Let us assume that ψJ
0 ∈ L2(RN , ψ−1

∞ dx). Then,
by considering J = −Jopt , where Jopt ∈ AN(R) refers to the matrix
considered in Theorem 2 to get (26). Then the inequality

∥

∥

∥
ψJ

t − ψ∞

∥

∥

∥

L2(ψ−1
∞ dx)

≤ C(2)
N κ(S)7/2 exp

(

−Tr(S)

N
t
)

∥

∥

∥
ψJ

0 − ψ∞

∥

∥

∥

L2(ψ−1
∞ dx)

,

holds for all t ≥ 0 , when ψ∞ is defined by (22).
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The proofs of these results consist of three steps:

Solve the min-max problem for the matrix BJ = (I + J)S.

Calculate the spectrum of LJ in terms of the eigenvalues of BJ .

Control the constant and optimize wrt to N.
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Proposition

Assume that J̃ = S1/2JS1/2 ∈ AN(R) and that S ∈ S>0
N (R) . Then the

following two conditions are equivalent:

(i) The matrix B̃J = S + J̃ is diagonalizable (in C) and the spectrum
of B̃J satisfies

σ(B̃J) ⊂ Tr(S)

N
+ iR . (28)

(ii) There exists a real symmetric positive definite matrix Q = QT

such that

J̃Q − QJ̃ = −QS − SQ +
2Tr(S)

N
Q . (29)
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Let {λk}N
k=1 denote the (positive real) eigenvalues of Q (counted

with multiplicity), and {ψk}N
k=1 the associated eigenvectors, which

form an orthonormal basis of R
N .

Equation (29) is equivalent to the following two conditions: for all k
in {1, . . . ,N},

(ψk ,Sψk )
R

=
Tr(S)

N
(30)

and, for all j 6= k in {1, . . . ,N},

(λj − λk )(ψj , J̃ψk )R = (λk + λj)(ψj ,Sψk )R . (31)

This equivalence enables us to develop an algorithm for
calculating the optimal nonreversible perturbation.
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The calculation of the eigenvalues of the matrix in the drift is
sufficient in order to calculate the spectrum of the generator.
Consider the linear SDE (Ornstein-Uhlenbeck process)

dXt = BXt dt + σ dWt (32)

The generator is (with Σ = σσT )

L =
1
2

Tr
(

ΣD2
)

+ 〈Bx ,∇〉 (33)

Σ can be degenerate, provided that L is hypoelliptic.

We assume that (32) is ergodic with unique Gaussian invariant
measure π(x) dx .
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The spectrum of L in Lp(RN ;π(x)) has been calculated in
Metafune, Pallara and Priola, J. Func. Analysis 196 (2002), pp.
40-60:
For all p > 1 the spectrum consists of integer linear combinations
of the drift matrix. It is independent of the diffusion matrix:

σ(L) =







r
∑

j=1

njλj , nj ∈ N







, (34)

where
{

λj
}r

j=1 denote the r (distinct) eigenvalues of A. In
particular, the spectral gap of the generator L is determined by the
eigenvalues of A.
A new proof of this result (for p = 2) can be found in M Ottobre,
G.P., K. Pravda-Starov, J. Func. analysis 262(9), 4000-4039
(2012).
A similar result can also be proved in infinite dimensions: van
Neerven, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8
(2005), no. 3, 473-495.
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To prove the exponential convergence for the solution of the
Fokker-Planck equation and to estimate the constant:

Since LJ is not self-adjoint, in addition to spectral information we
also need estimates on the resolvent.

We use the second quantization formalism (Wick calculus):

−L̃J = a∗,T (S − J̃)a . (35)

where a, a∗ denote creation and annihilation operators.

Use an appropriate expansion in Hermite polynomials.

For the constant in front of the exponential we have that

C(2)
N = O(N3).
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Algorithm for constructing the optimal nonreversible perturbation

Start from an arbitrary orthonormal basis (ψ1, . . . , ψN).

for n = 1 : N − 1 do
begin

1 Make a permutation of (ψn, . . . , ψN) so that

(ψn,Sψn)R = max
k=n,...,N

(ψk ,Sψk )R > Tr(S)/N

and
(ψn+1,Sψn+1)R = min

k=n,...,N
(ψk ,Sψk )R < Tr(S)/N .

2 Compute t∗ such that ψt∗ = cos(t∗)ψn + sin(t∗)ψn+1 satisfies
(ψt∗ ,Sψt∗)R = Tr(S)/N

3 Use a Gram-Schmidt procedure to change the set of vectors
(ψt∗ , ψn+1, . . . , ψN) to an orthonormal basis (ψt∗ , ψ̃n+1, . . . , ψ̃N) .

4 Increase n by one and go back to step 1.

end
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We consider the three dimensional problem with the symmetric matrix

S = diag(1, 0.1, 0.01). (36)

The spectral gap of the optimally perturbed nonreversible matrix (and of the
generator of the semigroup) is given by

TrS
3

= 0.37,

a substantial improvement over that of S, 0.01.
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Figure: Norms of the matrix exponentials for the 3 × 3 diagonal matrix (36)
and its optimal nonreversible perturbation.
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We consider a 100 × 100 diagonal matrix with random entries, uniformly
distributed on [0, 1]. For our example the minimum diagonal element (spectral
gap) is 0.0012. On the contrary, the spectral gap of BJ with J = Jopt is 0.4762.
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Figure: Norms of the matrix exponentials for a diagonal matrix with random
uniformly distributed entries and its optimal nonreversible perturbation for
N = 100.
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Consider a finite difference approximation of the SPDE

∂tu = ∆u + ξ. (37)

We consider this SPDE in 1 dimension on [0, 1] with Dirichlet boundary
conditions.

We can use the finite difference approximation to sample approximately
from an infinite dimensional Gaussian measure.
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Figure: Norms of the matrix exponentials for the the discrete Laplacian and
its optimal nonreversible perturbation for N = 100.
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There are many other stochastic dynamics that can be used in order to
sample from a given distribution.

Consider for example the second order Langevin dynamics

q̈ = −∇V (q) − γq̇ +
√

2γβ−1Ẇ .

For V (q) = 1
2ω

2
0q2 the optimal spectral gap is (using (34))

σopt =
γ

2
, forγ = 2ω0.

We can perturb the Langevin dynamics without changing the invariant
measure 1

Z e−βH(q,p):

q̇ = p − J∇V (q), ṗ = −∇qV (q) + Jp − Γp +
√

2Γβ−1 Ẇ .

We have also considered a general symmetric drift matrix Γ instead of a
scalar.
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Consider the three models

q̇ = −V ′(q) +
√

2Ẇ , (38a)

q̈ = −V ′(q) − γq̇ +
√

2γẆ , (38b)

q̇ = p, ṗ = −V ′(q) + λz, ż = −αz − λp +
√

2αẆ .

(38c)

All these three models can be used in order to sample from the
distribution Z−1e−V (q).

Notice that there are no control parameters in (38a), 1 (the friction
coefficient) in (38b) and 2 (α and λ) in (38c).

We would like to choose (α, λ) in (38c) in order to optimize the rate of
convergence to equilibrium.
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Figure: Spectral gap as a function of α and λ.
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