Definitions	Application	Quaternions	HMF	Application II

Half integral weight modular forms

Ariel Pacetti

Universidad de Buenos Aires

Explicit Methods for Modular Forms March 20, 2013

Definitions ●○○○○○	Application	Quaternions	HMF 00000000	Application II O
Motivation				

What is a half integral modular form?

Definitions ●○○○○○	Application	Quaternions	HMF 00000000	Application II ○
Motivation				

Definitions ●00000	Application	Quaternions	HMF 00000000	Application II O
Motivation				

• The Dedekind eta function

$$\eta(z) = e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z}).$$

Definitions ●○○○○○	Application	Quaternions	HMF 00000000	Application II O
Motivation				

• The Dedekind eta function

$$\eta(z) = e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z}).$$

It is well know that $\eta(z)^{24} = \Delta(z)$ a weight 12 cusp form, so η "should be" of weight 1/2.

Definitions ●○○○○○	Application	Quaternions	HMF 00000000	Application II O
Motivation				

• The Dedekind eta function

$$\eta(z) = e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z}).$$

It is well know that $\eta(z)^{24} = \Delta(z)$ a weight 12 cusp form, so η "should be" of weight 1/2.

Actually η turns out to be weight 1/2 but with a character of order 24.

Definitions ○●○○○○	Application	Quaternions	HMF 00000000	Application II O
Motivation				

• The classical theta function

$$\theta(z) = \sum_{n=-\infty}^{\infty} e^{2\pi i n^2 z}.$$

Definitions ○●○○○○	Application	Quaternions	HMF 00000000	Application II O
Motivation				

• The classical theta function

$$\theta(z) = \sum_{n=-\infty}^{\infty} e^{2\pi i n^2 z}.$$

It is not hard to see that if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4)$, then

$$\left(\frac{\theta(\gamma z)}{\theta(z)}\right)^2 = \left(\frac{-1}{d}\right)(cz+d).$$

Definitions ○●○○○○	Application	Quaternions	HMF 00000000	Application II O
Motivation				

• The classical theta function

$$\theta(z) = \sum_{n=-\infty}^{\infty} e^{2\pi i n^2 z}.$$

It is not hard to see that if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4)$, then

$$\left(\frac{\theta(\gamma z)}{\theta(z)}\right)^2 = \left(\frac{-1}{d}\right)(cz+d).$$

So $\theta(z)^2 \in M_1(\Gamma_0(4), \chi_{-1})$.

Definitions	Application	Quaternions	HMF 00000000	Application II O
Definition				

We consider the factor of automorphy $J(\gamma, z) = \frac{\theta(\gamma z)}{\theta(z)}$.

Definitions	Application	Quaternions	HMF 00000000	Application II O
Definition				

Definitions ○○●○○○	Application	Quaternions	HMF 00000000	Application II O
Definition				

Definition

A modular form of weight k/2, level 4N and character ψ is an holomorphic function $f:\mathfrak{H}\to\mathbb{C}$ such that

Definitions ○○●○○○	Application	Quaternions	HMF 00000000	Application II O
Definition				

Definition

A modular form of weight k/2, level 4N and character ψ is an holomorphic function $f : \mathfrak{H} \to \mathbb{C}$ such that

•
$$f(\gamma z) = J(\gamma, z)^k \psi(d) f(z) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N)$$

Definitions ○○●○○○	Application	Quaternions	HMF 00000000	Application II O
Definition				

Definition

A modular form of weight k/2, level 4N and character ψ is an holomorphic function $f : \mathfrak{H} \to \mathbb{C}$ such that

•
$$f(\gamma z) = J(\gamma, z)^k \psi(d) f(z) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N)$$

• f(z) is holomorphic at the cusps.

Definitions ○○●○○○	Application	Quaternions	HMF 00000000	Application II O
Definition				

Definition

A modular form of weight k/2, level 4N and character ψ is an holomorphic function $f : \mathfrak{H} \to \mathbb{C}$ such that

•
$$f(\gamma z) = J(\gamma, z)^k \psi(d) f(z) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N)$$

• f(z) is holomorphic at the cusps.

We denote by $M_{k/2}(4N, \psi)$ the space of such forms and $S_{k/2}(4N, \psi)$ the subspace of cuspidal ones.

Definitions	Application	Quaternions	HMF	Application II
○○○●○○		000000	00000000	O
Hecke operators				

Definitions ○○○●○○	Application	Quaternions	HMF 00000000	Application Ⅱ ○
Hecke operators				

 $T_n = 0 \text{ if } n \text{ is not a square.}$

Definitions ○○○●○○	Application	Quaternions	HMF 00000000	Application II O
Hecke operators				

- $T_n = 0 \text{ if } n \text{ is not a square.}$
- **2** If (n: 4N) = 1, T_{n^2} is self adjoint for an inner product.

Definitions	Application	Quaternions	HMF 00000000	Application II O
Hecke operators				

- $T_n = 0 \text{ if } n \text{ is not a square.}$
- **2** If (n: 4N) = 1, T_{n^2} is self adjoint for an inner product.

$$T_{n^2} T_{m^2} = T_{m^2} T_{n^2}.$$

Definitions ○○○●○○	Application	Quaternions	HMF 00000000	Application II O
Hecke operators				

$$T_n = 0 \text{ if } n \text{ is not a square.}$$

- **2** If (n: 4N) = 1, T_{n^2} is self adjoint for an inner product.
- $T_{n^2} T_{m^2} = T_{m^2} T_{n^2}.$
- **(**) If terms of q-expansion, let $\omega = \frac{k-1}{2}$, then T_{p^2} acts like

$$a_{p^2n} + \psi(n) \left(\frac{-1}{p}\right)^{\omega} \left(\frac{n}{p}\right) p^{\omega-1} a_n + \psi(p^2) p^{k-1} a_{n/p^2}.$$

Definitions ○○○●○○	Application	Quaternions	HMF 00000000	Application II O
Hecke operators				

$$T_n = 0 \text{ if } n \text{ is not a square.}$$

- **2** If (n: 4N) = 1, T_{n^2} is self adjoint for an inner product.
- $T_{n^2} T_{m^2} = T_{m^2} T_{n^2}.$
- () If terms of q-expansion, let $\omega = \frac{k-1}{2}$, then T_{p^2} acts like

$$a_{p^2n} + \psi(n) \left(\frac{-1}{p}\right)^{\omega} \left(\frac{n}{p}\right) p^{\omega-1} a_n + \psi(p^2) p^{k-1} a_{n/p^2}.$$

Hence there exists a basis of eigenforms for the Hecke operators prime to 4N.

Definitions ○○○○●○	Application	Quaternions	HMF 00000000	Application Ⅱ ○
Shimura's Theor	rem			

Theorem (Shimura)

For each square-free positive integer n, there exists a \mathbb{T}_0 -linear map

 $\text{Shim}_n: S_{k/2}(4N, \psi) \to M_{k-1}(2N, \psi^2).^1$

¹The actual level may be smaller

Definitions ○○○○●○	Application	Quaternions	HMF 00000000	Application Ⅱ ○
Shimura's Theor	rem			

Theorem (Shimura)

For each square-free positive integer n, there exists a \mathbb{T}_0 -linear map

$$\mathsf{Shim}_n: S_{k/2}(4N,\psi) \to M_{k-1}(2N,\psi^2).^1$$

Furthermore, if $f \in S_{k/2}(4N, \psi)$ is an eigenform for all the Hecke operators with eigenvalues λ_n , then $\text{Shim}_n(f)$ is (up to a constant) given by

$$\prod_{p} (1 - \lambda_p p^{-s} + \psi(p^2) p^{k-2-2s})^{-1}$$

¹The actual level may be smaller

Definitions ○○○○●○	Application	Quaternions	HMF 00000000	Application Ⅱ ○
Shimura's Theor	rem			

Theorem (Shimura)

For each square-free positive integer n, there exists a \mathbb{T}_0 -linear map

$$\mathsf{Shim}_n: S_{k/2}(4N,\psi) \to M_{k-1}(2N,\psi^2).^1$$

Furthermore, if $f \in S_{k/2}(4N, \psi)$ is an eigenform for all the Hecke operators with eigenvalues λ_n , then $\text{Shim}_n(f)$ is (up to a constant) given by

$$\prod_{p} (1 - \lambda_{p} p^{-s} + \psi(p^{2}) p^{k-2-2s})^{-1}$$

What information encode the non-square Fourier coefficients?

¹The actual level may be smaller

Definitions ○○○○○●	Application	Quaternions	HMF 00000000	Application II O
Waldspurger's tl	neorem			

Let $f \in S_{k/2}(4N, \psi)$, $F = \text{Shim}(f) \in S_{k-1}(2N, \psi^2)$ eigenforms.

Definitions	Application	Quaternions	HMF	Application II
000000				
Waldspurge	r's theorem			

Let
$$f \in S_{k/2}(4N, \psi)$$
, $F = \text{Shim}(f) \in S_{k-1}(2N, \psi^2)$ eigenforms.

Let n_1, n_2 be square free positive integers such that $n_1/n_2 \in (\mathbb{Q}_p^{\times})^2$ for all $p \mid 4N$.

Definitions ○○○○○●	Application	Quaternions	HMF 00000000	Application II O
Waldspurger's	s theorem			

Let
$$f \in S_{k/2}(4N, \psi)$$
, $F = \text{Shim}(f) \in S_{k-1}(2N, \psi^2)$ eigenforms.

Let n_1, n_2 be square free positive integers such that $n_1/n_2 \in (\mathbb{Q}_p^{\times})^2$ for all $p \mid 4N$. Then

$$a_{n_1}^2 L(F, \psi_0^{-1}\chi_{n_2}, \omega) \psi\left(\frac{n_2}{n_1}\right) n_2^{k/2-1} = a_{n_2}^2 L(F, \psi_0^{-1}\chi_{n_1}, \omega) n_1^{k/2-1}$$

where $\psi_0(n) = \psi(n) \left(\frac{-1}{n}\right)^{\omega}$, χ_n is the quadratic character corresponding to the field $\mathbb{Q}[\sqrt{n}]$

Definitions ○○○○○●	Application	Quaternions	HMF 00000000	Application II O
Waldspurger's	s theorem			

Let
$$f \in S_{k/2}(4N, \psi)$$
, $F = \text{Shim}(f) \in S_{k-1}(2N, \psi^2)$ eigenforms.

Let n_1, n_2 be square free positive integers such that $n_1/n_2 \in (\mathbb{Q}_p^{\times})^2$ for all $p \mid 4N$. Then

$$a_{n_1}^2 L(F, \psi_0^{-1}\chi_{n_2}, \omega) \psi\left(\frac{n_2}{n_1}\right) n_2^{k/2-1} = a_{n_2}^2 L(F, \psi_0^{-1}\chi_{n_1}, \omega) n_1^{k/2-1}$$

where $\psi_0(n) = \psi(n) \left(\frac{-1}{n}\right)^{\omega}$, χ_n is the quadratic character corresponding to the field $\mathbb{Q}[\sqrt{n}]$

If we fixed n_1 , for all n as above

Definitions ○○○○○●	Application	Quaternions	HMF 00000000	Application II O
Waldspurger's	s theorem			

Let
$$f \in S_{k/2}(4N, \psi)$$
, $F = \text{Shim}(f) \in S_{k-1}(2N, \psi^2)$ eigenforms.

Let n_1, n_2 be square free positive integers such that $n_1/n_2 \in (\mathbb{Q}_p^{\times})^2$ for all $p \mid 4N$. Then

$$a_{n_1}^2 L(F, \psi_0^{-1}\chi_{n_2}, \omega) \psi\left(\frac{n_2}{n_1}\right) n_2^{k/2-1} = a_{n_2}^2 L(F, \psi_0^{-1}\chi_{n_1}, \omega) n_1^{k/2-1}$$

where $\psi_0(n) = \psi(n) \left(\frac{-1}{n}\right)^{\omega}$, χ_n is the quadratic character corresponding to the field $\mathbb{Q}[\sqrt{n}]$

If we fixed n_1 , for all n as above

$$a_n^2 = \kappa L(F, \psi_0^{-1}\chi_n, \frac{k-1}{2})\psi(n)n^{k/2-1}$$

where κ is a global constant.

Definitions	Application ●○	Quaternions	HMF 00000000	Application II O
Congruent Number Problem				

Definition: $n \in \mathbb{N}$ is called a *congruent number* if it is the area of a right triangle with rational sides.

Definitions	Application	Quaternions	HMF	Application II
	00			
Congruent N	Number Problem			

Definition: $n \in \mathbb{N}$ is called a *congruent number* if it is the area of a right triangle with rational sides.

Theorem (Tunnell)

If $n \in \mathbb{N}$ is odd, (assuming BSD) it is a congruent number iff

$$\# \{ (x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 32z^2 \} = \frac{1}{2} \# \{ (x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 8z^2 \}$$

Definitions	Application	Quaternions	HMF	Application II
	•0			
Congruent N	Number Problem			

Definition: $n \in \mathbb{N}$ is called a *congruent number* if it is the area of a right triangle with rational sides.

Theorem (Tunnell)

If $n \in \mathbb{N}$ is odd, (assuming BSD) it is a congruent number iff

$$\# \{ (x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 32z^2 \} = \\ \frac{1}{2} \# \{ (x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 8z^2 \}$$

For even n, iff

$$\#\{(x, y, z) \in \mathbb{Z}^3 : n/2 = 4x^2 + y^2 + 32z^2\} = \frac{1}{2}\#\{(x, y, z) \in \mathbb{Z}^3 : n/2 = 4x^2 + y^2 + 8z^2\}.$$

Definitions	Application ○●	Quaternions	HMF 00000000	Application II O
Preimages				

Definitions	Application ○●	Quaternions	HMF 00000000	Application II O
Preimages				

() Given $F \in S_{2k}(N, 1)$, construct preimages under Shim.

Definitions	Application ○●	Quaternions	HMF 00000000	Application II O
Preimages				

- **()** Given $F \in S_{2k}(N, 1)$, construct preimages under Shim.
- **2** Give an explicit constant in Waldspurger Theorem.

Definitions	Application ○●	Quaternions	HMF 00000000	Application II O
Preimages				

- **()** Given $F \in S_{2k}(N, 1)$, construct preimages under Shim.
- **2** Give an explicit constant in Waldspurger Theorem.
- **6** Generalize this to Hilbert modular forms.

Definitions	Application ○●	Quaternions	HMF 00000000	Application II O
Preimages				

What we would like to do:

- **()** Given $F \in S_{2k}(N, 1)$, construct preimages under Shim.
- **2** Give an explicit constant in Waldspurger Theorem.
- **6** Generalize this to Hilbert modular forms.

For simplicity we will consider the case of weight k = 2 (where modular forms correspond with elliptic curves).

Definitions	Application	Quaternions •00000	HMF 00000000	Application II O
Quaternionic m	odular forms			

Let *B* be a quaternion algebra over \mathbb{Q} ramified at ∞ .

Definitions	Application	Quaternions ••••••	HMF 00000000	Application II O
Quaternionic modular forms				

Let B be a quaternion algebra over \mathbb{Q} ramified at ∞ . Let $R \subset B$ be an Eichler order of level N.

Let $\mathcal{J}(R)$ be the set of left *R*-ideals and let $\{[\mathfrak{a}_1], \ldots, [\mathfrak{a}_n]\}$ be ideal classes representatives.

Definitions	Application	Quaternions ●00000	HMF 00000000	Application II O
Quaternionic modular forms				

Let *B* be a quaternion algebra over \mathbb{Q} ramified at ∞ . Let $R \subset B$ be an Eichler order of level *N*.

Let $\mathcal{J}(R)$ be the set of left *R*-ideals and let $\{[\mathfrak{a}_1], \ldots, [\mathfrak{a}_n]\}$ be ideal classes representatives. Let M(R) be the \mathbb{C} -v.s. spanned by these representatives.

Definitions	Application	Quaternions ●00000	HMF 00000000	Application II O
Quaternionic modular forms				

Let *B* be a quaternion algebra over \mathbb{Q} ramified at ∞ . Let $R \subset B$ be an Eichler order of level *N*.

Let $\mathcal{J}(R)$ be the set of left *R*-ideals and let $\{[\mathfrak{a}_1], \ldots, [\mathfrak{a}_n]\}$ be ideal classes representatives. Let M(R) be the \mathbb{C} -v.s. spanned by these representatives. Consider the inner product given by

$$\langle [\mathfrak{a}_i], [\mathfrak{a}_j] \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ \frac{1}{2} \# R_r(\mathfrak{a}_i)^{\times} & \text{if } i = j. \end{cases}$$

 Definitions
 Application
 Quaternions
 HMF
 Application II

 Quaternionic modular forms
 ••••••••
 ••••••••
 ••••••••

Let *B* be a quaternion algebra over \mathbb{Q} ramified at ∞ . Let $R \subset B$ be an Eichler order of level *N*.

Let $\mathcal{J}(R)$ be the set of left *R*-ideals and let $\{[\mathfrak{a}_1], \ldots, [\mathfrak{a}_n]\}$ be ideal classes representatives. Let M(R) be the \mathbb{C} -v.s. spanned by these representatives. Consider the inner product given by

$$\langle [\mathfrak{a}_i], [\mathfrak{a}_j] \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ \frac{1}{2} \# R_r(\mathfrak{a}_i)^{\times} & \text{if } i = j. \end{cases}$$

Given $m \in \mathbb{N}$ and $\mathfrak{a} \in \mathcal{J}(R)$, let

$$t_m(\mathfrak{a}) = \{\mathfrak{b} \in \mathcal{J}(R) : \mathfrak{b} \subset \mathfrak{a}, [\mathfrak{a} : \mathfrak{b}] = m^2\}.$$

Definitions	Application	Quaternions 00000	HMF 00000000	Application II O
Hecke operator	S			

$$T_m([\mathfrak{a}]) = \sum_{\mathfrak{b} \in t_m(\mathfrak{a})} rac{[\mathfrak{b}]}{\langle \mathfrak{b}, \mathfrak{b}
angle}.$$

Definitions	Application	Quaternions ○●○○○○	HMF 00000000	Application II O
Hecke operat	ors			

$$T_m([\mathfrak{a}]) = \sum_{\mathfrak{b} \in t_m(\mathfrak{a})} rac{[\mathfrak{b}]}{\langle \mathfrak{b}, \mathfrak{b}
angle}.$$

Proposition The Hecke operators satisfy:

Definitions	Application	Quaternions ○●○○○○	HMF 00000000	Application II O
Hecke operators	5			

$$T_m([\mathfrak{a}]) = \sum_{\mathfrak{b} \in t_m(\mathfrak{a})} rac{[\mathfrak{b}]}{\langle \mathfrak{b}, \mathfrak{b}
angle}.$$

PropositionThe Hecke operators satisfy:are self adjoint (all of them).

Definitions	Application	Quaternions ○●○○○○	HMF 00000000	Application II O
Hecke operators	5			

$$T_m([\mathfrak{a}]) = \sum_{\mathfrak{b} \in t_m(\mathfrak{a})} rac{[\mathfrak{b}]}{\langle \mathfrak{b}, \mathfrak{b}
angle}.$$

Proposition

The Hecke operators satisfy:

- **1** are self adjoint (all of them).
- **2** commute with each other.

Definitions	Application	Quaternions ○●○○○○	HMF 00000000	Application II O
Hecke operat	ors			

$$T_m([\mathfrak{a}]) = \sum_{\mathfrak{b} \in t_m(\mathfrak{a})} rac{[\mathfrak{b}]}{\langle \mathfrak{b}, \mathfrak{b}
angle}.$$

Proposition

The Hecke operators satisfy:

1 are self adjoint (all of them).

2 commute with each other.

Let
$$e_0 = \sum_{i=1}^n \frac{1}{\langle \mathfrak{a}_i, \mathfrak{a}_i \rangle} [\mathfrak{a}_i].$$

Definitions	Application	Quaternions 00000	HMF 00000000	Application II O
Hecke operator	S			

$$T_m([\mathfrak{a}]) = \sum_{\mathfrak{b} \in t_m(\mathfrak{a})} rac{[\mathfrak{b}]}{\langle \mathfrak{b}, \mathfrak{b}
angle}.$$

Proposition

The Hecke operators satisfy:

- **1** are self adjoint (all of them).
- ② commute with each other.

Let $e_0 = \sum_{i=1}^n \frac{1}{\langle a_i, a_i \rangle} [a_i]$. It is an eigenvector for the Hecke operators. Denote by S(R) its orthogonal complement.

Definitions	Application	Quaternions	HMF 00000000	Application Ⅱ ○
Basis problem				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

Definitions	Application	Quaternions	HMF 00000000	Application II O
Basis problem				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

Moreover,

• If N has valuation 1 at p, the new subspace lies in the image.

Definitions	Application	Quaternions ○○●○○○	HMF 00000000	Application II O
Basis problem				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).

Definitions	Application	Quaternions	HMF 00000000	Application II O
Basis problem				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
- We get a map

Definitions	Application	Quaternions	HMF 00000000	Application II O
Basis problem				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
- We get a map

Definitions	Application	Quaternions 000000	HMF 00000000	Application II O
Basis problem				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
- We get a map

Definitions	Application	Quaternions 000●00	HMF 00000000	Application II O
Ternary forms				

In *B*, the quadratic form $\Delta(x) = \text{Tr}(x)^2 - 4 \mathcal{N}(x)$ is a quadratic negative definite form invariant under translation, hence a form in B/\mathbb{Q} .

Definitions	Application	Quaternions 000€00	HMF 00000000	Application II O
Ternary forms				

In *B*, the quadratic form $\Delta(x) = \text{Tr}(x)^2 - 4 \mathcal{N}(x)$ is a quadratic negative definite form invariant under translation, hence a form in B/\mathbb{Q} .

If $\mathfrak{a} \in \mathcal{J}(R)$, and $d \in \mathbb{N}$, let

 $a_d(\mathfrak{a}) = \#\{[x] \in R_r(\mathfrak{a})/\mathbb{Z} : \Delta(x) = -d\}.$

Definitions	Application	Quaternions 000●00	HMF 00000000	Application II O
Ternary forms				

In *B*, the quadratic form $\Delta(x) = \text{Tr}(x)^2 - 4 \mathcal{N}(x)$ is a quadratic negative definite form invariant under translation, hence a form in B/\mathbb{Q} .

If $\mathfrak{a} \in \mathcal{J}(R)$, and $d \in \mathbb{N}$, let

$$\mathsf{a}_d(\mathfrak{a}) = \#\{[x] \in \mathsf{R}_r(\mathfrak{a})/\mathbb{Z} : \Delta(x) = -d\}.$$

For $d \in \mathbb{N}_0$, let $e_d \in M(R)$ be given by

$$e_d = \sum_{i=1}^n \frac{a_d(\mathfrak{a}_i)}{\langle \mathfrak{a}_i, \mathfrak{a}_i \rangle} [\mathfrak{a}_i].$$

Definitions	Application	Quaternions 0000●0	HMF 00000000	Application II O
Theta map				

$$\Theta(\mathbf{v})(z) = \sum_{d \geq 0} \langle \mathbf{v}, e_d
angle q^d.$$

Definitions	Application	Quaternions 0000●0	HMF 00000000	Application II O
Theta map				

$$\Theta({f v})(z) = \sum_{d\geq 0} \langle {f v}, e_d
angle q^d.$$

Theorem (P., Tornaría) The map Θ is \mathbb{T}_0 -linear.

Definitions	Application	Quaternions 0000●0	HMF 00000000	Application II O
Theta map				

$$\Theta({f v})(z) = \sum_{d\geq 0} \langle {f v}, e_d
angle q^d.$$

The map Θ is \mathbb{T}_0 -linear.

Furthermore,

Definitions	Application	Quaternions 0000●0	HMF 00000000	Application II O
Theta map				

$$\Theta({f v})(z) = \sum_{d\geq 0} \langle {f v}, e_d
angle q^d.$$

The map Θ is \mathbb{T}_0 -linear.

Furthermore,

• The image lies in the Kohnen space.

Definitions	Application	Quaternions 0000●0	HMF 00000000	Application II O
Theta map				

$$\Theta({f v})(z) = \sum_{d\geq 0} \langle {f v}, e_d
angle q^d.$$

Theorem (P., Tornaría)

The map Θ is \mathbb{T}_0 -linear .

Furthermore,

- The image lies in the Kohnen space.
- $\Theta(\mathbf{v})$ is cuspidal iff \mathbf{v} is cuspidal.

Definitions	Application	Quaternions 0000●0	HMF 00000000	Application II O
Theta map				

$$\Theta({f v})(z) = \sum_{d\geq 0} \langle {f v}, e_d
angle q^d.$$

The map Θ is \mathbb{T}_0 -linear .

Furthermore,

- The image lies in the Kohnen space.
- $\Theta(\mathbf{v})$ is cuspidal iff \mathbf{v} is cuspidal.

Definitions	Application	Quaternions	HMF 00000000	Application II O
Questions				

Definitions	Application	Quaternions 00000●	HMF 00000000	Application II O
Questions				

 Given F ∈ S₂(N), how to chose R such that Θ(v_F) is non-zero?

Definitions	Application	Quaternions ○○○○○●	HMF 00000000	Application II O
Questions				

- Given F ∈ S₂(N), how to chose R such that Θ(v_F) is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

Definitions	Application	Quaternions ○○○○○●	HMF 00000000	Application II O
Questions				

- Given F ∈ S₂(N), how to chose R such that Θ(v_F) is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$L(F,1)L(F,d,1) = \star \frac{\langle F,F \rangle}{\sqrt{|d|}} \frac{a_{F,O}(d)^2}{\langle \mathbf{v}_F,\mathbf{v}_F \rangle}.$$

Definitions	Application	Quaternions	HMF 00000000	Application II O
Questions				

- Given F ∈ S₂(N), how to chose R such that Θ(v_F) is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$L(F,1)L(F,d,1) = \star \frac{\langle F,F \rangle}{\sqrt{|d|}} \frac{a_{F,O}(d)^2}{\langle \mathbf{v}_F,\mathbf{v}_F \rangle}.$$

• Done by Gross if N = p.

Definitions	Application	Quaternions	HMF 00000000	Application II O
Questions				

- Given F ∈ S₂(N), how to chose R such that Θ(v_F) is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$L(F,1)L(F,d,1) = \star \frac{\langle F,F \rangle}{\sqrt{|d|}} \frac{a_{F,O}(d)^2}{\langle \mathbf{v}_F,\mathbf{v}_F \rangle}.$$

- Done by Gross if N = p.
- Done by Böcherer and Schulze-Pillot if *N* is odd and square free.

Definitions	Application	Quaternions	HMF 00000000	Application II O
Questions				

- Given F ∈ S₂(N), how to chose R such that Θ(v_F) is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$L(F,1)L(F,d,1) = \star \frac{\langle F,F \rangle}{\sqrt{|d|}} \frac{a_{F,O}(d)^2}{\langle \mathbf{v}_F,\mathbf{v}_F \rangle}.$$

- Done by Gross if N = p.
- Done by Böcherer and Schulze-Pillot if *N* is odd and square free.
- Done by P. and Tornaría if $N = p^2$.

Definitions	Application	Quaternions	HMF ●0000000	Application II O
Hilbert modular	forms			

Let *F* be a totally real number field, and $\mathbf{a} = \{\tau : F \hookrightarrow \mathbb{R}\}.$

Definitions	Application	Quaternions	HMF ●0000000	Application II O
Hilbert modular	forms			

Let F be a totally real number field, and $\mathbf{a} = \{\tau : F \hookrightarrow \mathbb{R}\}$. GL₂⁺(F) acts on $\mathfrak{H}^{\mathbf{a}}$ component-wise.

Definitions	Application	Quaternions	HMF ●0000000	Application II O
Hilbert modul	ar forms			

$$j(\alpha, \mathbf{z}) = \prod_{\tau \in \mathbf{a}} j(\tau(\alpha), z_{\tau}).$$

Definitions	Application	Quaternions	HMF ●0000000	Application II O
Hilbert modu	lar forms			

$$j(\alpha, \mathbf{z}) = \prod_{\tau \in \mathbf{a}} j(\tau(\alpha), z_{\tau}).$$

Let \mathcal{O}_F denotes the ring of integers of F. If $\mathfrak{r}, \mathfrak{n}$ are ideals, let

$$\begin{split} \mathsf{\Gamma}(\mathfrak{r},\mathfrak{n}) &= \left\{ \alpha = \left(\begin{smallmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{smallmatrix}\right) \in \mathsf{GL}_2^+(F) \; : \; \mathsf{det}(\alpha) \in \mathfrak{O}_F^\times \; \mathsf{and} \\ & \mathsf{a}, \mathsf{d} \in \mathfrak{O}_F, \mathsf{b} \in \mathfrak{r}^{-1}, \mathsf{c} \in \mathfrak{rn} \right\}. \end{split}$$

Definitions	Application	Quaternions	HMF ●0000000	Application II O
Hilbert mod	ular forms			

$$j(\alpha, \mathbf{z}) = \prod_{\tau \in \mathbf{a}} j(\tau(\alpha), z_{\tau}).$$

Let \mathcal{O}_F denotes the ring of integers of F. If $\mathfrak{r}, \mathfrak{n}$ are ideals, let

$$\begin{split} \mathsf{F}(\mathfrak{r},\mathfrak{n}) &= \left\{ \alpha = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \mathsf{GL}_2^+(F) \; : \; \mathsf{det}(\alpha) \in \mathfrak{O}_F^\times \; \mathsf{and} \\ & \mathsf{a}, d \in \mathfrak{O}_F, b \in \mathfrak{r}^{-1}, c \in \mathfrak{rn} \right\}. \end{split}$$

Let $\{\mathfrak{b}_1, \ldots, \mathfrak{b}_r\}$ be representatives for the narrow class group.

Definitions	Application	Quaternions	HMF ●0000000	Application II O
Hilbert modu	ular forms			

$$j(\alpha, \mathbf{z}) = \prod_{\tau \in \mathbf{a}} j(\tau(\alpha), z_{\tau}).$$

Let \mathcal{O}_F denotes the ring of integers of F. If $\mathfrak{r}, \mathfrak{n}$ are ideals, let

$$\begin{split} \mathsf{F}(\mathfrak{r},\mathfrak{n}) &= \left\{ \alpha = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \mathsf{GL}_2^+(F) \; : \; \mathsf{det}(\alpha) \in \mathfrak{O}_F^\times \; \mathsf{and} \\ & \mathsf{a}, \mathsf{d} \in \mathfrak{O}_F, \mathsf{b} \in \mathfrak{r}^{-1}, \mathsf{c} \in \mathfrak{rn} \right\}. \end{split}$$

Let $\{\mathfrak{b}_1,\ldots,\mathfrak{b}_r\}$ be representatives for the narrow class group.Define

$$M_2(\mathfrak{n}) = \bigoplus_{i=1}^r M_2(\Gamma(\mathfrak{b}_i,\mathfrak{n})) \qquad S_2(\mathfrak{n}) = \bigoplus_{i=1}^r S_2(\Gamma(\mathfrak{b}_i,\mathfrak{n}))$$

Definitions	Application	Quaternions	HMF ⊙●○○○○○○	Application II O
Main properties				

• The forms have *q*-expansions indexed by integral ideals.

Definitions	Application	Quaternions	HMF ⊙●○○○○○○	Application II O
Main properties				

- The forms have q-expansions indexed by integral ideals.
- There are Hecke operators indexed by integral ideals (satisfying the same properties).

Definitions	Application	Quaternions	HMF ⊙●○○○○○○	Application II O
Main properties				

- The forms have *q*-expansions indexed by integral ideals.
- There are Hecke operators indexed by integral ideals (satisfying the same properties).
- The action can be given in terms of *q*-expansion.

Definitions	Application	Quaternions	HMF ⊙●○○○○○○	Application II O
Main properties				

- The forms have *q*-expansions indexed by integral ideals.
- There are Hecke operators indexed by integral ideals (satisfying the same properties).
- The action can be given in terms of *q*-expansion.
- There is a theory of new subspaces.

Definitions	Application	Quaternions	HMF ○○●00○○○○	Application II O
Half integral we	ight HMF			

Let

$$heta(\mathbf{z}) = \sum_{\xi \in \mathfrak{O}_F} \left(\prod_{ au \in \mathbf{a}} e^{\pi i au(\xi)^2 z_ au}
ight),$$

Definitions	Application	Quaternions	HMF ○○● ○○ ○○○	Application II O
Half integral we	eight HMF			

Let

$$\theta(\mathbf{z}) = \sum_{\xi \in \mathfrak{O}_F} \left(\prod_{\tau \in \mathbf{a}} e^{\pi i \tau(\xi)^2 z_\tau} \right),$$

and define the factor of automorphy for $\gamma \in GL_2^+(F)$,

$$J(\gamma, \mathbf{z}) = \left(\frac{\theta(\gamma \mathbf{z})}{\theta(\mathbf{z})}\right) j(\gamma, \mathbf{z}).$$

Definitions	Application	Quaternions	HMF ○○● ○○ ○○○	Application II O
Half integral we	eight HMF			

Let

$$\theta(\mathbf{z}) = \sum_{\boldsymbol{\xi} \in \mathfrak{O}_F} \left(\prod_{\tau \in \mathbf{a}} e^{\pi i \tau(\boldsymbol{\xi})^2 \mathbf{z}_\tau} \right),$$

and define the factor of automorphy for $\gamma \in \textit{GL}^+_2(\textit{F})$,

$$J(\gamma, \mathbf{z}) = \left(rac{ heta(\gamma \mathbf{z})}{ heta(\mathbf{z})}
ight) j(\gamma, \mathbf{z}).$$

For n an integral ideal in \mathcal{O}_F , let

$$\widetilde{\Gamma}[2^{-1}\delta,\mathfrak{n}] = \Gamma[2^{-1}\delta,\mathfrak{n}] \cap \mathsf{SL}_2(F).$$

Definitions	Application	Quaternions	HMF ○○ ○ ●○○○○	Application II O
Half integral we	ght HMF			

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight 3/2, level 4n and character ψ , is a holomorphic function f on \mathfrak{H}^a satisfying:

$$f(\gamma \mathbf{z}) = \psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \qquad \forall \gamma \in \widetilde{\Gamma}[2^{-1}\delta, 4\mathfrak{n}].$$

Definitions	Application	Quaternions	HMF ○○ ○ ●○○○○	Application II O
Half integral we	ight HMF			

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight 3/2, level 4n and character ψ , is a holomorphic function f on \mathfrak{H}^a satisfying:

$$f(\gamma \mathbf{z}) = \psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \qquad \forall \gamma \in \widetilde{\Gamma}[2^{-1}\delta, 4\mathfrak{n}].$$

We denote by $M_{3/2}(4n, \psi)$ the v.s. of such forms, and by $S_{3/2}(4n, \psi)$ the cuspidal ones.

Definitions	Application	Quaternions	HMF ○○ ○ ●○○○○	Application Ⅱ ○
Half integral we	ight HMF			

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight 3/2, level 4n and character ψ , is a holomorphic function f on \mathfrak{H}^a satisfying:

$$f(\gamma \mathbf{z}) = \psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \qquad \forall \gamma \in \widetilde{\Gamma}[2^{-1}\delta, 4\mathfrak{n}].$$

We denote by $M_{3/2}(4n, \psi)$ the v.s. of such forms, and by $S_{3/2}(4n, \psi)$ the cuspidal ones.

• The theory is more involved, and there is a Fourier expansion attached to each ideal in the narrow class group.

Definitions	Application	Quaternions	HMF ○○○●○○○○	Application II O
Half integral wei	ght HMF			

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight 3/2, level 4n and character ψ , is a holomorphic function f on \mathfrak{H}^a satisfying:

$$f(\gamma \mathbf{z}) = \psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \qquad \forall \gamma \in \widetilde{\Gamma}[2^{-1}\delta, 4\mathfrak{n}].$$

We denote by $M_{3/2}(4n, \psi)$ the v.s. of such forms, and by $S_{3/2}(4n, \psi)$ the cuspidal ones.

- The theory is more involved, and there is a Fourier expansion attached to each ideal in the narrow class group.
- There is a theory of Hecke operators as in the classical case.

Definitions	Application	Quaternions	HMF ○○○●○○○○	Application II O
Half integral wei	ght HMF			

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight 3/2, level 4n and character ψ , is a holomorphic function f on \mathfrak{H}^a satisfying:

$$f(\gamma \mathbf{z}) = \psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \qquad \forall \gamma \in \widetilde{\Gamma}[2^{-1}\delta, 4\mathfrak{n}].$$

We denote by $M_{3/2}(4n, \psi)$ the v.s. of such forms, and by $S_{3/2}(4n, \psi)$ the cuspidal ones.

- The theory is more involved, and there is a Fourier expansion attached to each ideal in the narrow class group.
- There is a theory of Hecke operators as in the classical case.
- There is a formula relating the Hecke operators with the Fourier expansion at different ideals.

Definitions	Application	Quaternions	HMF ○○ ○○ ●○○○○	Application II O
Shimura ma	p for HMF			

Theorem (Shimura)

For each $\xi \in F^+$, there exists a \mathbb{T}_0 linear map

 $\operatorname{Shim}_{\xi}: M_{3/2}(4\mathfrak{n}, \psi) \to M_2(2\mathfrak{n}, \psi^2).$

Definitions	Application	Quaternions	HMF ○○ ○○ ●○○○○	Application II O
Shimura ma	p for HMF			

Theorem (Shimura)

For each $\xi \in F^+$, there exists a \mathbb{T}_0 linear map

 $\operatorname{Shim}_{\xi}: M_{3/2}(4\mathfrak{n}, \psi) \to M_2(2\mathfrak{n}, \psi^2).$

As before, the image can be given in terms of eigenvalues.

How do we compute preimages?

Definitions	Application	Quaternions	HMF ○○ ○○ ●○○○○	Application II O
Shimura ma	p for HMF			

Theorem (Shimura)

For each $\xi \in F^+$, there exists a \mathbb{T}_0 linear map

 $\operatorname{Shim}_{\xi}: M_{3/2}(4\mathfrak{n}, \psi) \to M_2(2\mathfrak{n}, \psi^2).$

As before, the image can be given in terms of eigenvalues.

How do we compute preimages? \sim use quaternionic forms.

Definitions	Application	Quaternions	HMF	Application II
			00000000	
Quaternioni	c HMF			

Definitions	Application	Quaternions	HMF ○○○○○●○○	Application II O
Quaternionic HI	МF			

• Take B/F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.

Definitions	Application	Quaternions	HMF ○○○○○●○○	Application II O
Quaternionic HMF				

- Take *B*/*F* a quaternion algebra ramified at least all the infinite places, and *R* an Eichler order in it.
- Let M(R) be the \mathbb{C} -v.s. spanned by class ideal representatives with the inner product

$$\langle [\mathfrak{a}_i], [\mathfrak{a}_j] \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ [R_r(\mathfrak{a}_i)^{\times} : \mathfrak{O}_F^{\times}] & \text{if } i = j. \end{cases}$$

Definitions	Application	Quaternions	HMF ○○○○○●○○	Application II O
Quaternionic HMF				

- Take B/F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.
- Let M(R) be the \mathbb{C} -v.s. spanned by class ideal representatives with the inner product

$$\langle [\mathfrak{a}_i], [\mathfrak{a}_j] \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ [R_r(\mathfrak{a}_i)^{\times} : \mathcal{O}_F^{\times}] & \text{if } i = j. \end{cases}$$

• Define the Hecke operators in the same way as before.

Definitions	Application	Quaternions	HMF ○○○○○●○○	Application II O
Quaternionic HMF				

- Take B/F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.
- Let M(R) be the \mathbb{C} -v.s. spanned by class ideal representatives with the inner product

$$\langle [\mathfrak{a}_i], [\mathfrak{a}_j] \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ [R_r(\mathfrak{a}_i)^{\times} : \mathcal{O}_F^{\times}] & \text{if } i = j. \end{cases}$$

- Define the Hecke operators in the same way as before.
- They commute, and the adjoint of $T_{\mathfrak{p}}$ is $\mathfrak{p}^{-1}T_{\mathfrak{p}}$.

Definitions	Application	Quaternions	HMF ○○○○○ ○ ●○	Application II O
Preimages				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

The same remarks as in the classical case apply.

Definitions	Application	Quaternions	HMF ○○○○○○●○	Application II O
Preimages				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

The same remarks as in the classical case apply.

Let $\Theta: M(R) \to M_{3/2}(4\mathfrak{N}(R), \chi_R)$ be given by

$$\Theta(\mathbf{v})(\mathbf{z}) = \sum_{\xi \in \mathbb{O}_F^+} \langle \mathbf{v}, e_{\xi}
angle q^{\xi}.$$

Definitions	Application	Quaternions	HMF ○○○○○○●○	Application II O
Preimages				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

The same remarks as in the classical case apply.

Let $\Theta: M(R)
ightarrow M_{3/2}(4\mathfrak{N}(R),\chi_R)$ be given by

$$\Theta(\mathbf{v})(\mathbf{z}) = \sum_{\xi \in \mathbb{O}_F^+} \langle \mathbf{v}, e_{\xi}
angle q^{\xi}.$$

Theorem (Sirolli)

The map Θ is \mathbb{T}_0 -invariant.

Definitions	Application	Quaternions	HMF ○○○○○ ○●○	Application II O
Preimages				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

The same remarks as in the classical case apply.

Let $\Theta: M(R)
ightarrow M_{3/2}(4\mathfrak{N}(R),\chi_R)$ be given by

$$\Theta(\mathbf{v})(\mathbf{z}) = \sum_{\xi \in \mathbb{O}_F^+} \langle \mathbf{v}, e_{\xi}
angle q^{\xi}.$$

Theorem (Sirolli)

The map Θ is \mathbb{T}_0 -invariant.

Furthermore,

• The image lies in the Kohnen space.

Definitions	Application	Quaternions	HMF ○○○○○ ○●○	Application II O
Preimages				

There is a natural map of \mathbb{T}_0 -modules $S(R) \times S(R) \rightarrow S_2(N)$.

The same remarks as in the classical case apply.

Let $\Theta: M(R)
ightarrow M_{3/2}(4\mathfrak{N}(R),\chi_R)$ be given by

$$\Theta(\mathbf{v})(\mathbf{z}) = \sum_{\xi \in \mathbb{O}_F^+} \langle \mathbf{v}, e_{\xi}
angle q^{\xi}.$$

Theorem (Sirolli)

The map Θ is \mathbb{T}_0 -invariant.

Furthermore,

- The image lies in the Kohnen space.
- $\Theta(\mathbf{v})$ is cuspidal iff \mathbf{v} is cuspidal.

Definitions	Application	Quaternions	HMF ○○○○○○○●	Application II O
General picture				

Definitions	Application	Quaternions	HMF 00000000	Application II ●
Example				

Let $F = \mathbb{Q}(\sqrt{5})$, $\omega = \frac{1+\sqrt{5}}{2}$, and consider the elliptic curve

$$E: y^2 + xy + \omega y = x^3 - (1 + \omega)x^2.$$

This curve has conductor $n = (5 + 2\omega)$ (an ideal of norm 31).

- Let B/F be the quaternion algebra ramified at the two infinite primes, and R an Eichler order of level n.
- The space M₂(R) has dimension 2 (done by Lassina). The element v = [R] [a] is a Hecke eigenvector.
- If we compute θ(v), we get a form whose q-expansion is "similar" to Tunnell result.
- There are 5 non-trivial zero coefficients with trace up to 100, and the twists of the original curve by this discriminants all have rank 2.