Preliminaries	The Hilbert modular group	Computations	Reduction algorithm
00000	00000		000000000000

Dimension formulas for vector-valued Hilbert modular forms

Fredrik Strömberg (j/w N.-P. Skoruppa)

March 29, 2013

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Preliminaries	The Hilbert modular group	Computations	Reduction algorithm
00000			
Possible applications			

- Jacobi forms over number fields
 - Same type of correspondence as over \mathbb{Q} (between scalar and vector-valued)
 - Liftings between Hilbert modular forms and Jacobi forms (Shimura lift)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Preliminaries	The Hilbert modular group		Computations	Reduction algorithm
00000				
Preliminary notation (Number fields)				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- K/\mathbb{Q} number field of degree n
- Embeddings: $\sigma_i : K \to \mathbb{R}, 1 \le i \le n$,
- Trace and norm:

$$\operatorname{Tr} \alpha = \sum \sigma_i \alpha, \quad \operatorname{N} \alpha = \prod \sigma_i \alpha.$$
• If $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{M}_2(K)$ we write $A_{\sigma_i} = \begin{pmatrix} \sigma_i(\alpha) & \sigma_i(\beta) \\ \sigma_i(\gamma) & \sigma_i(\delta) \end{pmatrix}$.

Preliminaries	The Hilbert modular group			Reduction algorithm
00000	00000	000000	0000	000000000000
More preliminaries				

There are two important lattices related to K:

• $\mathcal{O}_{\mathcal{K}}$ the ring of integers with integral basis $1 = \alpha_1, \alpha_2, \dots \alpha_n$

$$\mathcal{O}_{\mathcal{K}}\simeq \alpha_1\mathbb{Z}\oplus\cdots\oplus\alpha_n\mathbb{Z},$$

• \mathcal{O}_{K}^{\times} the unit group with generators $\pm 1, \epsilon_{1}, \dots, \epsilon_{n-1}$

$$\mathcal{O}_{K}^{\times} \simeq \langle \pm 1 \rangle \times \langle \epsilon_{1} \rangle \times \cdots \langle \epsilon_{n-1} \rangle$$

• A the logarithmic unit lattice: $v_i = (\ln |\sigma_1 \varepsilon_i|, \dots, \ln |\sigma_{n-1} \varepsilon_i|)$

$$\Lambda = v_1 \mathbb{Z} \oplus \cdots \oplus v_{n-1} \mathbb{Z}.$$

The "volume" of Λ is called the regulator Reg(K).

• The volume of O_K is $|d_K|^{\frac{1}{2}}$, d_K is the discriminant of *K*.

Preliminaries	The Hilbert modular group			Reduction algorithm
00000	00000	000000	0000	0000000000000
More preliminary notation				

- Define the ring $\mathbb{C}_{\mathcal{K}} := \mathbb{C} \otimes_{\mathbb{Q}} \mathcal{K}$
 - Multiplication:

$$(z \otimes a, w \otimes b) \mapsto (zw \otimes ab)$$

Algebra structure over $\mathbb C$ and K by identifications $K = 1 \otimes_{\mathbb Q} K$ and $\mathbb C = \mathbb C \otimes_{\mathbb Q} 1$

- Also $\mathbb{R}_{\mathcal{K}} := \mathbb{R} \otimes_{\mathbb{Q}} \mathcal{K}$ as a subring of $\mathbb{C}_{\mathcal{K}}$.
- Imaginary part (similarly for real part):

$$\Im(z\otimes a) = \Im(z)\otimes a,$$

Extend embeddings:

$$\sigma(z\otimes a)=z\sigma(a)$$

• For $x \in \mathbb{R}$ we say that $x \otimes a$ is totally positive, $x \otimes a \gg 0$ if

$$\sigma_i(x \otimes a) > 0, i = 1, 2$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Preliminaries	The Hilbert modular group	Computations	Reduction algorithm
00000			
Example $\mathbb{Q}(\sqrt{5})$			

In $\mathbb{Q}\left(\sqrt{5}\right)$ we have the fundamental unit ϵ and its conjugate ϵ^* :

$$\epsilon_0=\frac{1}{2}\left(1+\sqrt{5}\right),\quad \epsilon^*=-\epsilon_0^{-1}=\frac{1}{2}\left(1-\sqrt{5}\right).$$

And

$$\begin{array}{rcl} \mathcal{O}_{\mathcal{K}} &\simeq & \mathbb{Z} + \epsilon_0 \mathbb{Z} \,, \\ \Lambda &\simeq & \mathbb{Z} \ln \left| \frac{1 + \sqrt{5}}{2} \right| \end{array}$$

with the volume given by

$$\begin{aligned} |\mathcal{O}_{\mathcal{K}}| &= \left| \det \left(\begin{array}{c} \frac{1}{2} \left(1 + \sqrt{5} \right) & \frac{1}{2} \left(1 - \sqrt{5} \right) \\ 1 & 1 \end{array} \right) \right| &= \sqrt{5} \\ |\Lambda| &= \left| \ln \frac{1}{2} \left(1 + \sqrt{5} \right) \right| &\simeq 0.4812... \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Preliminaries	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
The generalized upper half-pla	ne			

• For
$$r \in \mathbb{R}_K$$
 and $z \in \mathbb{C}_K$ we define $z^r \in \mathbb{C}_K$ by

$$\sigma(z^r) = \exp(i\sigma(r)\operatorname{Arg}\sigma(z) + \sigma(r)\log|\sigma(z)|), \quad orall \sigma(z) = \exp(i\sigma(r)\operatorname{Arg}\sigma(z) + \sigma(r)\log|\sigma(z)|),$$

Subgroups

$$\mathrm{SL}_2(\mathcal{K}) \subseteq \mathrm{SL}(2,\mathbb{R}_{\mathcal{K}}) \subseteq \mathrm{SL}(2,\mathbb{C}_{\mathcal{K}})$$

• Generalized upper half-plane

$$\mathbb{H}_{K} = \{z \in \mathbb{C}_{K} : \mathfrak{I}(z) \gg 0\}.$$

• Action by $SL(2, \mathbb{R}_{\mathcal{K}})$ on $\mathbb{H}_{\mathcal{K}}$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = (az+b)(cz+d)^{-1}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

	The Hilbert modular group	Computations	Reduction algorithm
	0000		
The Hilbert modular group			

The Hilbert modular group:

$$\Gamma_{\mathcal{K}} = \operatorname{SL}_2(\mathcal{O}_{\mathcal{K}}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathcal{O}_{\mathcal{K}}, ad - bc = 1 \right\}$$

If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_K$ and $\tau \in \mathbb{H}_K$ then

$$A\tau := (a\tau + b)(c\tau + d)^{-1} \in \mathbb{H}_{K}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
Cusps of $SL_2(O_K)$				

- Cusp: $\lambda = (\rho : \sigma) \in \mathbb{P}_1(K)$
- Fractional ideal $\mathfrak{a}_{\lambda} = (\rho, \sigma)$
- Known: $\lambda \sim \mu \pmod{\operatorname{SL}_2(\mathcal{O}_{\mathcal{K}})} \Leftrightarrow \mathfrak{a}_{\lambda} = (\alpha) \mathfrak{a}_{\mu}$
- The number of cusp classes equals the class number of K.
- Cusp-normalizing map: $\exists \xi,\eta\in\mathfrak{a}_{\lambda}^{-1}$ s.t.

$$\begin{aligned} A_{\lambda} &= \begin{pmatrix} \rho & \xi \\ \sigma & \eta \end{pmatrix} \in \mathrm{SL}_2(\mathcal{K}), \\ A_{\lambda}^{-1} \mathrm{SL}_2(\mathcal{O}_{\mathcal{K}}) A_{\lambda} &= \mathrm{SL}_2\left(\mathfrak{a}^2 \oplus \mathcal{O}_{\mathcal{K}}\right) \end{aligned}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	The Hilbert modular group		Computations	Reduction algorithm
	00000			
Vector-valued Hilbert modular forms				

- Let *V* be a complex $SL_2(\mathcal{O}_K)$ -module of rank $d < \infty$ s.t.
 - the kernel of V is a finite index normal subgroup Γ .
 - $\alpha \in Z(SL_2(\mathcal{O}_{\mathcal{K}}))$ acts with multiplication by $1|_k \alpha$.
- Denote the action by $(\gamma, v) \mapsto \gamma. v$
- For $f \in O(\mathbb{H}_{K}, V)$ and $A \in SL_{2}(\mathcal{O}_{K})$ we define (A.f)(z) = A.(f(z))

	The Hilbert modular group		Computations	Reduction algorithm
	00000			
Vector-valued Hilbert modular forms				

Define

$$M_{k}(V) = \{ f \in O(\mathbb{H}_{K}, V), A.f = f|_{k}A, \forall A \in SL_{2}(O_{K}) \}$$

• If $f \in M_k(V)$ and $f = \sum f_i v_i$ then $f_i \in M_k(\Gamma)$ (scalar-valued)

$$\mathcal{S}_{k}\left(\mathcal{V}
ight)=\left\{ \mathit{f}=\sum\mathit{f}_{i}\mathit{v}_{i}\in\mathcal{M}_{k}\left(\mathcal{V}
ight),:\,\mathit{f}_{i}\in\mathcal{S}_{k}\left(\Gamma
ight)
ight\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

	The Hilbert modular group	The dimension formula		Reduction algorithm
00000	00000	00000	0000	000000000000
Main theorem				

If $k \in \mathbb{Z}^n$ with $k \gg 2$ then:

$$\dim S_k(V) = \frac{1}{2} \dim V \cdot \zeta_K(-1) \cdot N(k-1)$$

+"elliptic order terms"
+"parabolic terms

- Identity (main) term: $\zeta_{\mathcal{K}}(-1)$ (a rational number)
 - Example: $\zeta_{\mathbb{Q}(\sqrt{5})} = \frac{1}{30}, \zeta_{\mathbb{Q}(\sqrt{193})}(-1) = 16 + \frac{1}{3}, \zeta_{\mathbb{Q}(\sqrt{1009})}(-1) = 211.$

- Finite order ("elliptic") terms
- Parabolic ("cuspidal") term

	The Hilbert modular group	The dimension formula		Reduction algorithm
00000	00000	00000	0000	0000000000000
The elliptic terms				

"elliptic terms" =
$$\sum_{\mathfrak{U}} \frac{1}{|\mathfrak{U}|} \sum_{\pm 1 \neq A \in \mathfrak{U}} \chi_{V}(A) \cdot E(A)$$

here $\ensuremath{\mathfrak{U}}$ runs through elliptic conjugacy classes and

$$\chi_{V}(A) = \operatorname{Tr}(A, V),$$

$$E(A) = \prod_{\sigma} \frac{\rho(A_{\sigma})^{1-k_{\sigma}}}{\rho(A_{\sigma}) - \rho(A_{\sigma})^{-1}},$$

$$\rho(A) = \frac{1}{2} \left(t + \operatorname{sgn}(c) \sqrt{t^{2} - 1} \right), t = \operatorname{Tr}A$$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
		00000		
Cuspidal term				

The cuspidal contribution is the value at s = 1 of the twisted Shimizu L-series

$$L(s; \mathcal{O}_{\mathcal{K}}, \mathcal{V}) = \frac{\sqrt{|\mathcal{d}_{\mathcal{K}}|}}{(-2\pi i)^2} \sum_{0 \neq a \in \mathcal{O}_{\mathcal{K}}/U^2} \chi_{\overline{\mathcal{V}}}\left(\begin{pmatrix}1 & a \\ 0 & 1\end{pmatrix}\right) \frac{\operatorname{sgn}(\mathrm{N}(a))}{|\mathrm{N}(a)|^s}.$$

 The "untwisted" L-series (V = 1) is known to have analytic cont. and functional equation

$$\Lambda(s) = \Gamma\left(\frac{s+1}{2}\right)^n \left(\frac{\operatorname{vol}(O_{\mathcal{K}})}{\pi^{n+1}}\right)^s L(s; O_{\mathcal{K}}, 1) = \Lambda(1-s)$$

- It is easy to see that the L-function for V ≠ 1 also has AC. FE is more complicated (cf. Hurwitz-Lerch).
- If K has a unit of norm −1 then L(s; O_K, 1) = 0 (conditions on V in general)

	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
		000000		
Notes on the L-series				

• Note that $L(s; O_K, 1)$ is proportional to

$$L(s,\chi) = \sum_{0 \neq \mathfrak{a} \subseteq O_{\mathcal{K}}} \frac{\chi(\mathfrak{a})}{|\mathrm{N}(\mathfrak{a})|^{s}}$$

where the sum is over all integral ideals of $\mathcal{O}_{\mathcal{K}}$ and $\chi(\mathfrak{a}) = \operatorname{sgn}(N(\mathfrak{a}))$.

- Studied by Hecke, Siegel, Meyer, Hirzebruch and others.
- Can be expressed in terms of Dedekind sums (Siegel)
- Proof uses Kronecker's limit formula.

Preliminaries	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
		000000		
Main idea of proof				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• The proof goes in essentially the same way as the "usual" Eichler-Selberg trace formula.

Preliminaries	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
		000000		
Conjugacy classes				

- Scalar if $A = \pm 1$
- Elliptic: A has finite order.
- Parabolic: If A is not scalar but $TrA = \pm 2$.
- Mixed (these do not contribute to the dimension formula).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

	The Hilbert modular group		Computations	Reduction algorithm
00000	00000	000000	0000	000000000000
How to find elliptic conjugacy classes?				

Let $A \in SL_2(K) \setminus \{\pm 1\}$ have trace *t*. Then TFAE

- A is of finite order m
- $\sigma(A)$ is elliptic in $SL_2(\mathbb{R})$ for every embedding σ .
- $t = z + z^{-1}$ for an *m*-th root of unity z

In this case $\mathbb{Q}(t)$ is the totally real subfield of $\mathbb{Q}(z)$ and

 $2[\mathbb{Q}(t):\mathbb{Q}] = \varphi(m)$

where $[\mathbb{Q}(t) : \mathbb{Q}]$ divides the degree of *K* since $t \in K$.

Preliminaries	The Hilbert modular group	Computations	Reduction algorithm
00000	00000	0000	00000000000
Which orders can appe	ar?		

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

If $K = \mathbb{Q}(\sqrt{D})$ then the possible orders are:

• 3,4,6 (solutions of $\varphi(l) = 2$), and

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations OOOO	Reduction algorithm
Elliptic elements of trace t				

Lemma

Let α be a fractional ideal and $t \in K$ be such that $K\left(\sqrt{t^2-4}\right)$ is a cyclotomic field. Then

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \lambda(A) = \frac{a - d + \sqrt{t^2 - 4}}{2c}$$

defines a bijection between the set of elements of $SL_2(\mathfrak{a} \oplus O_K)$ with trace t and

$$\left\{z=\frac{x+\sqrt{t^2-4}}{2y}\in\mathbb{H}_{K}:x\in\mathcal{O}_{K},y\in\mathfrak{a},\ x^2-t^2+4\in4\mathcal{O}_{K}\right\}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Preliminaries	The Hilbert modular group	Computations	Reduction algorithm
		0000	
Key:			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- Can compute set of representatives for elliptic fixed points
- Explicit bound on the *x*, *y* which can appear.

	The Hilbert modular group	Computations	Reduction algorithm
			•00000000000
Distance to a cusp			

• Distance to infinity

$$\Delta(z,\infty) = \mathrm{N}(y)^{-\frac{1}{2}}$$

• Distance to other cusps

$$\Delta(z,\lambda) = \Delta(A_{\lambda}^{-1}z,\infty).$$

• λ is a closest cusp to z if

$$\Delta(z,\lambda) \leq \Delta(z,\mu), \quad \forall \mu \in \mathbb{P}^1(K).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations 0000	Reduction algorithm
Reduction algorithm for $z \in \mathbb{H}_{f}$	<			

- Find closest cusp λ and set $z^* = x^* + iy^* = A_{\lambda}^{-1}z$.
- z^* is $SL_2(\mathcal{O}_K)$ -reduced if it is Γ_{∞} -reduced, where

$$\Gamma_{\infty} = \left\{ \begin{pmatrix} \epsilon & \mu \\ 0 & \epsilon^{-1} \end{pmatrix}, \ \epsilon \in \mathcal{O}_{K}^{\times}, \mu \in \mathcal{O}_{K} \right\}.$$

• Local coordinate (wrt. lattices Λ and O_K):

$$\begin{aligned}
 \Lambda Y &= \tilde{y} \\
 B_{\mathcal{O}_{\mathcal{K}}} X &= x^*
 \end{aligned}$$

where $\tilde{y}_i = \ln \frac{y_i^*}{\sqrt[n]{Ny^*}}$.

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations 0000	Reduction algorithm
Reduction algorithm				

• Then z is $SL_2(O_K)$ -reduced iff

$$|Y_i| \le \frac{1}{2}, \ 1 \le i \le n-1, \quad |X_i| \le \frac{1}{2}, \ 1 \le i \le n.$$

- If z not reduced we can reduce:
 - Y_i by acting with $\varepsilon = \varepsilon_i^k \in \mathcal{O}_K^{\times}$:

$$U(\varepsilon) = A_{\lambda}^{-1} \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{pmatrix} A_{\lambda} : z^* \mapsto \varepsilon_i^{2k} z^*, \ Y_i \mapsto Y_i + k.$$

• X by acting with $\zeta = \sum a_i \alpha_i \in \mathcal{O}_K$:

$$T(\zeta) = A_{\lambda}^{-1} \begin{pmatrix} 1 & \zeta \\ 0 & 1 \end{pmatrix} A_{\lambda} : z^* \mapsto z^* + \zeta, \ X_i \mapsto X_i + a_i.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Preliminaries	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
Remarks				

- Once in a cuspidal neighbourhood reduce in constant time.
- The hard part is to find the closest cusp.
- Elliptic points are on the boundary, i.e. can have more than one "closest" cusp.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations 0000	Reduction algorithm
Finding the closest cusp				

• Let
$$z \in \mathbb{H}_{K}$$
 and $\lambda = \frac{a}{c} \in \mathbb{P}^{1}(K)$.

Then

$$\Delta(z,\lambda)^{2} = N(y)^{-1} N((-cx+a)^{2} + c^{2}y^{2}).$$

• For each r > 0 there is only a finite (explicit!) number of pairs $(a', c') \in O_K^2 / O_K^{\times}$ s.t.

 $\Delta(z,\lambda') \leq r.$

• In fact, for i = 1, ..., n we have bounds on each embedding:

$$\begin{aligned} |\sigma_i(c)| &\leq c_{\mathcal{K}} r^{\frac{1}{2}} \sigma_i\left(y^{-\frac{1}{2}}\right), \\ |\sigma_i(a-cx)|^2 &\leq \sigma_i\left(r c_{\mathcal{K}}^2 y - c^2 y^2\right) \end{aligned}$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• Here c_K is an explicit constant.

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
Key Lemma				

Lemma

If K/\mathbb{Q} is a number field and $\alpha \in K$ with $N\alpha = 1$ then there exists $\epsilon \in O_K^{\times}$ such that

$$|\sigma_i(\alpha \varepsilon)| \leq r_K^{\frac{n-2}{2}}$$

where

$$r_{\mathcal{K}} = \max_{k} \left\{ \frac{\max\left(|\sigma_{1}\left(\varepsilon_{k}\right)|, \ldots, |\sigma_{n}\left(\varepsilon_{k}\right)|, 1\right)}{\min\left(|\sigma_{1}\left(\varepsilon_{k}\right)|, \ldots, |\sigma_{n}\left(\varepsilon_{k}\right)|, 1\right)} \right\}$$

Remark

 $r_{\mathcal{K}} \geq 1$ always. If $\mathcal{K} = \mathbb{Q}\left(\sqrt{D}\right)$ has a f.u. ε_0 with $\sigma_1(\varepsilon_0) > 1 > \sigma_2(\varepsilon_0)$ then $r_{\mathcal{K}} = |\sigma_1(\varepsilon_0)|^2$.

00000 00000		00000000000
Example $\Omega(\sqrt{5})$		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- The orders which can appear are: 3, 4, 5, 6, 8, 10, 12
- The possible traces are:

т	t	
3	-1	
4	0	
5	$\frac{1}{2}(\sqrt{5}-1)$	$\frac{1}{2}(-\sqrt{5}-1)$
6	1	
8	-	
10	$\varepsilon_0 = \frac{1}{2} \left(\sqrt{5} + 1 \right)$	$\varepsilon_0^* = \frac{1}{2} \left(-\sqrt{5} + 1 \right)$
12	-	

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
Example (contd.)				

A set of reduced fixed points is:

order	trace	fixed pt	ell. matrix
4	0	i	$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
4	0	iɛ ₀ *	$SE(arepsilon^*)=\left(egin{array}{c} 0 & arepsilon_0^*\ -arepsilon_0^* & 0 \end{array} ight)$
6	1	ρ	$TS = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$
6	1	$ ho \epsilon_0^*$	$SE(\varepsilon_0) T^{\varepsilon^3} = \begin{pmatrix} 0 & \varepsilon_0^* \\ \varepsilon_0 & 1 \end{pmatrix}$
10	ε	$-\frac{1}{2}\varepsilon_0+\frac{i}{2}\sqrt{3-\varepsilon_0}$	$ST^{\epsilon_0} = \begin{pmatrix} 0 & -1 \\ 1 & \epsilon_0 \end{pmatrix}$
10	ε*	$\frac{1}{2}\varepsilon_0 + \frac{i}{2}\varepsilon_0^*\sqrt{3-\varepsilon_0^*}$	$T^{arepsilon_0^*}S=egin{pmatrix}arepsilon_0^{st}-1\ 1&0 \end{pmatrix}$

Here $\rho^3=1$ and we always choose "correct" Galois conjugates to get points in $\mathbb{H}^n.$

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations	Reduction algorithm
Example $\mathbb{Q}\left(\sqrt{3} ight)$				

	t	Zt	$\frac{1}{\sqrt{Ny}}$	Y	<i>X</i> ₁	X ₂		
4 <i>a</i>	0	$\frac{-1+\sqrt{3}}{2}-i\frac{1+\sqrt{3}}{2}$	$\sqrt{2}$	$-\frac{1}{4}$	$\frac{1}{2}$	$-\frac{1}{2}$	0	
4	0	$\frac{-1+\sqrt{3}}{2}+i\frac{1-\sqrt{3}}{2}$	$\sqrt{2}$	$\frac{1}{4}$	$-\frac{1}{2}$	$-\frac{1}{2}$	0	\sim 4 a
4 <i>b</i>	0	ε ₀ i	1	$-\frac{1}{2}$	0	0	0	
4 <i>c</i>	0	i	1	0	0	0	0	
6	1	$\frac{1}{2}-i\left(1+\frac{\sqrt{3}}{2}\right)$	2	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	~ 12 <i>a</i>
6 <i>a</i>	1	$\frac{1}{2} + \frac{1}{2}i\sqrt{3}$	$\sqrt{\frac{4}{3}}$	0	$\frac{1}{2}$	0	0	
6 <i>b</i>	1	$\frac{\sqrt{3}}{2} - i\left(\frac{1}{\sqrt{3}} + \frac{1}{2}\right)$	$\sqrt{\frac{4}{3}}$	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-1	
12 <i>a</i>	$-\sqrt{3}$	$\frac{1}{2}\sqrt{3} + \frac{1}{2}i$	2	0	0	$-\frac{1}{2}$	0	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations 0000	Reduction algorithm
Example $\mathbb{Q}(\sqrt{-10})$ order 4				

We have two cusp classes:
$$c_0 = \infty = [1:0]$$
 and $c_1 = [3:1+\sqrt{10}]$

Orders: 4 (trace 0) and 6 (trace 1).

order	label	fixed pt	close to
4	4a	$\left(\frac{1}{2}\sqrt{10}+\frac{3}{2}\right)\sqrt{-4}^{\pm}$	~
4	4 <i>b</i>	$\frac{1}{2}\sqrt{-4} = i$	∞
4	4 <i>c</i>	$\left(\frac{1}{4}\sqrt{10}-\frac{3}{4}\right)\sqrt{-4}^{\pm}+\frac{1}{2}$	∞
4	4 <i>d</i>	$\frac{1}{2}\sqrt{10} - \frac{1}{2} + \frac{1}{4}\sqrt{-4}$	∞
4	4 <i>e</i>	$\frac{5}{13}\sqrt{10} - \frac{1}{2} + \frac{1}{52}\sqrt{-4}$	C1
4	4 <i>f</i>	$\frac{129}{370}\sqrt{10} - \frac{86}{185} + \left(-\frac{3}{740}\sqrt{10} + \frac{1}{185}\right)\sqrt{-4}^{\pm}$	C1

Here $\sqrt{-4}^{\pm} = \pm 2i$ with sign choosen depending on the embedding of $\sqrt{10}$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations 0000	Reduction algorithm
Example $\mathbb{Q}(\sqrt{-10})$ order 4				

label	X	N(x)	У	N(y)
4 <i>a</i>	0	0	$\sqrt{10}-3$	-1
4 <i>b</i>	0	0	-1	1
4 <i>c</i>	$2\sqrt{10}+6$	-4	$2\sqrt{10}+6$	-4
4 <i>d</i>	$-2\sqrt{10}+2$	-36	-2	4
4 <i>e</i>	$-20\sqrt{10}+26$	-3324	-26	676
4 <i>f</i>	-86	7396	$-15\sqrt{10}-20$	-1850

	The Hilbert modular group		Reduction algorithm
00000	00000		00000000000
Example $\mathbb{Q}(\sqrt{-10})$			

Note that if A is the cuspnormalizing map of c_1 then

label	$A^{-1}z$	x	У
4 <i>e</i>	$\left(-\frac{1}{9}\sqrt{10}-\frac{7}{18}\right)\sqrt{-4}$	0	7
4 <i>f</i>	$\left(\frac{-1}{36}\sqrt{10}+\frac{1}{36}\right)\sqrt{-4}^{\pm}+\frac{1}{2}$	$-2\sqrt{10}-2$	$-2\sqrt{10}-2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations 0000	Reduction algorithm
Factoring matrices				
racioning mainces				f

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Given elliptic element A:

- Find fixed point z
- Set $z_0 = z + \varepsilon$ s.t. $z_0 \in \mathcal{F}_{\Gamma}$ (well into the interior).
- $w_0 = Az_0$
- Find pullback of w_0 in to \mathcal{F}_{Γ} (make sure $w_0^* = z_0$).
- Keep track of matrices used in pullback.

Preliminaries 00000	The Hilbert modular group	The dimension formula	Computations 0000	Reduction algorithm
Example				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$K = \mathbb{Q}(\sqrt{3}), z = \frac{-1+\sqrt{3}}{2} - i\frac{1+\sqrt{3}}{2}A = \begin{pmatrix} -1 & -\sqrt{3}+1\\ \sqrt{3}+1 & 1 \end{pmatrix}$$

•
$$w_0 = Az_0 \sim (\text{close to } 0)$$

•
$$w_2 = ST^{1-a}w_1$$

•
$$A = T^{1+a}ST^{a-1}S$$
 (as a map)

•
$$A = S^2 T^{1+a} S T^{a-1} S$$
 (in $SL_2(O_K)$)

