Examples of abelian surfaces with everywhere good reduction

L. Dembélé (joint with A. Kumar)

Warwick University
March 22, 2013

Motivation

Fontaine, Abrashkin: There is no abelian variety over \mathbb{Q} with everywhere good reduction.

However, long before this result, there were few elliptic curves with unit conductor in the literature.

For example, the curve

$$
E: y^{2}+x y+\varepsilon^{2} y=x^{3}
$$

where $\varepsilon=\frac{5+\sqrt{29}}{2}$ is the fundamental unit in $F=\mathbb{Q}(\sqrt{29})$, was known to Tate in the late 60s and has been extensively studied by Serre.

Motivation

There is now an abundance of elliptic curves with everywhere good reduction:

- Setzer, Stroeker, Comalada, Kida, Cremona, Pinch, Kagawa, etc.
- The database has been considerably expanded by Elkies.
- D-Voight: Assuming modularity, Elkies' database contains all the curves for all fundamental discriminants ≤ 1000.

In contrast, there is not a single example of an abelian surface with everywhere good reduction in the literature (except in the case of complex multiplication, or when the abelian surface is a product of elliptic curves).

It would be desirable to remedy that situation.

Motivation

A much more philosophical reason to study these objects:
Khare:
"The proof of the Serre conjecture in retrospect can be viewed as a method to exploit an accident which occurs in three different guises:

- (Fontaine, Abrashkin) There are no non-zero abelian varieties over \mathbb{Z}.
- (Serre, Tate) There are no irreducible representations

$$
\bar{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\overline{\mathbb{F}})
$$

where $\overline{\mathbb{F}}$ is the algebraic closure of \mathbb{F}_{2} or \mathbb{F}_{3} that are unramified outside of 2 and 3 respectively.

- $S_{2}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=0$, i.e., there are no cusp forms of level $\mathrm{SL}_{2}(\mathbb{Z})$ and weight 2."

Our strategy

Let F be a number field of class number 1 , and E an elliptic curve over F given by a (global minimal) Weierstrass equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{i} \in \mathcal{O}_{F}$, the ring of integers of F.
The invariants c_{4} and c_{6} satisfy the equation $c_{4}^{3}-c_{6}^{2}=1728 \Delta$, where Δ is the discriminant of E. In other words, $\left(c_{4}, c_{6}\right)$ is an \mathcal{O}_{F}-integral point on the curve

$$
\begin{equation*}
y^{2}=x^{3}-1728 \Delta \tag{1}
\end{equation*}
$$

E has everywhere good reduction $\Longleftrightarrow \Delta$ is a unit in \mathcal{O}_{F}.

Our strategy

So, to find all the elliptic curves over F with everywhere good reduction it is enough to solve (1) for all $\Delta \in \mathcal{O}_{F}^{\times} /\left(\mathcal{O}_{F}^{\times}\right)^{12}$ (finite).

Unfortunately, abelian varieties of higher dimension are not characterised by a nice diophantine equation as in (1).

For this reason, we need an additional input when looking for the ones with everywhere good reduction.

This extra input is provided by the Eichler-Shimura conjecture.

Eichler-Shimura conjecture

Conjecture (Eichler-Shimura)

Let F be a totally real number field and \mathfrak{N} an intregal ideal of F. Let f be a Hilbert newform of parallel weight 2 and level \mathfrak{N}. Let $\left(a_{\mathfrak{m}}(f)\right)_{\mathfrak{m} \subseteq \mathcal{O}_{F}}$ be the set of Fourier coefficients of f, and K_{f} the number field generated by them. There exists an abelian variety A_{f} / F of dimension $\left[K_{f}: \mathbb{Q}\right.$], with good reduction outside of \mathfrak{N}, such that

$$
L\left(A_{f}, s\right)=\prod_{\tau \in \operatorname{Aut}\left(K_{f}\right)} L\left(f^{\tau}, s\right)
$$

where

$$
L\left(f^{\tau}, s\right):=\sum_{\mathfrak{m} \subseteq \mathcal{O}_{F}} \frac{a_{\mathfrak{m}}(f)^{\tau}}{\mathrm{Nm}^{s}}
$$

Paramodularity conjecture

The following statement is a special case of the so-called Paramodularity Conjecture due to Brumer-Kramer, which encompasses Conjecture 1.

Conjecture (Brumer-Kramer)

Let g be a paramodular Siegel newform of genus 2, weight 2 and level N, with integer Hecke eigenvalues, which is not in the span of Gritsenko lifts. Then there exists an abelian surface B defined over \mathbb{Q} of conductor N such that $\operatorname{End}_{\mathbb{Q}}(B)=\mathbb{Z}$ and $L(g, s)=L(B, s)$.

Eichler-Shimura construction for $F=\mathbb{Q}$

Let $N \in \mathbb{Z}_{>1}$, and let $X_{1}(N)$ be the modular curve of level $\Gamma_{1}(N)$.
This curve and its Jacobian $J_{1}(N)$ are defined over \mathbb{Q}.
The space $S_{2}\left(\Gamma_{1}(N)\right)$ of cusp forms of weight 2 and level $\Gamma_{1}(N)$ is a \mathbb{T}-module, where \mathbb{T} is the Hecke algebra.

Let $f \in S_{2}\left(\Gamma_{1}(N)\right)$ be a newform, and let $I_{f}=A n n_{\mathbb{T}}(f)$.
Shimura showed that the quotient

$$
A_{f}:=J_{1}(N) / I_{f} J_{1}(N)
$$

is an abelian variety A_{f} of dimension $\left[K_{f}: \mathbb{Q}\right]$ defined over \mathbb{Q} with endomorphisms by an order in K_{f} and that

$$
L\left(A_{f}, s\right)=\prod_{g \in[f]} L(g, s)
$$

where $[f$] denotes the Galois orbit of f.

Eichler-Shimura construction: $F=\mathbb{Q}$

For elliptic curves defined over \mathbb{Q}, Cremona makes this construction explicit using the theory of modular symbols.

For hyperelliptic curves of genus 2, there is also the so-called Jacobian nullwerte approach used by the Barcelona school to compute equations for these curves.

Eichler-Shimura construction when $[F: \mathbb{Q}]>1$

Case $[F: \mathbb{Q}]$ is odd:
Conjecture 1 is known and its proof exploits the cohomology of Shimura curves.

It is possible that one could use Voight's method to compute equations for abelian surfaces uniformised by Shimura curves.

Case: $[F: \mathbb{Q}]$ even:
Many cases of the conjecture are still unknown. For example, when $[F: \mathbb{Q}]=2$ and f is a newform of level (1) and parallel weight 2 over F, it is not always possible to construct the associated surface A_{f}.

Examples

From now on, F is a real quadratic field of narrow class number one.
For a newform f of parallel weight 2 over F, recall that K_{f} denotes the coefficient field of f.

Notations:

$$
\operatorname{Gal}(F / \mathbb{Q})=\{1, \sigma\}, \operatorname{Gal}\left(K_{f} / \mathbb{Q}\right)=\{1, \tau\} .
$$

Our examples can be subdivided in the following cases:
I: The form f is a base change from \mathbb{Q}.
II: The form f is not a base change from \mathbb{Q} :
(a) The $\operatorname{Gal}\left(K_{f} / \mathbb{Q}\right)$-orbit $\left\{f, f^{\tau}\right\}$ is $\operatorname{Gal}(F / \mathbb{Q})$-invariant.
(b) The $\operatorname{Gal}\left(K_{f} / \mathbb{Q}\right)$-orbit $\left\{f, f^{\tau}\right\}$ is not $\operatorname{Gal}(F / \mathbb{Q})$-invariant.

Examples: Case I

In this case, the Hecke eigenvalues of the Hilbert newform f satisfy

$$
a_{\mathfrak{p}}(f)=a_{\mathfrak{p}} \sigma(f)
$$

Let g be a newform in $S_{2}\left(\Gamma_{1}(D)\right)$ whose base change is f.
Since the level of f is (1), the form $g \in S_{2}\left(D, \chi_{D}\right)^{\text {new }}$ by a result of
Mazur-Wiles, where χ_{D} is the fundamental character of $F=\mathbb{Q}(\sqrt{D})$.
Furthermore, the abelian variety B_{g} attached to g is a fourfold such that

$$
B_{g} \otimes_{\mathbb{Q}} F \simeq A_{f} \times A_{f}^{\sigma}
$$

where A_{f} and A_{f}^{σ} are isogenous.
So in this case, the existence of the surface A_{f} can be proved from the classical Eichler-Shimura construction.

Examples: Case I

The smallest discriminant for which we obtain such a surface is $D=53$. The abelian surface A_{f} has real multiplication by $\mathbb{Z}[\sqrt{2}]$.

$N \mathfrak{p}$	\mathfrak{p}	$a_{\mathfrak{p}}(f)$	$\left(x^{2}-a_{\mathfrak{p}}(f) x+N \mathfrak{p}\right)\left(x^{2}-a_{\mathfrak{p}}(f)^{\tau} x+\mathrm{Np}\right)$
4	2	$e+1$	$x^{4}-2 x^{3}+7 x^{2}-8 x+16$
7	$-w-2$	$-e-2$	$x^{4}+4 x^{3}+16 x^{2}+28 x+49$
7	$-w+3$	$-e-2$	$x^{4}+4 x^{3}+16 x^{2}+28 x+49$
9	3	$-3 e+1$	$x^{4}-2 x^{3}+x^{2}-18 x+81$
11	$w-2$	$3 e$	$x^{4}+4 x^{2}+121$
11	$w+1$	$3 e$	$x^{4}+4 x^{2}+121$
13	$w-1$	$-2 e+1$	$x^{4}-2 x^{3}+19 x^{2}-26 x+169$
13	$-w$	$-2 e+1$	$x^{4}-2 x^{3}+19 x^{2}-26 x+169$
17	$-w-5$	-3	$x^{4}+6 x^{3}+43 x^{2}+102 x+289$
17	$w-6$	-3	$x^{4}+6 x^{3}+43 x^{2}+102 x+289$
25	5	$2 e+4$	$x^{4}-8 x^{3}+58 x^{2}-200 x+625$
29	$-w-6$	$3 e-3$	$x^{4}+6 x^{3}+49 x^{2}+174 x+841$

Table: Newform of level (1) and weight $(2,2)$ over $\mathbb{Q}(\overline{\overline{5}})$)

Examples: Case I

Theorem

Let $C: y^{2}+Q(x) y=P(x)$ be the curve over F, where

$$
\begin{aligned}
P(x):= & (9 w-50) x^{6}-(28 w-142) x^{5}+(34 w-155) x^{4} \\
& -(2 w-12) x^{3}+(21 w-83) x^{2}-(105 w-439) x+92 w-379 \\
Q(x):= & -(w+3) x^{3}+(2 w-1) x^{2}+(4 w-17) x-7 w+29 .
\end{aligned}
$$

Then
(a) The discriminant of this curve is $\Delta_{C}=-\epsilon^{27}$, where ϵ is the fundamental unit. Thus C has everywhere good reduction.
(b) The surface $A:=J(C)$ is modular and corresponds to the unique f in $S_{2}(1)$, the space of Hilbert newforms of weight $(2,2)$ and level (1) over $F=\mathbb{Q}(\sqrt{53})$.

Examples: Case II (a)

The following result explains the connection between Conjectures 1 and 2 .

Lemma

Assume that Conjecture 2 is true. Let F be a real quadratic field. Let \mathfrak{N} be an integral ideal of \mathcal{O}_{F} such that $\mathfrak{N}^{\sigma}=\mathfrak{N}$. Let f be a Hilbert newform of weight $(2,2)$ and level \mathfrak{N} over F, which satisfies the hypotheses of Case II (a). Then f satisfies Conjecture 1.

Examples: Case II (a)

Proof:

Since f is a non-base change, a result of Johnson-Leung-Roberts implies that there is a paramodular Siegel newform g of genus 2, level $N D^{2}$ and weight 2 attached to f, where $N=\mathrm{N}_{F / \mathbb{Q}}(\mathfrak{N})$.

Moreover, since $\operatorname{Gal}(F / \mathbb{Q})$ preserves $\left\{f, f^{\tau}\right\}$, we must have the commutative diagram:

$$
\begin{gathered}
\left\{a_{\mathfrak{p}}(f)\right\} \xrightarrow{\sigma}\left\{a_{\mathfrak{p}^{\sigma}}(f)\right\} \\
\| \\
\left\{a_{\mathfrak{p}}(f)\right\} \xrightarrow[\tau]{\longrightarrow}\left\{a_{\mathfrak{p}}(f)^{\tau}\right\}
\end{gathered}
$$

In other words, we must have

$$
a_{\mathfrak{p}} \sigma(f)=a_{\mathfrak{p}}(f)^{\tau}, \forall \mathfrak{p} \subseteq \mathcal{O}_{F} .
$$

Examples: Case II (a)

Proof (cont'd):

Therefore, the Hecke eigenvalues of the form g are integers.
So by Conjecture 2, there is an abelian surface B_{g} defined over \mathbb{Q} with $\operatorname{End}_{\mathbb{Q}}\left(B_{g}\right)=\mathbb{Z}$ such that $L\left(B_{g}, s\right)=L(g, s)$.

Let A_{f} be the quadratic twist of B_{g} to F. Then A_{f} satisfies Conjecture 1, since it has the correct conductor N and L-factors.

Examples: Case II (a)

Remark

By Lemma 4, if A_{f} is an abelian surface attached to a Hilbert newform f satisfying Case II (a), then A_{f} is (essentially) the base change to F of some surface B defined over \mathbb{Q}, which acquires extra endomorphisms. Therefore, we know that the Igusa-Clebsch invariants of A_{f} are in \mathbb{Q}, and we can use this fact in looking for A_{f}.

Examples: Case II (a)

The first real quadratic field of narrow class number 1 where there is a form which satisfies Case II (a) is $F=\mathbb{Q}(\sqrt{193})$ (see Table 2).

The coefficients of f generate the ring of integers $\mathcal{O}_{f}:=\mathbb{Z}\left[\frac{1+\sqrt{17}}{2}\right]$ of the field $K_{f}=\mathbb{Q}(\sqrt{17})$.

By Conjecture 1 (Eichler-Shimura conjecture), this form corresponds to a surface A over F with everywhere good reduction.

Notations:

$$
\begin{gathered}
w=\frac{1+\sqrt{193}}{2}, e=\frac{1+\sqrt{17}}{2} . \\
\operatorname{Gal}(F / \mathbb{Q})=\{1, \sigma\}, \operatorname{Gal}\left(K_{f} / \mathbb{Q}\right)=\{1, \tau\} .
\end{gathered}
$$

Examples: Case II (a)

$N \mathfrak{p}$	\mathfrak{p}	$a_{\mathfrak{p}}(f)$	$\left(x^{2}-a_{\mathfrak{p}}(f) x+\mathrm{Np}\right)\left(x^{2}-a_{\mathfrak{p}}(f)^{\tau} x+\mathrm{Np}\right)$
2	$9 w-67$	e	$x^{4}-x^{3}-2 x+4$
2	$9 w+58$	$-e+1$	$x^{4}-x^{3}-2 x+4$
3	$-2 w+15$	e	$x^{4}-x^{3}+2 x^{2}-3 x+9$
3	$2 w+13$	$-e+1$	$x^{4}-x^{3}+2 x^{2}-3 x+9$
7	$-186 w-1199$	$-e+2$	$x^{4}-3 x^{3}+12 x^{2}-21 x+49$
7	$186 w-1385$	$e+1$	$x^{4}-3 x^{3}+12 x^{2}-21 x+49$
23	$38 w-283$	$-e-6$	$x^{4}+13 x^{3}+84 x^{2}+299 x+529$
23	$-38 w-245$	$e-7$	$x^{4}+13 x^{3}+84 x^{2}+299 x+529$
25	5	1	$x^{4}-2 x^{3}+51 x^{2}-50 x+625$
31	$-16 w-103$	$e-3$	$x^{4}+5 x^{3}+64 x^{2}+155 x+961$
31	$-16 w+119$	$-e-2$	$x^{4}+5 x^{3}+64 x^{2}+155 x+961$

Table: The first few Hecke eigenvalue attached to a non-base change for of conductor (1) over $\mathbb{Q}(\sqrt{193})$

Examples: Case II (a)

Theorem

Let $C: y^{2}+Q(x) y=P(x)$ be the curve over F, where

$$
\begin{aligned}
P(x):= & 2 x^{6}+(-2 w+7) x^{5}+(-5 w+47) x^{4}+(-12 w+85) x^{3} \\
& \quad+(-13 w+97) x^{2}+(-8 w+56) x-2 w+1, \\
Q(x):= & -x-w .
\end{aligned}
$$

Then
(a) The discriminant $\Delta_{C}=-1$, hence C has everywhere good reduction.
(b) The surface $J(C)$ is modular and corresponds to the form f listed in Table 2.

Examples: Case II (a)

Remark

(1) Both C and $J(C)$ have everywhere good reduction. However, this is not true in general. Indeed, it can happen that the curve C has bad reduction at a prime \mathfrak{p} while $J(C)$ does not.
(2) A result of Stroeker states that if E is an elliptic curve defined over a real quadratic field F having good reduction everywhere, then $\Delta_{E} \notin\{-1,1\}$.

Theorem 6 shows that this is not true for genus 2 curves.

Examples: Case II (a)

Sketch of proof:

By direct calculation, one sees that $\Delta_{C}=-1$. So C and $J(C)$ have everywhere good reduction.

However, it is important to know that we found the curve C based on our heuristics which rely on Conjectures 1 and 2.

Indeed, let $S_{2}(1)$ be the space of Hilbert cuspforms of level (1) and parallel weight 2 over $F=\mathbb{Q}(\sqrt{193})$.

- $S_{2}(1)$ has dimension 9, and decomposes into two Hecke constituents of dimension 2 and 7 respectively.
- The Hecke constituent of the form f in Table 2 is 2-dimensional. It is a non-base change and is stable under $\operatorname{Gal}\left(K_{f} / \mathbb{Q}\right)$.

So we can look for our surface A_{f} with the help of Lemma 4.

Examples: Case II (a)

For a fundamental discriminant D, let $Y_{-}(D)$ be the Hilbert modular surface which parametrises principally polarised abelian surfaces with real multiplication by \mathcal{O}_{D}, the ring of integers of $\mathbb{Q}(\sqrt{D})$.

The surface $Y_{-}(D)$ has a model over \mathbb{Q}.
In the 1970s, Hirzebruch et al. computed the geometric invariants of many of these surfaces and determined their Enriques-Kodaira classification.

Recently, Elkies and Kumar computed explicit equations for the birational models of these surfaces for all the fundamental discriminants ≤ 100.

Examples: Case II (a)

They showed that $Y_{-}(17)$ is given as a double-cover of $\mathbf{P}_{g, h}^{2} / \mathbb{Q}$ by

$$
\begin{aligned}
z^{2}=(& 256 h^{3}-192 g^{2} h^{2}-464 g h^{2}-185 h^{2}+48 g^{4} h-236 g^{3} h \\
& -346 g^{2} h-144 g h-18 h-4 g^{6}-20 g^{5}-41 g^{4}-44 g^{3} \\
& \left.-26 g^{2}-8 g-1\right) .
\end{aligned}
$$

With this parametrisation, the Igusa-Clebsch invariants are given by:

$$
\begin{aligned}
& I_{2}:=-\frac{24 B_{1}}{A_{1}}, \\
& I_{4}:=-12 A \\
& I_{6}:=\frac{96 A B_{1}-36 A_{1} B}{A_{1}}, \\
& I_{10}:=-4 A_{1} B_{2},
\end{aligned}
$$

Examples: Case II (a)

where

$$
\left.\begin{array}{rl}
A_{1}:= & (2 g+1)^{2}, \\
A: & :=-\frac{16 h^{2}-8 g^{2} h+20 g h+64 h+g^{4}+4 g^{3}+6 g^{2}+4 g+1}{3}, \\
B_{1}: & :=-\frac{48 h^{2}-16 g^{2} h-40 g h-16 h+4 g^{4}-12 g^{3}-23 g^{2}-12 g-2}{3}, \\
B:=-\frac{2}{27}\left(64 h^{3}-48 g^{2} h^{2}-312 g h^{2}+978 h^{2}+12 g^{4} h-6 g^{3} h\right. \\
& \quad+72 g^{2} h+210 g h+120 h-g^{6}-6 g^{5}-15 g^{4}-20 g^{3} \\
& \left.\quad-15 g^{2}-6 g-1\right),
\end{array}\right\} \begin{aligned}
B_{2}:= & -64 h^{3} .
\end{aligned}
$$

Examples: Case II (a)

A search for points of low height on this surface yields:

$$
\begin{aligned}
& g=0, h=-1 / 4, \\
& I_{2}=40, I_{4}=-56, I_{6}=-669, I_{10}=-4, \\
& j_{1}=-3200000, j_{2}=-208000, j_{3}=-16400 .
\end{aligned}
$$

Over \mathbb{Q}, this gives the curve
$C^{\prime}: y^{2}=-8 x^{6}+220 x^{5}-44 x^{4}-14828 x^{3}-4661 x^{2}-21016 x+10028$.
Twisting C^{\prime} to F and then reducing yields curve C in Theorem 6 .

Examples: Case II (a)

To prove modularity, we note that 3 is inert in $K_{f}=\mathbb{Q}(\sqrt{17})$, and consider the 3 -adic representation attached to A,

$$
\rho_{A, 3}: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow \mathrm{GL}_{2}\left(K_{f,(3)}\right) \simeq \mathrm{GL}_{2}\left(\mathbb{Q}_{9}\right) .
$$

By computing the orders of Frobenius for the first few primes, we see that the mod 3 representation

$$
\bar{\rho}_{A, 3}: \operatorname{Gal}(\overline{\mathbb{Q}} / F) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{9}\right)
$$

is surjective, and absolutely irreducible.

- We prove that $\bar{\rho}_{A, 3}$ is modular using a result of Ellenberg.
- The modularity of $\rho_{A, 3}$ the follows from work of Gee.

Examples: Case II (a)

Corollary

Let B be the Jacobian of the curve C^{\prime} / \mathbb{Q} in the proof of Theorem 6. Then B is paramodular of level 193^{2}.

Remark

In their paper, Brumer and Kramer remarked that Conjecture 2 should be verifiable by current technology for paramodular abelian surfaces B over \mathbb{Q} with End $\overline{\mathbb{Q}}(B) \supsetneq \mathbb{Z}$. The majority of the surfaces we found fall in Case II (a), and provide such evidence.

Data

D	RM
53	$8^{(c)}$
61	12
73	$5^{(c)}$
193	17
233	17
277	29
349	21

D	RM
353	$5^{(*)}$
373	93
389	8
397	24
409	13
433	12
461	$5^{(c)}, 5^{(*)}, 29$

D	RM
613	21
677	$13,29,85$
709	5
797	8,29
809	5
821	44
853	21

D	RM
929	13
997	13

Conventions:

Case I: (${ }^{c}$) means that the form f is a base change from \mathbb{Q}.
Case II (b): (*) means that both the form f and its theta lift are not base change.

An incomplete example over $\mathbb{Q}(\sqrt{-223})$

Consider the polynomials

$$
\begin{aligned}
P:= & -8 x^{6}+(54 w-27) x^{5}+9103 x^{4}+(-14200 w+7100) x^{3} \\
& \quad-697185 x^{2}+(326468 w-163234) x+3539399 \\
Q:= & x^{3}+(2 w-1) x^{2}-x,
\end{aligned}
$$

where $w=\frac{1+\sqrt{-223}}{2}$.
The curve $C: y^{2}+Q(x) y=P(x)$ has discriminant 1, and its Jacobian $J(C)$ has real multiplication by an $\mathbb{Z}[\sqrt{2}]$.

Question: Show that $J(C)$ is modular and corresponds to a Bianchi modular form.

