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Motivation

What is a half integral modular form?

We can consider two
classical examples:

The Dedekind eta function

η(z) = e
πiz
12

∞∏
n=1

(1− e2πinz).

It is well know that η(z)24 = ∆(z) a weight 12 cusp form, so η
“should be” of weight 1/2.

Actually η turns out to be weight 1/2 but with a character of order
24.
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Motivation

The classical theta function

θ(z) =
∞∑

n=−∞
e2πin2z .

It is not hard to see that if γ =
(
a b
c d

)
∈ Γ0(4), then(

θ(γz)

θ(z)

)2

=

(
−1

d

)
(cz + d).

So θ(z)2 ∈ M1(Γ0(4), χ−1).
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Definition

We consider the factor of automorphy J(γ, z) = θ(γz)
θ(z) .

Let k be an
odd positive integer, N a positive integer and ψ a character
modulo N.

Definition

A modular form of weight k/2, level 4N and character ψ is an
holomorphic function f : H→ C such that

f (γz) = J(γ, z)kψ(d)f (z) ∀γ =
(
a b
c d

)
∈ Γ0(4N)

f (z) is holomorphic at the cusps.

We denote by Mk/2(4N, ψ) the space of such forms and
Sk/2(4N, ψ) the subspace of cuspidal ones.
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Hecke operators

Via a double coset action, one can define Hecke operators {Tn}n≥1

acting on Sk/2(4N, ψ). They satisfy the properties:

1 Tn = 0 if n is not a square.

2 If (n : 4N) = 1, Tn2 is self adjoint for an inner product.

3 Tn2Tm2 = Tm2Tn2 .

4 If terms of q-expansion, let ω = k−1
2 , then Tp2 acts like

ap2n + ψ(n)

(
−1

p

)ω (n

p

)
pω−1an + ψ(p2)pk−1an/p2 .

Hence there exists a basis of eigenforms for the Hecke operators
prime to 4N.
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Shimura’s Theorem

Theorem (Shimura)

For each square-free positive integer n, there exists a T0-linear map

Shimn : Sk/2(4N, ψ)→ Mk−1(2N, ψ2).1

Furthermore, if f ∈ Sk/2(4N, ψ) is an eigenform for all the Hecke
operators with eigenvalues λn, then Shimn(f ) is (up to a constant)
given by ∏

p

(1− λpp−s + ψ(p2)pk−2−2s)−1.

What information encode the non-square Fourier coefficients?

1The actual level may be smaller
Ariel Pacetti Half integral weight modular forms



Definitions Application Quaternions HMF Application II

Shimura’s Theorem

Theorem (Shimura)

For each square-free positive integer n, there exists a T0-linear map

Shimn : Sk/2(4N, ψ)→ Mk−1(2N, ψ2).1

Furthermore, if f ∈ Sk/2(4N, ψ) is an eigenform for all the Hecke
operators with eigenvalues λn, then Shimn(f ) is (up to a constant)
given by ∏

p

(1− λpp−s + ψ(p2)pk−2−2s)−1.

What information encode the non-square Fourier coefficients?

1The actual level may be smaller
Ariel Pacetti Half integral weight modular forms



Definitions Application Quaternions HMF Application II

Shimura’s Theorem

Theorem (Shimura)

For each square-free positive integer n, there exists a T0-linear map

Shimn : Sk/2(4N, ψ)→ Mk−1(2N, ψ2).1

Furthermore, if f ∈ Sk/2(4N, ψ) is an eigenform for all the Hecke
operators with eigenvalues λn, then Shimn(f ) is (up to a constant)
given by ∏

p

(1− λpp−s + ψ(p2)pk−2−2s)−1.

What information encode the non-square Fourier coefficients?

1The actual level may be smaller
Ariel Pacetti Half integral weight modular forms



Definitions Application Quaternions HMF Application II

Waldspurger’s theorem

Let f ∈ Sk/2(4N, ψ), F = Shim(f ) ∈ Sk−1(2N, ψ2) eigenforms.

Theorem (Waldspurger)

Let n1, n2 be square free positive integers such that n1/n2 ∈ (Q×p )2

for all p | 4N. Then

a2
n1

L(F , ψ−1
0 χn2 , ω)ψ

(
n2

n1

)
n
k/2−1
2 = a2

n2
L(F , ψ−1

0 χn1 , ω)n
k/2−1
1

where ψ0(n) = ψ(n)
(−1

n

)ω
, χn is the quadratic character

corresponding to the field Q[
√

n]

If we fixed n1, for all n as above

a2
n = κL(F , ψ−1

0 χn,
k−1

2 )ψ(n)nk/2−1

where κ is a global constant.
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Congruent Number Problem

Definition: n ∈ N is called a congruent number if it is the area of a
right triangle with rational sides.

Theorem (Tunnell)

If n ∈ N is odd, (assuming BSD) it is a congruent number iff

#
{

(x , y , z) ∈ Z3 : n = 2x2 + y 2 + 32z2
}

=

1

2
#
{

(x , y , z) ∈ Z3 : n = 2x2 + y 2 + 8z2
}

For even n, iff

#
{

(x , y , z) ∈ Z3 : n/2 = 4x2 + y 2 + 32z2
}

=

1

2
#
{

(x , y , z) ∈ Z3 : n/2 = 4x2 + y 2 + 8z2
}
.
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Preimages

What we would like to do:

1 Given F ∈ S2k(N, 1), construct preimages under Shim.

2 Give an explicit constant in Waldspurger Theorem.

3 Generalize this to Hilbert modular forms.

For simplicity we will consider the case of weight k = 2 (where
modular forms correspond with elliptic curves).
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Quaternionic modular forms

Let B be a quaternion algebra over Q ramified at ∞.

Let R ⊂ B
be an Eichler order of level N.

Let J (R) be the set of left R-ideals and let {[a1], . . . , [an]} be
ideal classes representatives. Let M(R) be the C-v.s. spanned by
these representatives. Consider the inner product given by

〈[ai ], [aj ]〉 =

{
0 if i 6= j ,
1
2 #Rr (ai )

× if i = j .

Given m ∈ N and a ∈ J (R), let

tm(a) = {b ∈ J (R) : b ⊂ a, [a : b] = m2}.
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tm(a) = {b ∈ J (R) : b ⊂ a, [a : b] = m2}.
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Hecke operators

For m ∈ N, the Hecke operators Tm : M(R)→ M(R) is

Tm([a]) =
∑

b∈tm(a)

[b]

〈b, b〉
.

Proposition

The Hecke operators satisfy:

1 are self adjoint (all of them).

2 commute with each other.

Let e0 =
∑n

i=1
1

〈ai ,ai 〉 [ai ]. It is an eigenvector for the Hecke

operators. Denote by S(R) its orthogonal complement.
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Basis problem

Theorem (Eichler)

There is a natural map of T0-modules S(R)× S(R)→ S2(N).

Moreover,

If N has valuation 1 at p, the new subspace lies in the image.

In general, considering other orders, any weight 2 form which
has a non-principal series prime is in the image (J-L).
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We get a map

S(R) // S2(N)

S+
3/2(4N)

Shim

::
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Ternary forms

In B, the quadratic form ∆(x) = Tr(x)2 − 4N(x) is a quadratic
negative definite form invariant under translation, hence a form in
B/Q.

If a ∈ J (R), and d ∈ N, let

ad(a) = #{[x ] ∈ Rr (a)/Z : ∆(x) = −d}.

For d ∈ N0, let ed ∈ M(R) be given by

ed =
n∑

i=1

ad(ai )

〈ai , ai 〉
[ai ].
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Theta map

Let Θ : M(R)→ M3/2(4N(R), χR) be given by

Θ(v)(z) =
∑
d≥0

〈v, ed〉qd .

Theorem (P.,Tornaŕıa)

The map Θ is T0-linear .

Furthermore,

The image lies in the Kohnen space.

Θ(v) is cuspidal iff v is cuspidal.

S(R)

Θ $$

// S2(N)

��
S+

3/2(4N)

Shim

::
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Questions

Here are some questions:

Given F ∈ S2(N), how to chose R such that Θ(vF ) is
non-zero?

Do we have an explicit formula relating the coefficients to
central values of twisted L-series?

It should be the case that for all fundamental discriminants d in
some residue classes, the following formula should hold

L(F , 1)L(F , d , 1) = ?
< F ,F >√
|d |

aF , O(d)2

〈vF , vF 〉
.

Done by Gross if N = p.

Done by Böcherer and Schulze-Pillot if N is odd and square
free.

Done by P. and Tornaŕıa if N = p2.
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Ariel Pacetti Half integral weight modular forms



Definitions Application Quaternions HMF Application II

Questions

Here are some questions:

Given F ∈ S2(N), how to chose R such that Θ(vF ) is
non-zero?

Do we have an explicit formula relating the coefficients to
central values of twisted L-series?

It should be the case that for all fundamental discriminants d in
some residue classes, the following formula should hold

L(F , 1)L(F , d , 1) = ?
< F ,F >√
|d |

aF , O(d)2

〈vF , vF 〉
.

Done by Gross if N = p.
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Done by Böcherer and Schulze-Pillot if N is odd and square
free.

Done by P. and Tornaŕıa if N = p2.
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Hilbert modular forms

Let F be a totally real number field, and a = {τ : F ↪→ R}.

GL+
2 (F ) acts on Ha component-wise.

If α ∈ GL+
2 (F ), define the

factor of automorphy

j(α, z) =
∏
τ∈a

j(τ(α), zτ ).

Let OF denotes the ring of integers of F . If r, n are ideals, let

Γ(r, n) =
{
α =

(
a b
c d

)
∈ GL+

2 (F ) : det(α) ∈ O×F and

a, d ∈ OF , b ∈ r−1, c ∈ rn
}
.

Let {b1, . . . , br} be representatives for the narrow class
group.Define

M2(n) =
r⊕

i=1

M2(Γ(bi , n)) S2(n) =
r⊕

i=1

S2(Γ(bi , n))
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Main properties

The forms have q-expansions indexed by integral ideals.

There are Hecke operators indexed by integral ideals
(satisfying the same properties).

The action can be given in terms of q-expansion.

There is a theory of new subspaces.
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Half integral weight HMF

Let

θ(z) =
∑
ξ∈OF

(∏
τ∈a

eπiτ(ξ)2zτ

)
,

and define the factor of automorphy for γ ∈ GL+
2 (F ),

J(γ, z) =

(
θ(γz)

θ(z)

)
j(γ, z).

For n an integral ideal in OF , let

Γ̃[2−1δ, n] = Γ[2−1δ, n] ∩ SL2(F ).
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Half integral weight HMF

Definition

If ψ is a Hecke character of conductor n, a Hilbert modular form of
parallel weight 3/2, level 4n and character ψ, is a holomorphic
function f on Ha satisfying:

f (γz) = ψ(d)J(γ, z)f (z) ∀ γ ∈ Γ̃[2−1δ, 4n].

We denote by M3/2(4n, ψ) the v.s. of such forms, and by
S3/2(4n, ψ) the cuspidal ones.

The theory is more involved, and there is a Fourier expansion
attached to each ideal in the narrow class group.

There is a theory of Hecke operators as in the classical case.

There is a formula relating the Hecke operators with the
Fourier expansion at different ideals.
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Shimura map for HMF

Theorem (Shimura)

For each ξ ∈ F +, there exists a T0 linear map

Shimξ : M3/2(4n, ψ)→ M2(2n, ψ2).

As before, the image can be given in terms of eigenvalues.

How do we compute preimages? ; use quaternionic forms.
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Quaternionic HMF

We have to make some small adjustments to the classical picture.

Take B/F a quaternion algebra ramified at least all the
infinite places, and R an Eichler order in it.

Let M(R) be the C-v.s. spanned by class ideal representatives
with the inner product

〈[ai ], [aj ]〉 =

{
0 if i 6= j ,

[Rr (ai )
× : O×F ] if i = j .

Define the Hecke operators in the same way as before.

They commute, and the adjoint of Tp is p−1Tp.
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Preimages

Theorem (J-L,Hida)

There is a natural map of T0-modules S(R)× S(R)→ S2(N).

The same remarks as in the classical case apply.

Let Θ : M(R)→ M3/2(4N(R), χR) be given by

Θ(v)(z) =
∑
ξ∈O+

F

〈v, eξ〉qξ.

Theorem (Sirolli)

The map Θ is T0-invariant.

Furthermore,

The image lies in the Kohnen space.

Θ(v) is cuspidal iff v is cuspidal.
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General picture

S(R)

Θ $$

// S2(n)

��
S+

3/2(4n)

Shimξ

::
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Example

Let F = Q(
√

5), ω = 1+
√

5
2 , and consider the elliptic curve

E : y 2 + xy + ωy = x3 − (1 + ω)x2.

This curve has conductor n = (5 + 2ω) (an ideal of norm 31).

Let B/F be the quaternion algebra ramified at the two infinite
primes, and R an Eichler order of level n.

The space M2(R) has dimension 2 (done by Lassina). The
element v = [R]− [a] is a Hecke eigenvector.

If we compute θ(v), we get a form whose q-expansion is
“similar” to Tunnell result.

There are 5 non-trivial zero coefficients with trace up to 100,
and the twists of the original curve by this discriminants all
have rank 2.
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