Half integral weight modular forms

Ariel Pacetti
Universidad de Buenos Aires
Explicit Methods for Modular Forms
March 20, 2013

Motivation

What is a half integral modular form?

Motivation

What is a half integral modular form? We can consider two classical examples:

Motivation

What is a half integral modular form? We can consider two classical examples:

- The Dedekind eta function

$$
\eta(z)=e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)
$$

Motivation

What is a half integral modular form? We can consider two classical examples:

- The Dedekind eta function

$$
\eta(z)=e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)
$$

It is well know that $\eta(z)^{24}=\Delta(z)$ a weight 12 cusp form, so η "should be" of weight $1 / 2$.

Motivation

What is a half integral modular form? We can consider two classical examples:

- The Dedekind eta function

$$
\eta(z)=e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)
$$

It is well know that $\eta(z)^{24}=\Delta(z)$ a weight 12 cusp form, so η "should be" of weight $1 / 2$.

Actually η turns out to be weight $1 / 2$ but with a character of order 24.

Motivation

- The classical theta function

$$
\theta(z)=\sum_{n=-\infty}^{\infty} e^{2 \pi i n^{2} z}
$$

Motivation

- The classical theta function

$$
\theta(z)=\sum_{n=-\infty}^{\infty} e^{2 \pi i n^{2} z}
$$

It is not hard to see that if $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4)$, then

$$
\left(\frac{\theta(\gamma z)}{\theta(z)}\right)^{2}=\left(\frac{-1}{d}\right)(c z+d)
$$

Motivation

- The classical theta function

$$
\theta(z)=\sum_{n=-\infty}^{\infty} e^{2 \pi i n^{2} z}
$$

It is not hard to see that if $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4)$, then

$$
\left(\frac{\theta(\gamma z)}{\theta(z)}\right)^{2}=\left(\frac{-1}{d}\right)(c z+d)
$$

So $\theta(z)^{2} \in M_{1}\left(\Gamma_{0}(4), \chi_{-1}\right)$.

Definition

We consider the factor of automorphy $J(\gamma, z)=\frac{\theta(\gamma z)}{\theta(z)}$.

Definition

We consider the factor of automorphy $J(\gamma, z)=\frac{\theta(\gamma z)}{\theta(z)}$. Let k be an odd positive integer, N a positive integer and ψ a character modulo N.

Definition

We consider the factor of automorphy $J(\gamma, z)=\frac{\theta(\gamma z)}{\theta(z)}$. Let k be an odd positive integer, N a positive integer and ψ a character modulo N.

Definition

A modular form of weight $k / 2$, level $4 N$ and character ψ is an holomorphic function $f: \mathfrak{H} \rightarrow \mathbb{C}$ such that

Definition

We consider the factor of automorphy $J(\gamma, z)=\frac{\theta(\gamma z)}{\theta(z)}$. Let k be an odd positive integer, N a positive integer and ψ a character modulo N.

Definition

A modular form of weight $k / 2$, level $4 N$ and character ψ is an holomorphic function $f: \mathfrak{H} \rightarrow \mathbb{C}$ such that

- $f(\gamma z)=J(\gamma, z)^{k} \psi(d) f(z) \quad \forall \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4 N)$

Definition

We consider the factor of automorphy $J(\gamma, z)=\frac{\theta(\gamma z)}{\theta(z)}$. Let k be an odd positive integer, N a positive integer and ψ a character modulo N.

Definition

A modular form of weight $k / 2$, level $4 N$ and character ψ is an holomorphic function $f: \mathfrak{H} \rightarrow \mathbb{C}$ such that

- $f(\gamma z)=J(\gamma, z)^{k} \psi(d) f(z) \quad \forall \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4 N)$
- $f(z)$ is holomorphic at the cusps.

Definition

We consider the factor of automorphy $J(\gamma, z)=\frac{\theta(\gamma z)}{\theta(z)}$. Let k be an odd positive integer, N a positive integer and ψ a character modulo N.

Definition

A modular form of weight $k / 2$, level $4 N$ and character ψ is an holomorphic function $f: \mathfrak{H} \rightarrow \mathbb{C}$ such that

- $f(\gamma z)=J(\gamma, z)^{k} \psi(d) f(z) \quad \forall \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(4 N)$
- $f(z)$ is holomorphic at the cusps.

We denote by $M_{k / 2}(4 N, \psi)$ the space of such forms and $S_{k / 2}(4 N, \psi)$ the subspace of cuspidal ones.

Hecke operators

Via a double coset action, one can define Hecke operators $\left\{T_{n}\right\}_{n \geq 1}$ acting on $S_{k / 2}(4 N, \psi)$. They satisfy the properties:

Via a double coset action, one can define Hecke operators $\left\{T_{n}\right\}_{n \geq 1}$ acting on $S_{k / 2}(4 N, \psi)$. They satisfy the properties:
(1) $T_{n}=0$ if n is not a square.

Via a double coset action, one can define Hecke operators $\left\{T_{n}\right\}_{n \geq 1}$ acting on $S_{k / 2}(4 N, \psi)$. They satisfy the properties:
(1) $T_{n}=0$ if n is not a square.
(2) If $(n: 4 N)=1, T_{n^{2}}$ is self adjoint for an inner product.

Hecke operators

Via a double coset action, one can define Hecke operators $\left\{T_{n}\right\}_{n \geq 1}$ acting on $S_{k / 2}(4 N, \psi)$. They satisfy the properties:
(1) $T_{n}=0$ if n is not a square.
(2) If $(n: 4 N)=1, T_{n^{2}}$ is self adjoint for an inner product.
(3) $T_{n^{2}} T_{m^{2}}=T_{m^{2}} T_{n^{2}}$ 。

Hecke operators

Via a double coset action, one can define Hecke operators $\left\{T_{n}\right\}_{n \geq 1}$ acting on $S_{k / 2}(4 N, \psi)$. They satisfy the properties:
(1) $T_{n}=0$ if n is not a square.
(2) If $(n: 4 N)=1, T_{n^{2}}$ is self adjoint for an inner product.
(3) $T_{n^{2}} T_{m^{2}}=T_{m^{2}} T_{n^{2}}$.
(4) If terms of q -expansion, let $\omega=\frac{k-1}{2}$, then $T_{p^{2}}$ acts like

$$
a_{p^{2} n}+\psi(n)\left(\frac{-1}{p}\right)^{\omega}\left(\frac{n}{p}\right) p^{\omega-1} a_{n}+\psi\left(p^{2}\right) p^{k-1} a_{n / p^{2}} .
$$

Hecke operators

Via a double coset action, one can define Hecke operators $\left\{T_{n}\right\}_{n \geq 1}$ acting on $S_{k / 2}(4 N, \psi)$. They satisfy the properties:
(1) $T_{n}=0$ if n is not a square.
(2) If $(n: 4 N)=1, T_{n^{2}}$ is self adjoint for an inner product.
(3) $T_{n^{2}} T_{m^{2}}=T_{m^{2}} T_{n^{2}}$.
(4) If terms of q -expansion, let $\omega=\frac{k-1}{2}$, then $T_{p^{2}}$ acts like

$$
a_{p^{2} n}+\psi(n)\left(\frac{-1}{p}\right)^{\omega}\left(\frac{n}{p}\right) p^{\omega-1} a_{n}+\psi\left(p^{2}\right) p^{k-1} a_{n / p^{2}} .
$$

Hence there exists a basis of eigenforms for the Hecke operators prime to $4 N$.

Shimura's Theorem

Theorem (Shimura)
For each square-free positive integer n, there exists a \mathbb{T}_{0}-linear map
$\operatorname{Shim}_{n}: S_{k / 2}(4 N, \psi) \rightarrow M_{k-1}\left(2 N, \psi^{2}\right) .{ }^{1}$
${ }^{1}$ The actual level may be smaller

Shimura's Theorem

Theorem (Shimura)
For each square-free positive integer n, there exists a \mathbb{T}_{0}-linear map

$$
\operatorname{Shim}_{n}: S_{k / 2}(4 N, \psi) \rightarrow M_{k-1}\left(2 N, \psi^{2}\right) .^{1}
$$

Furthermore, if $f \in S_{k / 2}(4 N, \psi)$ is an eigenform for all the Hecke operators with eigenvalues λ_{n}, then $\operatorname{Shim}_{n}(f)$ is (up to a constant) given by

$$
\prod_{p}\left(1-\lambda_{p} p^{-s}+\psi\left(p^{2}\right) p^{k-2-2 s}\right)^{-1} .
$$

${ }^{1}$ The actual level may be smaller

Shimura's Theorem

Theorem (Shimura)

For each square-free positive integer n, there exists a \mathbb{T}_{0}-linear map

$$
\operatorname{Shim}_{n}: S_{k / 2}(4 N, \psi) \rightarrow M_{k-1}\left(2 N, \psi^{2}\right) .^{1}
$$

Furthermore, if $f \in S_{k / 2}(4 N, \psi)$ is an eigenform for all the Hecke operators with eigenvalues λ_{n}, then $\operatorname{Shim}_{n}(f)$ is (up to a constant) given by

$$
\prod_{p}\left(1-\lambda_{p} p^{-s}+\psi\left(p^{2}\right) p^{k-2-2 s}\right)^{-1} .
$$

What information encode the non-square Fourier coefficients?
${ }^{1}$ The actual level may be smaller

Let $f \in S_{k / 2}(4 N, \psi), F=\operatorname{Shim}(f) \in S_{k-1}\left(2 N, \psi^{2}\right)$ eigenforms.

Waldspurger's theorem

Let $f \in S_{k / 2}(4 N, \psi), F=\operatorname{Shim}(f) \in S_{k-1}\left(2 N, \psi^{2}\right)$ eigenforms.
Theorem (Waldspurger)
Let n_{1}, n_{2} be square free positive integers such that $n_{1} / n_{2} \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ for all $p \mid 4 N$.

Waldspurger's theorem

Let $f \in S_{k / 2}(4 N, \psi), F=\operatorname{Shim}(f) \in S_{k-1}\left(2 N, \psi^{2}\right)$ eigenforms.
Theorem (Waldspurger)
Let n_{1}, n_{2} be square free positive integers such that $n_{1} / n_{2} \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ for all $p \mid 4 N$. Then

$$
a_{n_{1}}^{2} L\left(F, \psi_{0}^{-1} \chi_{n_{2}}, \omega\right) \psi\left(\frac{n_{2}}{n_{1}}\right) n_{2}^{k / 2-1}=a_{n_{2}}^{2} L\left(F, \psi_{0}^{-1} \chi_{n_{1}}, \omega\right) n_{1}^{k / 2-1}
$$

where $\psi_{0}(n)=\psi(n)\left(\frac{-1}{n}\right)^{\omega}, \chi_{n}$ is the quadratic character corresponding to the field $\mathbb{Q}[\sqrt{n}]$

Waldspurger's theorem

Let $f \in S_{k / 2}(4 N, \psi), F=\operatorname{Shim}(f) \in S_{k-1}\left(2 N, \psi^{2}\right)$ eigenforms.
Theorem (Waldspurger)
Let n_{1}, n_{2} be square free positive integers such that $n_{1} / n_{2} \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ for all $p \mid 4 N$. Then

$$
a_{n_{1}}^{2} L\left(F, \psi_{0}^{-1} \chi_{n_{2}}, \omega\right) \psi\left(\frac{n_{2}}{n_{1}}\right) n_{2}^{k / 2-1}=a_{n_{2}}^{2} L\left(F, \psi_{0}^{-1} \chi_{n_{1}}, \omega\right) n_{1}^{k / 2-1}
$$

where $\psi_{0}(n)=\psi(n)\left(\frac{-1}{n}\right)^{\omega}, \chi_{n}$ is the quadratic character corresponding to the field $\mathbb{Q}[\sqrt{n}]$

If we fixed n_{1}, for all n as above

Waldspurger's theorem

Let $f \in S_{k / 2}(4 N, \psi), F=\operatorname{Shim}(f) \in S_{k-1}\left(2 N, \psi^{2}\right)$ eigenforms.
Theorem (Waldspurger)
Let n_{1}, n_{2} be square free positive integers such that $n_{1} / n_{2} \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ for all $p \mid 4 N$. Then

$$
a_{n_{1}}^{2} L\left(F, \psi_{0}^{-1} \chi_{n_{2}}, \omega\right) \psi\left(\frac{n_{2}}{n_{1}}\right) n_{2}^{k / 2-1}=a_{n_{2}}^{2} L\left(F, \psi_{0}^{-1} \chi_{n_{1}}, \omega\right) n_{1}^{k / 2-1}
$$

where $\psi_{0}(n)=\psi(n)\left(\frac{-1}{n}\right)^{\omega}, \chi_{n}$ is the quadratic character corresponding to the field $\mathbb{Q}[\sqrt{n}]$

If we fixed n_{1}, for all n as above

$$
a_{n}^{2}=\kappa L\left(F, \psi_{0}^{-1} \chi_{n}, \frac{k-1}{2}\right) \psi(n) n^{k / 2-1}
$$

where κ is a global constant.

Definition: $n \in \mathbb{N}$ is called a congruent number if it is the area of a right triangle with rational sides.

Congruent Number Problem

Definition: $n \in \mathbb{N}$ is called a congruent number if it is the area of a right triangle with rational sides.

Theorem (Tunnell)
If $n \in \mathbb{N}$ is odd, (assuming BSD) it is a congruent number iff

$$
\begin{aligned}
\#\left\{(x, y, z) \in \mathbb{Z}^{3}:\right. & \left.n=2 x^{2}+y^{2}+32 z^{2}\right\}= \\
& \frac{1}{2} \#\left\{(x, y, z) \in \mathbb{Z}^{3}: n=2 x^{2}+y^{2}+8 z^{2}\right\}
\end{aligned}
$$

Congruent Number Problem

Definition: $n \in \mathbb{N}$ is called a congruent number if it is the area of a right triangle with rational sides.

Theorem (Tunnell)
If $n \in \mathbb{N}$ is odd, (assuming BSD) it is a congruent number iff

$$
\begin{aligned}
\#\left\{(x, y, z) \in \mathbb{Z}^{3}:\right. & \left.n=2 x^{2}+y^{2}+32 z^{2}\right\}= \\
& \frac{1}{2} \#\left\{(x, y, z) \in \mathbb{Z}^{3}: n=2 x^{2}+y^{2}+8 z^{2}\right\}
\end{aligned}
$$

For even n, iff

$$
\begin{aligned}
& \#\left\{(x, y, z) \in \mathbb{Z}^{3}: n / 2=4 x^{2}+y^{2}+32 z^{2}\right\}= \\
& \quad \frac{1}{2} \#\left\{(x, y, z) \in \mathbb{Z}^{3}: n / 2=4 x^{2}+y^{2}+8 z^{2}\right\} .
\end{aligned}
$$

Preimages

What we would like to do:

Preimages

What we would like to do:
(1) Given $F \in S_{2 k}(N, 1)$, construct preimages under Shim.

What we would like to do:
(1) Given $F \in S_{2 k}(N, 1)$, construct preimages under Shim.
(2) Give an explicit constant in Waldspurger Theorem.

What we would like to do:
(1) Given $F \in S_{2 k}(N, 1)$, construct preimages under Shim.
(2) Give an explicit constant in Waldspurger Theorem.
(3) Generalize this to Hilbert modular forms.

Preimages

What we would like to do:
(1) Given $F \in S_{2 k}(N, 1)$, construct preimages under Shim.
(2) Give an explicit constant in Waldspurger Theorem.
(3) Generalize this to Hilbert modular forms.

For simplicity we will consider the case of weight $k=2$ (where modular forms correspond with elliptic curves).

Quaternionic modular forms

Let B be a quaternion algebra over \mathbb{Q} ramified at ∞.

Quaternionic modular forms

Let B be a quaternion algebra over \mathbb{Q} ramified at ∞. Let $R \subset B$ be an Eichler order of level N.

Let $\mathcal{J}(R)$ be the set of left R-ideals and let $\left\{\left[\mathfrak{a}_{1}\right], \ldots,\left[\mathfrak{a}_{n}\right]\right\}$ be ideal classes representatives.

Quaternionic modular forms

Let B be a quaternion algebra over \mathbb{Q} ramified at ∞. Let $R \subset B$ be an Eichler order of level N.

Let $\mathcal{J}(R)$ be the set of left R-ideals and let $\left\{\left[\mathfrak{a}_{1}\right], \ldots,\left[\mathfrak{a}_{n}\right]\right\}$ be ideal classes representatives. Let $M(R)$ be the \mathbb{C}-v.s. spanned by these representatives.

Quaternionic modular forms

Let B be a quaternion algebra over \mathbb{Q} ramified at ∞. Let $R \subset B$ be an Eichler order of level N.

Let $\mathcal{J}(R)$ be the set of left R-ideals and let $\left\{\left[\mathfrak{a}_{1}\right], \ldots,\left[\mathfrak{a}_{n}\right]\right\}$ be ideal classes representatives. Let $M(R)$ be the \mathbb{C}-v.s. spanned by these representatives. Consider the inner product given by

$$
\left\langle\left[\mathfrak{a}_{i}\right],\left[\mathfrak{a}_{j}\right]\right\rangle= \begin{cases}0 & \text { if } i \neq j \\ \frac{1}{2} \# R_{r}\left(\mathfrak{a}_{i}\right)^{\times} & \text {if } i=j\end{cases}
$$

Quaternionic modular forms

Let B be a quaternion algebra over \mathbb{Q} ramified at ∞. Let $R \subset B$ be an Eichler order of level N.

Let $\mathcal{J}(R)$ be the set of left R-ideals and let $\left\{\left[\mathfrak{a}_{1}\right], \ldots,\left[\mathfrak{a}_{n}\right]\right\}$ be ideal classes representatives. Let $M(R)$ be the \mathbb{C}-v.s. spanned by these representatives. Consider the inner product given by

$$
\left\langle\left[\mathfrak{a}_{i}\right],\left[\mathfrak{a}_{j}\right]\right\rangle= \begin{cases}0 & \text { if } i \neq j, \\ \frac{1}{2} \# R_{r}\left(\mathfrak{a}_{i}\right)^{\times} & \text {if } i=j .\end{cases}
$$

Given $m \in \mathbb{N}$ and $\mathfrak{a} \in \mathcal{J}(R)$, let

$$
t_{m}(\mathfrak{a})=\left\{\mathfrak{b} \in \mathcal{J}(R): \mathfrak{b} \subset \mathfrak{a},[\mathfrak{a}: \mathfrak{b}]=m^{2}\right\} .
$$

Hecke operators

For $m \in \mathbb{N}$, the Hecke operators $T_{m}: M(R) \rightarrow M(R)$ is

$$
T_{m}([\mathfrak{a}])=\sum_{\mathfrak{b} \in t_{m}(\mathfrak{a})} \frac{[\mathfrak{b}]}{\langle\mathfrak{b}, \mathfrak{b}\rangle} .
$$

Hecke operators

For $m \in \mathbb{N}$, the Hecke operators $T_{m}: M(R) \rightarrow M(R)$ is

$$
T_{m}([\mathfrak{a}])=\sum_{\mathfrak{b} \in t_{m}(\mathfrak{a})} \frac{[\mathfrak{b}]}{\langle\mathfrak{b}, \mathfrak{b}\rangle} .
$$

Proposition

The Hecke operators satisfy:

Hecke operators

For $m \in \mathbb{N}$, the Hecke operators $T_{m}: M(R) \rightarrow M(R)$ is

$$
T_{m}([\mathfrak{a}])=\sum_{\mathfrak{b} \in t_{m}(\mathfrak{a})} \frac{[\mathfrak{b}]}{\langle\mathfrak{b}, \mathfrak{b}\rangle} .
$$

Proposition

The Hecke operators satisfy:
(1) are self adjoint (all of them).

Hecke operators

For $m \in \mathbb{N}$, the Hecke operators $T_{m}: M(R) \rightarrow M(R)$ is

$$
T_{m}([\mathfrak{a}])=\sum_{\mathfrak{b} \in t_{m}(\mathfrak{a})} \frac{[\mathfrak{b}]}{\langle\mathfrak{b}, \mathfrak{b}\rangle} .
$$

Proposition

The Hecke operators satisfy:
(1) are self adjoint (all of them).
(2) commute with each other.

Hecke operators

For $m \in \mathbb{N}$, the Hecke operators $T_{m}: M(R) \rightarrow M(R)$ is

$$
T_{m}([\mathfrak{a}])=\sum_{\mathfrak{b} \in t_{m}(\mathfrak{a})} \frac{[\mathfrak{b}]}{\langle\mathfrak{b}, \mathfrak{b}\rangle} .
$$

Proposition

The Hecke operators satisfy:
(1) are self adjoint (all of them).
(2) commute with each other.

Let $e_{0}=\sum_{i=1}^{n} \frac{1}{\left\langle\mathfrak{a}_{i}, \mathfrak{a}_{i}\right\rangle}\left[\mathfrak{a}_{i}\right]$.

For $m \in \mathbb{N}$, the Hecke operators $T_{m}: M(R) \rightarrow M(R)$ is

$$
T_{m}([\mathfrak{a}])=\sum_{\mathfrak{b} \in t_{m}(\mathfrak{a})} \frac{[\mathfrak{b}]}{\langle\mathfrak{b}, \mathfrak{b}\rangle} .
$$

Proposition

The Hecke operators satisfy:
(1) are self adjoint (all of them).
(2) commute with each other.

Let $e_{0}=\sum_{i=1}^{n} \frac{1}{\left\langle\mathfrak{a}_{i}, \mathfrak{a}_{i}\right\rangle}\left[\mathfrak{a}_{i}\right]$. It is an eigenvector for the Hecke operators. Denote by $S(R)$ its orthogonal complement.

Basis problem

Theorem (Eichler)
There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.

Basis problem

Theorem (Eichler)
There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.

Basis problem

Theorem (Eichler)
There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).

Basis problem

Theorem (Eichler)
There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
- We get a map

Basis problem

Theorem (Eichler)
There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
- We get a map

Basis problem

Theorem (Eichler)
There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
- We get a map

In B, the quadratic form $\Delta(x)=\operatorname{Tr}(x)^{2}-4 \mathcal{N}(x)$ is a quadratic negative definite form invariant under translation, hence a form in B / \mathbb{Q}.

Ternary forms

In B, the quadratic form $\Delta(x)=\operatorname{Tr}(x)^{2}-4 \mathcal{N}(x)$ is a quadratic negative definite form invariant under translation, hence a form in B / \mathbb{Q}.

If $\mathfrak{a} \in \mathcal{J}(R)$, and $d \in \mathbb{N}$, let

$$
a_{d}(\mathfrak{a})=\#\left\{[x] \in R_{r}(\mathfrak{a}) / \mathbb{Z}: \Delta(x)=-d\right\} .
$$

Ternary forms

In B, the quadratic form $\Delta(x)=\operatorname{Tr}(x)^{2}-4 \mathcal{N}(x)$ is a quadratic negative definite form invariant under translation, hence a form in B / \mathbb{Q}.

If $\mathfrak{a} \in \mathcal{J}(R)$, and $d \in \mathbb{N}$, let

$$
a_{d}(\mathfrak{a})=\#\left\{[x] \in R_{r}(\mathfrak{a}) / \mathbb{Z}: \Delta(x)=-d\right\} .
$$

For $d \in \mathbb{N}_{0}$, let $e_{d} \in M(R)$ be given by

$$
e_{d}=\sum_{i=1}^{n} \frac{a_{d}\left(\mathfrak{a}_{i}\right)}{\left\langle\mathfrak{a}_{i}, \mathfrak{a}_{i}\right\rangle}\left[\mathfrak{a}_{i}\right] .
$$

Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 N(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(z)=\sum_{d \geq 0}\left\langle\mathbf{v}, e_{d}\right\rangle q^{d}
$$

Theta map

Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 N(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(z)=\sum_{d \geq 0}\left\langle\mathbf{v}, e_{d}\right\rangle q^{d}
$$

Theorem (P.,Tornaría)
The map Θ is \mathbb{T}_{0}-linear .

Theta map

Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 N(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(z)=\sum_{d \geq 0}\left\langle\mathbf{v}, e_{d}\right\rangle q^{d}
$$

Theorem (P.,Tornaría)
The map Θ is \mathbb{T}_{0}-linear .
Furthermore,

Theta map

Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 N(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(z)=\sum_{d \geq 0}\left\langle\mathbf{v}, e_{d}\right\rangle q^{d}
$$

Theorem (P.,Tornaría)
The map Θ is \mathbb{T}_{0}-linear .
Furthermore,

- The image lies in the Kohnen space.

Theta map

Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 N(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(z)=\sum_{d \geq 0}\left\langle\mathbf{v}, e_{d}\right\rangle q^{d}
$$

Theorem (P.,Tornaría)
The map Θ is \mathbb{T}_{0}-linear .
Furthermore,

- The image lies in the Kohnen space.
- $\Theta(\mathbf{v})$ is cuspidal iff \mathbf{v} is cuspidal.

Theta map

Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 N(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(z)=\sum_{d \geq 0}\left\langle\mathbf{v}, e_{d}\right\rangle q^{d}
$$

Theorem (P.,Tornaría)
The map Θ is \mathbb{T}_{0}-linear .
Furthermore,

- The image lies in the Kohnen space.
- $\Theta(\mathbf{v})$ is cuspidal iff \mathbf{v} is cuspidal.

Questions

Here are some questions:

Questions

Here are some questions:

- Given $F \in S_{2}(N)$, how to chose R such that $\Theta\left(\mathbf{v}_{F}\right)$ is non-zero?

Questions

Here are some questions:

- Given $F \in S_{2}(N)$, how to chose R such that $\Theta\left(\mathbf{v}_{F}\right)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

Questions

Here are some questions:

- Given $F \in S_{2}(N)$, how to chose R such that $\Theta\left(\mathbf{v}_{F}\right)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?
It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$
L(F, 1) L(F, d, 1)=\star \frac{\langle F, F>}{\sqrt{|d|}} \frac{a_{F}, o(d)^{2}}{\left\langle\mathbf{v}_{F}, \mathbf{v}_{F}\right\rangle} .
$$

Questions

Here are some questions:

- Given $F \in S_{2}(N)$, how to chose R such that $\Theta\left(\mathbf{v}_{F}\right)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$
L(F, 1) L(F, d, 1)=\star \frac{\langle F, F>}{\sqrt{|d|}} \frac{a_{F}, o(d)^{2}}{\left\langle\mathbf{v}_{F}, \mathbf{v}_{F}\right\rangle} .
$$

- Done by Gross if $N=p$.

Questions

Here are some questions:

- Given $F \in S_{2}(N)$, how to chose R such that $\Theta\left(\mathbf{v}_{F}\right)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?
It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$
L(F, 1) L(F, d, 1)=\star \frac{\langle F, F\rangle}{\sqrt{|d|}} \frac{a_{F}, o(d)^{2}}{\left\langle\mathbf{v}_{F}, \mathbf{v}_{F}\right\rangle} .
$$

- Done by Gross if $N=p$.
- Done by Böcherer and Schulze-Pillot if N is odd and square free.

Questions

Here are some questions:

- Given $F \in S_{2}(N)$, how to chose R such that $\Theta\left(\mathbf{v}_{F}\right)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?
It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$
L(F, 1) L(F, d, 1)=\star \frac{\langle F, F>}{\sqrt{|d|}} \frac{a_{F}, o(d)^{2}}{\left\langle\mathbf{v}_{F}, \mathbf{v}_{F}\right\rangle} .
$$

- Done by Gross if $N=p$.
- Done by Böcherer and Schulze-Pillot if N is odd and square free.
- Done by P. and Tornaría if $N=p^{2}$.

Hilbert modular forms

Let F be a totally real number field, and $\mathbf{a}=\{\tau: F \hookrightarrow \mathbb{R}\}$.

Hilbert modular forms

Let F be a totally real number field, and $\mathbf{a}=\{\tau: F \hookrightarrow \mathbb{R}\}$. $\mathrm{GL}_{2}^{+}(F)$ acts on $\mathfrak{H}^{\text {a }}$ component-wise.

Hilbert modular forms

Let F be a totally real number field, and $\mathbf{a}=\{\tau: F \hookrightarrow \mathbb{R}\}$. $\mathrm{GL}_{2}^{+}(F)$ acts on $\mathfrak{H}^{\text {a }}$ component-wise. If $\alpha \in \mathrm{GL}_{2}^{+}(F)$, define the factor of automorphy

$$
j(\alpha, \mathbf{z})=\prod_{\tau \in \mathbf{a}} j\left(\tau(\alpha), z_{\tau}\right)
$$

Hilbert modular forms

Let F be a totally real number field, and $\mathbf{a}=\{\tau: F \hookrightarrow \mathbb{R}\}$. $\mathrm{GL}_{2}^{+}(F)$ acts on $\mathfrak{H}^{\text {a }}$ component-wise. If $\alpha \in \mathrm{GL}_{2}^{+}(F)$, define the factor of automorphy

$$
j(\alpha, \mathbf{z})=\prod_{\tau \in \mathbf{a}} j\left(\tau(\alpha), z_{\tau}\right)
$$

Let \mathcal{O}_{F} denotes the ring of integers of F. If $\mathfrak{r}, \mathfrak{n}$ are ideals, let

$$
\begin{aligned}
\Gamma(\mathfrak{r}, \mathfrak{n})=\left\{\alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}^{+}(F):\right. & \operatorname{det}(\alpha) \in \mathcal{O}_{F}^{\times} \text {and } \\
& \left.a, d \in \mathcal{O}_{F}, b \in \mathfrak{r}^{-1}, c \in \mathfrak{r n}\right\} .
\end{aligned}
$$

Hilbert modular forms

Let F be a totally real number field, and $\mathbf{a}=\{\tau: F \hookrightarrow \mathbb{R}\}$. $\mathrm{GL}_{2}^{+}(F)$ acts on $\mathfrak{H}^{\text {a }}$ component-wise. If $\alpha \in \mathrm{GL}_{2}^{+}(F)$, define the factor of automorphy

$$
j(\alpha, \mathbf{z})=\prod_{\tau \in \mathbf{a}} j\left(\tau(\alpha), z_{\tau}\right)
$$

Let \mathcal{O}_{F} denotes the ring of integers of F. If $\mathfrak{r}, \mathfrak{n}$ are ideals, let

$$
\begin{aligned}
\Gamma(\mathfrak{r}, \mathfrak{n})=\left\{\alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}^{+}(F):\right. & \operatorname{det}(\alpha) \in \mathcal{O}_{F}^{\times} \text {and } \\
& \left.a, d \in \mathcal{O}_{F}, b \in \mathfrak{r}^{-1}, c \in \mathfrak{r n}\right\} .
\end{aligned}
$$

Let $\left\{\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{r}\right\}$ be representatives for the narrow class group.

Hilbert modular forms

Let F be a totally real number field, and $\mathbf{a}=\{\tau: F \hookrightarrow \mathbb{R}\}$. $\mathrm{GL}_{2}^{+}(F)$ acts on $\mathfrak{H}^{\text {a }}$ component-wise. If $\alpha \in \mathrm{GL}_{2}^{+}(F)$, define the factor of automorphy

$$
j(\alpha, \mathbf{z})=\prod_{\tau \in \mathbf{a}} j\left(\tau(\alpha), z_{\tau}\right)
$$

Let \mathcal{O}_{F} denotes the ring of integers of F. If $\mathfrak{r}, \mathfrak{n}$ are ideals, let

$$
\begin{aligned}
\Gamma(\mathfrak{r}, \mathfrak{n})=\left\{\alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}^{+}(F):\right. & \operatorname{det}(\alpha) \in \mathcal{O}_{F}^{\times} \text {and } \\
& \left.a, d \in \mathcal{O}_{F}, b \in \mathfrak{r}^{-1}, c \in \mathfrak{r n}\right\} .
\end{aligned}
$$

Let $\left\{\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{r}\right\}$ be representatives for the narrow class group.Define

$$
M_{2}(\mathfrak{n})=\bigoplus_{i=1}^{r} M_{2}\left(\Gamma\left(\mathfrak{b}_{i}, \mathfrak{n}\right)\right) \quad S_{2}(\mathfrak{n})=\bigoplus_{i=1}^{r} S_{2}\left(\Gamma\left(\mathfrak{b}_{i}, \mathfrak{n}\right)\right)
$$

Main properties

- The forms have q-expansions indexed by integral ideals.
- The forms have q-expansions indexed by integral ideals.
- There are Hecke operators indexed by integral ideals (satisfying the same properties).

Main properties

- The forms have q-expansions indexed by integral ideals.
- There are Hecke operators indexed by integral ideals (satisfying the same properties).
- The action can be given in terms of q-expansion.

Main properties

- The forms have q-expansions indexed by integral ideals.
- There are Hecke operators indexed by integral ideals (satisfying the same properties).
- The action can be given in terms of q-expansion.
- There is a theory of new subspaces.

Half integral weight HMF

Let

$$
\theta(\mathbf{z})=\sum_{\xi \in \mathcal{O}_{F}}\left(\prod_{\tau \in \mathbf{a}} e^{\pi i \tau(\xi)^{2} z_{\tau}}\right)
$$

Half integral weight HMF

Let

$$
\theta(\mathbf{z})=\sum_{\xi \in \mathcal{O}_{F}}\left(\prod_{\tau \in \mathbf{a}} e^{\pi i \tau(\xi)^{2} z_{\tau}}\right)
$$

and define the factor of automorphy for $\gamma \in G L_{2}^{+}(F)$,

$$
J(\gamma, \mathbf{z})=\left(\frac{\theta(\gamma \mathbf{z})}{\theta(\mathbf{z})}\right) j(\gamma, \mathbf{z}) .
$$

Half integral weight HMF

Let

$$
\theta(\mathbf{z})=\sum_{\xi \in \mathcal{O}_{F}}\left(\prod_{\tau \in \mathbf{a}} e^{\pi i \tau(\xi)^{2} z_{\tau}}\right)
$$

and define the factor of automorphy for $\gamma \in G L_{2}^{+}(F)$,

$$
J(\gamma, \mathbf{z})=\left(\frac{\theta(\gamma \mathbf{z})}{\theta(\mathbf{z})}\right) j(\gamma, \mathbf{z}) .
$$

For \mathfrak{n} an integral ideal in \mathcal{O}_{F}, let

$$
\tilde{\Gamma}\left[2^{-1} \delta, \mathfrak{n}\right]=\Gamma\left[2^{-1} \delta, \mathfrak{n}\right] \cap \mathrm{SL}_{2}(F) .
$$

Half integral weight HMF

Definition

If ψ is a Hecke character of conductor \mathfrak{n}, a Hilbert modular form of parallel weight $3 / 2$, level $4 \mathfrak{n}$ and character ψ, is a holomorphic function f on \mathfrak{H}^{a} satisfying:

$$
f(\gamma \mathbf{z})=\psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \quad \forall \gamma \in \tilde{\Gamma}\left[2^{-1} \delta, 4 \mathbf{n}\right] .
$$

Half integral weight HMF

Definition

If ψ is a Hecke character of conductor \mathfrak{n}, a Hilbert modular form of parallel weight $3 / 2$, level $4 \mathfrak{n}$ and character ψ, is a holomorphic function f on \mathfrak{H}^{a} satisfying:

$$
f(\gamma \mathbf{z})=\psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \quad \forall \gamma \in \tilde{\Gamma}\left[2^{-1} \delta, 4 \mathbf{n}\right] .
$$

We denote by $M_{3 / 2}(4 \mathfrak{n}, \psi)$ the v.s. of such forms, and by $S_{3 / 2}(4 \mathfrak{n}, \psi)$ the cuspidal ones.

Half integral weight HMF

Definition

If ψ is a Hecke character of conductor \mathfrak{n}, a Hilbert modular form of parallel weight $3 / 2$, level $4 \mathfrak{n}$ and character ψ, is a holomorphic function f on \mathfrak{H}^{a} satisfying:

$$
f(\gamma \mathbf{z})=\psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \quad \forall \gamma \in \tilde{\Gamma}\left[2^{-1} \delta, 4 \mathfrak{n}\right] .
$$

We denote by $M_{3 / 2}(4 \mathfrak{n}, \psi)$ the v.s. of such forms, and by $S_{3 / 2}(4 \mathfrak{n}, \psi)$ the cuspidal ones.

- The theory is more involved, and there is a Fourier expansion attached to each ideal in the narrow class group.

Half integral weight HMF

Definition

If ψ is a Hecke character of conductor \mathfrak{n}, a Hilbert modular form of parallel weight $3 / 2$, level $4 \mathfrak{n}$ and character ψ, is a holomorphic function f on \mathfrak{H}^{a} satisfying:

$$
f(\gamma \mathbf{z})=\psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \quad \forall \gamma \in \tilde{\Gamma}\left[2^{-1} \delta, 4 \mathfrak{n}\right] .
$$

We denote by $M_{3 / 2}(4 \mathfrak{n}, \psi)$ the v.s. of such forms, and by $S_{3 / 2}(4 \mathfrak{n}, \psi)$ the cuspidal ones.

- The theory is more involved, and there is a Fourier expansion attached to each ideal in the narrow class group.
- There is a theory of Hecke operators as in the classical case.

Half integral weight HMF

Definition

If ψ is a Hecke character of conductor \mathfrak{n}, a Hilbert modular form of parallel weight $3 / 2$, level $4 \mathfrak{n}$ and character ψ, is a holomorphic function f on \mathfrak{H}^{a} satisfying:

$$
f(\gamma \mathbf{z})=\psi(d) J(\gamma, \mathbf{z}) f(\mathbf{z}) \quad \forall \gamma \in \tilde{\Gamma}\left[2^{-1} \delta, 4 \mathfrak{n}\right] .
$$

We denote by $M_{3 / 2}(4 \mathfrak{n}, \psi)$ the v.s. of such forms, and by $S_{3 / 2}(4 \mathfrak{n}, \psi)$ the cuspidal ones.

- The theory is more involved, and there is a Fourier expansion attached to each ideal in the narrow class group.
- There is a theory of Hecke operators as in the classical case.
- There is a formula relating the Hecke operators with the Fourier expansion at different ideals.

Shimura map for HMF

Theorem (Shimura)
For each $\xi \in F^{+}$, there exists a \mathbb{T}_{0} linear map
$\operatorname{Shim}_{\xi}: M_{3 / 2}(4 \mathfrak{n}, \psi) \rightarrow M_{2}\left(2 \mathfrak{n}, \psi^{2}\right)$.

Shimura map for HMF

Theorem (Shimura)
For each $\xi \in F^{+}$, there exists a \mathbb{T}_{0} linear map

$$
\operatorname{Shim}_{\xi}: M_{3 / 2}(4 \mathfrak{n}, \psi) \rightarrow M_{2}\left(2 \mathfrak{n}, \psi^{2}\right)
$$

As before, the image can be given in terms of eigenvalues.
How do we compute preimages?

Shimura map for HMF

Theorem (Shimura)
For each $\xi \in F^{+}$, there exists a \mathbb{T}_{0} linear map

$$
\operatorname{Shim}_{\xi}: M_{3 / 2}(4 \mathfrak{n}, \psi) \rightarrow M_{2}\left(2 \mathfrak{n}, \psi^{2}\right)
$$

As before, the image can be given in terms of eigenvalues.
How do we compute preimages? \leadsto use quaternionic forms.

Quaternionic HMF

We have to make some small adjustments to the classical picture.

Quaternionic HMF

We have to make some small adjustments to the classical picture.

- Take B / F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.

Quaternionic HMF

We have to make some small adjustments to the classical picture.

- Take B / F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.
- Let $M(R)$ be the \mathbb{C}-v.s. spanned by class ideal representatives with the inner product

$$
\left\langle\left[\mathfrak{a}_{j}\right],\left[\mathfrak{a}_{j}\right]\right\rangle= \begin{cases}0 & \text { if } i \neq j, \\ {\left[R_{r}\left(\mathfrak{a}_{i}\right)^{\times}: \mathcal{O}_{F}^{\times}\right]} & \text {if } i=j .\end{cases}
$$

Quaternionic HMF

We have to make some small adjustments to the classical picture.

- Take B / F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.
- Let $M(R)$ be the \mathbb{C}-v.s. spanned by class ideal representatives with the inner product

$$
\left\langle\left[\mathfrak{a}_{i}\right],\left[\mathfrak{a}_{j}\right]\right\rangle= \begin{cases}0 & \text { if } i \neq j, \\ {\left[R_{r}\left(\mathfrak{a}_{i}\right)^{\times}: \mathcal{O}_{F}^{\times}\right]} & \text {if } i=j .\end{cases}
$$

- Define the Hecke operators in the same way as before.

Quaternionic HMF

We have to make some small adjustments to the classical picture.

- Take B / F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.
- Let $M(R)$ be the \mathbb{C}-v.s. spanned by class ideal representatives with the inner product

$$
\left\langle\left[\mathfrak{a}_{i}\right],\left[\mathfrak{a}_{j}\right]\right\rangle= \begin{cases}0 & \text { if } i \neq j \\ {\left[R_{r}\left(\mathfrak{a}_{i}\right)^{\times}: \mathcal{O}_{F}^{\times}\right]} & \text {if } i=j\end{cases}
$$

- Define the Hecke operators in the same way as before.
- They commute, and the adjoint of $T_{\mathfrak{p}}$ is $\mathfrak{p}^{-1} T_{\mathfrak{p}}$.

Preimages

Theorem (J-L,Hida)
There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
The same remarks as in the classical case apply.

Preimages

Theorem (J-L,Hida)

There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
The same remarks as in the classical case apply.
Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 \mathfrak{N}(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(\mathbf{z})=\sum_{\xi \in \mathcal{O}_{F}^{+}}\left\langle\mathbf{v}, e_{\xi}\right\rangle q^{\xi} .
$$

Preimages

Theorem (J-L,Hida)

There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
The same remarks as in the classical case apply.
Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 \mathfrak{N}(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(\mathbf{z})=\sum_{\xi \in \mathcal{O}_{F}^{+}}\left\langle\mathbf{v}, e_{\xi}\right\rangle q^{\xi}
$$

Theorem (Sirolli)
The map Θ is \mathbb{T}_{0}-invariant.

Preimages

Theorem (J-L,Hida)

There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
The same remarks as in the classical case apply.
Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 \mathfrak{N}(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(\mathbf{z})=\sum_{\xi \in \mathcal{O}_{F}^{+}}\left\langle\mathbf{v}, e_{\xi}\right\rangle q^{\xi} .
$$

Theorem (Sirolli)
The map Θ is \mathbb{T}_{0}-invariant.
Furthermore,

- The image lies in the Kohnen space.

Preimages

Theorem (J-L,Hida)

There is a natural map of \mathbb{T}_{0}-modules $S(R) \times S(R) \rightarrow S_{2}(N)$.
The same remarks as in the classical case apply.
Let $\Theta: M(R) \rightarrow M_{3 / 2}\left(4 \mathfrak{N}(R), \chi_{R}\right)$ be given by

$$
\Theta(\mathbf{v})(\mathbf{z})=\sum_{\xi \in \mathcal{O}_{F}^{+}}\left\langle\mathbf{v}, e_{\xi}\right\rangle q^{\xi} .
$$

Theorem (Sirolli)
The map Θ is \mathbb{T}_{0}-invariant.
Furthermore,

- The image lies in the Kohnen space.
- $\Theta(\mathbf{v})$ is cuspidal iff \mathbf{v} is cuspidal.

Example

Let $F=\mathbb{Q}(\sqrt{5}), \omega=\frac{1+\sqrt{5}}{2}$, and consider the elliptic curve

$$
E: y^{2}+x y+\omega y=x^{3}-(1+\omega) x^{2} .
$$

This curve has conductor $\mathfrak{n}=(5+2 \omega)$ (an ideal of norm 31).

- Let B / F be the quaternion algebra ramified at the two infinite primes, and R an Eichler order of level \mathfrak{n}.
- The space $M_{2}(R)$ has dimension 2 (done by Lassina). The element $v=[R]-[\mathfrak{a}]$ is a Hecke eigenvector.
- If we compute $\theta(v)$, we get a form whose q-expansion is "similar" to Tunnell result.
- There are 5 non-trivial zero coefficients with trace up to 100 , and the twists of the original curve by this discriminants all have rank 2 .

