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History matching
Parameter values are identified by minimizing an objective function that 
represent the mismatch between modeled and observed production data

where 

represents system variables at time
represents the system evolution at time
represents the analytical relation between the system variable and data

Background: History matching problem (4DVar)
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Background: History matching problem (4DVar)

Iterative gradient-based optimization scheme (often BFGS) where 
the gradients are computed by using the adjoint model.

To compute the gradient an adjoint model is implemented

where       represents the reservoir model,      represents the adjoint 
variable and the gradient is given by:
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Motivation

4DVar or the adjoint method 
• Numerically efficient way to calculate the gradient (one gradient calculation requires only one 

forward  solution and one adjoint solution regardless of the number of model parameters)
• Very difficult to implement the adjoint of the tangent linear approximation of the forward model
• Requires access to the simulation code

The reservoir system
Large-order reservoir models the intrinsic order of the system is (much) lower than the number of 

grid blocks in the model (small “input space”)
Very sparse data in space  gives information only around the wells (small “output space”)

Reservoir model

Reduced
model

Adjoint
model

History matching

Estimate

Sketch of the method



Model-reduced gradient-based history matching

Projection based method
Suppose the dynamics of a system are described by

Petrov-Galerkin projection specifies the dynamics of a variable                                        
by

Proper Orthogonal Decomposition
Suppose we have a set of data                                                                 , 
We seek a projection                  of a fixed rank     such that minimizes the total error 

The optimal subspace of dimension k is given by the  first k eigenvectors of the 
covariance matrix of state variables generated by the data       and the state can be 
approximated as

where       consists of k first eigenvectors of          and
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Model-reduced gradient-based history matching

The tangent linear approximation of the reservoir model is given by

Then assuming that                       we obtain

It is low-order approximation of the original model and has easily available adjoint 
model

The          and           are approximated by finite differences:

 1 ( )( ) ( )
i

TT T
i i tt t J  rxζ Φ ΨF ζ

( ) ( )i it t x Φr

1( ) ( )T T
i it t  xr Ψ F r Ψ FΦ Δθ

1( ) ( )i it t  x θΔx ΔxF F Δθ

xF Φ F

     1

1

1 1( ), ( )(
)

,),
(

i i

i

i i i i j
j j

t
t

t t 


 







x

ff x θ
F

x
x θ f x Φ θ

Φ Φ

     1 11
( ), (, )( ,) j

i i ii i ij j
tt t








 

 
  





θ

f x f x θ f x θ Φθ
F

θ



Model-reduced gradient-based history matching

The linear reduced model can now be given in state space form by:

So the (variation of the) original parameter vector is still part of the reduced model. The
reduction of the number of parameters is done separately.

Remark: 
The reduced model should only be able to reproduce the input-output behavior of 
the original model
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Model-reduced gradient-based history matching

Balanced Proper Orthogonal Decomposition
Controllability Gramian measures to what extent the state of the model can be influenced 
by manipulating the input; Can be approximated by snapshots of the forward model
Observability Gramian measures to what extent the state influences the outputs; Can be 
approximated by snapshots of the adjoint model.
Solve the SVD of the matrix 

where       is the set of snapshots the reservoir model and       is the set of snapshots 
from the adjoint model 
The balancing transformation is given as

And:
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This is a balanced POD method. We need the adjoint for the state now!



Model-reduced gradient-based history matching
Re-parameterization

High-order Reservoir Model Simulation

Low-order Model Simulation

Gradient Calculation

Reduced Objective Function 
Calculation

Initial Parameters

Objective Function Calculation

Converged? Done

Building of the Low-order Model

Converged?

Low-order Adjoint Model Simulation

Sup Optimal Parameters

Parameters Update

Runs of the simulator to get snapshots



Remarks

• The computational effort is dominated by the generation of the reduced model 
(generating snapshots, computing the sensitivity matrices). The number of model 
simulations is roughly de dimension of the reduced model. 

• The approach is very efficient in case the simulation period of the ensemble of 
model simulations can be chosen very small compared to the calibration period 
(unfortunately this is not the case for reservoir modelling problems)

• The number of outer loop iterations is usually very small: 2-5. For most  iterations 
the reduced model can be the same and only the residuals have to be updated. 

• Model-reduced history matching is very well suited for parallel processing since 
the ensemble of model simulations can be created completely independent of 
each other

• If the complete tangent linear model is available the reduced model can be 
obtained easily and the approach is very efficient: the number of model 
simulations required is a little more the number of parameters 



Reservoir (2D)
21x21x1  grid blocks

Phases
Oil and water; relative permeability curves are known
Reservoir simulator
Simplifications: absence of gravity forces and capillary pressures; isotropic

permeability; parameter independence on pressure 
Setup for experiments
• Five spot injection - production pattern
• Reservoir is operated on rate constraint in the injection well and on bottom hole 

pressure constraints in production wells
Measurements
• Measurements taken each 30 days during 250 days, before water breakthrough
• Bottom hole pressure measurements from injection well with  10% error
• Flow rate measurements from production wells with 5% error
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Results: Synthetic example 1 and 2
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The prior knowledge is given by an ensemble

Results: Parameters reduction



Results: Synthetic example 1

Gradients comparison

States reconstruction

POD BPODADJ
BPOD-based gradient
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Results: Synthetic example 1

Log permeability fields

Numerical efficiency data

Method Objective 
function

Reduction Time in simulations

Initial (Prior) 1657 - 1

Adjoint-based approach (30 iter) 20.05 441 (sat) + 441 (prf) + 20 (perm) 61 (=1+30*2)

Adjoint-based approach 18.65 441 (sat) + 441 (prf) + 20 (perm) 135 (= 67*2+1)

POD-based approach 20.27 41(99%) + 31(99.9%)+ 20 115 (=1+20+72+20+1+2)

Balanced POD-based approach 18.73 42(99.9%) + 6 (99.9%)+20 114 (=1+2*20+48+20+5)

True Prior POD BPOD ADJ
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Results: Synthetic example 1

Prediction of the water production rate
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Results: Synthetic example 2

Log permeability fields

Numerical efficiency data

Method Objective function Reduction Time in simulations

Initial (Prior) 226.49 - 1

Adjoint-based approach (30 iter) 21.21 441 (sat) + 441 (prf) + 20 (perm) 61 (=1+30*2)

Adjoint-based approach 20.33 441 (sat) + 441 (prf) + 20 (perm) 113 (=1+56*2)

POD-based approach 22.04 42 (99%) + 30 (99.9%) + 20 114 (=1+20+72+20)

BPOD-based approach 20.44 49 (99.9%) + 9 (99.9%) + 20 121 
(=1+2*20+58+20)

True Prior BPOD ADJ
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Results: Synthetic example 2

The prediction of water breakthrough time and produced water flow 
rates
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More realistic study case

• Reservoir model assumption
 3 dimensional (60x60x7 with 

18553 active grid blocks)
 Two-phase (oil-water)
 No-flow boundaries at all sides 

• Measurements
 Bottom hole pressures from 

injectors each 60 days during 3 
years

 Flow rates from producers each 
60 days during 3 years

Gijs van Essen [2006]

• Producer

• Injector



Results

True log  perm field
POD-based

log  perm field Adjoint log  perm field
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Methods Nr of model

simulations

Objective 

function

Permeability 

patterns

State 

patterns

Number of 

snapshots

Initial (Prior) - 346 - - -

Adjoint-based approach ~ 15*2 + 45 (6) 98 22 - -

POD –based model-reduced approach ~ 68 (29+6+11+22) 114 22 29+6 400

Balanced-POD-based model-reduced 
approach

~ 59 (6+6+2*11+22+3) 117 22 6+6 400

Balanced-POD

based

log  perm field
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Calibration of a large scale numerical tidal model



 Based on shallow water equations

 Grid size: 1.5’ by 1.0’ (~2 km)

 Grid dimensions: 1120 x 1260 cells

 Active Grid Points: 869544

 Time step: 2 minutes

 8 main constituents





Twin experiment: 
Estimation of 7 depth parameters using generated 

data (noise free)



6/21/2013 25



6/21/2013 26



6/21/2013 27



6/21/2013 28



Experiment with field data

 Parameter: Depth
 Calibration run: 28 Dec 2006 to 30 Jan 2007
 Measurement data: 01 Jan 2007 to 30 Jan 2007
 Includes two spring-neap cycles
 Assimilation Stations: 35
 Validation Stations: 15
 Ensemble of forward model simulations for a period of four days (01 Jan 2007 to 04 

Jan 2007)



DCSM

 Divide model area in 4 sub domains + 1 
overall parameter

 No. of snapshots: 132 (Every three hours)
 24 POD modes are required to capture 97% 

energy
 Same POD modes are used in 2rd iteration

 Initial RMS: 25.7 cm

 After 2rd iteration: 14.9 cm

 Improvement :  42%



DCSM(Validation results)

Similar improvement as in the case of
assimilation stations



Computational Cost

Estimation 5 parameters, calibration period 1 month: 
Number of simulations of 1 month: 4.7, reduction criterion 
42% (2 iterations, no model update in second iteration)

Estimation 20 parameters (4 bottom friction and 16 depth values), 
calibration period 1 month: Number of simulations of 1 month: 11, 
reduction criterion 50% (5 iterations, no model update in second 
and fourth iteration)



Conclusions

• POD-based model-reduced approach does not require the implementation 
of the adjoint of the tangent linear model of the original reservoir model

• Model-reduced gradient-based algorithms provides for reservoir models 
parameter estimates with comparable accuracy as those obtained using a 
classical adjoint-based method

• The efficiency of the approach depends very much on the application: A 
very good efficiency is obtained if the time scale of the model is much 
smaller than the calibration period.

• The maximum number of parameters is, say, a few hundred. 
• The balanced POD-based method is a little bit more efficient then the POD-

based method, but requires the Jacobians of the original model.
• If the adjoint is available both POD approaches are significantly more 

efficient then the classical adjoint method (if the number of parameters is 
not too large)



For more information see: 

Model-reduced gradient-based history matching”, Kaleta, MP, Hanea, RG, 
Heemink, AW and Jansen JD,Computational Geosciences, 2011

Efficient identification of uncertain parameters in a large-scale tidal model of 
the European continental shelf by proper orthogonal decomposition, Altaf, M.U. , 
Verlaan, M., Heemink, A.W, International Journal for Numerical Methods in 
Fluids, 2012.   



Questions?


