Dimension formulas for vector-valued Hilbert modular forms

Fredrik Strömberg
(j/w N.-P. Skoruppa)

March 29, 2013

- Jacobi forms over number fields
- Same type of correspondence as over \mathbb{Q} (between scalar and vector-valued)
- Liftings between Hilbert modular forms and Jacobi forms (Shimura lift)
- K / Q number field of degree n
- Embeddings: $\sigma_{i}: K \rightarrow \mathbb{R}, 1 \leq i \leq n$,
- Trace and norm:

$$
\operatorname{Tr} \alpha=\sum \sigma_{i} \alpha, \quad \mathrm{~N} \alpha=\prod \sigma_{i} \alpha
$$

- If $A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{M}_{2}(K)$ we write $A_{\sigma_{i}}=\left(\begin{array}{cc}\sigma_{i}(\alpha) & \sigma_{i}(\beta) \\ \sigma_{i}(\gamma) & \sigma_{i}(\delta)\end{array}\right)$.

There are two important lattices related to K :

- O_{K} the ring of integers with integral basis $1=\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$

$$
O_{K} \simeq \alpha_{1} \mathbb{Z} \oplus \cdots \oplus \alpha_{n} \mathbb{Z},
$$

- O_{K}^{\times}the unit group with generators $\pm 1, \varepsilon_{1}, \ldots, \varepsilon_{n-1}$

$$
O_{K}^{\times} \simeq\langle \pm 1\rangle \times\left\langle\varepsilon_{1}\right\rangle \times \cdots\left\langle\varepsilon_{n-1}\right\rangle
$$

- Λ the logarithmic unit lattice: $v_{i}=\left(\ln \left|\sigma_{1} \varepsilon_{i}\right|, \ldots, \ln \left|\sigma_{n-1} \varepsilon_{i}\right|\right)$

$$
\Lambda=v_{1} \mathbb{Z} \oplus \cdots \oplus v_{n-1} \mathbb{Z} .
$$

The "volume" of Λ is called the regulator $\operatorname{Reg}(K)$.

- The volume of O_{K} is $\left|d_{K}\right|^{\frac{1}{2}}, d_{K}$ is the discriminant of K.
- Define the ring $\mathbb{C}_{K}:=\mathbb{C} \otimes_{\mathbb{Q}} K$
- Multiplication:

$$
(z \otimes a, w \otimes b) \mapsto(z w \otimes a b)
$$

Algebra structure over \mathbb{C} and K by identifications $K=1 \otimes_{\mathbb{Q}} K$ and $\mathbb{C}=\mathbb{C} \otimes_{\mathbb{Q}} 1$

- Also $\mathbb{R}_{K}:=\mathbb{R} \otimes_{\mathbb{Q}} K$ as a subring of \mathbb{C}_{K}.
- Imaginary part (similarly for real part):

$$
\mathfrak{I}(z \otimes a)=\mathfrak{I}(z) \otimes a,
$$

- Extend embeddings:

$$
\sigma(z \otimes a)=z \sigma(a)
$$

- For $x \in \mathbb{R}$ we say that $x \otimes a$ is totally positive, $x \otimes a \gg 0$ if

$$
\sigma_{i}(x \otimes a)>0, i=1,2
$$

$\operatorname{In} \mathbb{Q}(\sqrt{5})$ we have the fundamental unit ε and its conjugate ε^{*} :

$$
\varepsilon_{0}=\frac{1}{2}(1+\sqrt{5}), \quad \varepsilon^{*}=-\varepsilon_{0}^{-1}=\frac{1}{2}(1-\sqrt{5}) .
$$

And

$$
\begin{aligned}
O_{K} & \simeq \mathbb{Z}+\varepsilon_{0} \mathbb{Z} \\
\Lambda & \simeq \mathbb{Z} \ln \left|\frac{1+\sqrt{5}}{2}\right|
\end{aligned}
$$

with the volume given by

$$
\begin{aligned}
\left|O_{K}\right| & =\left|\operatorname{det}\left(\begin{array}{cc}
\frac{1}{2}(1+\sqrt{5}) & \frac{1}{2}(1-\sqrt{5}) \\
1 & 1
\end{array}\right)\right|=\sqrt{5} \\
|\Lambda| & =\left|\ln \frac{1}{2}(1+\sqrt{5})\right| \simeq 0.4812 \ldots
\end{aligned}
$$

- For $r \in \mathbb{R}_{K}$ and $z \in \mathbb{C}_{K}$ we define $z^{r} \in \mathbb{C}_{K}$ by

$$
\sigma\left(z^{r}\right)=\exp (i \sigma(r) \operatorname{Arg\sigma }(z)+\sigma(r) \log |\sigma(z)|), \quad \forall \sigma
$$

- Subgroups

$$
\mathrm{SL}_{2}(K) \subseteq \mathrm{SL}\left(2, \mathbb{R}_{K}\right) \subseteq \mathrm{SL}\left(2, \mathbb{C}_{K}\right)
$$

- Generalized upper half-plane

$$
\mathbb{H}_{K}=\left\{z \in \mathbb{C}_{K}: \mathfrak{I}(z) \gg 0\right\} .
$$

- Action by $\operatorname{SL}\left(2, \mathbb{R}_{K}\right)$ on \mathbb{H}_{K} :

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=(a z+b)(c z+d)^{-1} .
$$

The Hilbert modular group:

$$
\Gamma_{K}=\operatorname{SL}_{2}\left(O_{K}\right)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), a, b, c, d \in O_{K}, a d-b c=1\right\}
$$

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{K}$ and $\tau \in \mathbb{H}_{K}$ then

$$
A \tau:=(a \tau+b)(c \tau+d)^{-1} \in \mathbb{H}_{K} .
$$

- Cusp: $\lambda=(\rho: \sigma) \in \mathbb{P}_{1}(K)$
- Fractional ideal $\mathfrak{a}_{\lambda}=(\rho, \sigma)$
- Known: $\lambda \sim \mu\left(\bmod \operatorname{SL}_{2}\left(O_{K}\right)\right) \Leftrightarrow \mathfrak{a}_{\lambda}=(\alpha) \mathfrak{a}_{\mu}$
- The number of cusp classes equals the class number of K.
- Cusp-normalizing map: $\exists \xi, \eta \in \mathfrak{a}_{\lambda}^{-1}$ s.t.

$$
\begin{aligned}
A_{\lambda} & =\left(\begin{array}{cc}
\rho & \xi \\
\sigma & \eta
\end{array}\right) \in \mathrm{SL}_{2}(K), \\
A_{\lambda}^{-1} \mathrm{SL}_{2}\left(O_{K}\right) A_{\lambda} & =\mathrm{SL}_{2}\left(\mathfrak{a}^{2} \oplus O_{K}\right)
\end{aligned}
$$

- Let V be a complex $\mathrm{SL}_{2}\left(O_{K}\right)$-module of rank $d<\infty$ s.t.
- the kernel of V is a finite index normal subgroup Γ.
- $\alpha \in Z\left(\mathrm{SL}_{2}\left(O_{K}\right)\right)$ acts with multiplication by $\left.1\right|_{k} \alpha$.
- Denote the action by $(\gamma, v) \mapsto \gamma . v$
- For $f \in O\left(H_{K}, V\right)$ and $A \in \operatorname{SL}_{2}\left(O_{K}\right)$ we define $(A . f)(z)=A .(f(z))$
- Define

$$
M_{k}(V)=\left\{f \in O\left(\mathbb{H}_{K}, V\right), A . f=\left.f\right|_{k} A, \forall A \in \mathrm{SL}_{2}\left(O_{K}\right)\right\}
$$

- If $f \in M_{k}(V)$ and $f=\sum f_{i} v_{i}$ then $f_{i} \in M_{k}(\Gamma)$ (scalar-valued)

$$
S_{k}(V)=\left\{f=\sum f_{i} v_{i} \in M_{k}(V),: f_{i} \in S_{k}(\Gamma)\right\}
$$

If $k \in \mathbb{Z}^{n}$ with $k \gg 2$ then:

$$
\begin{aligned}
\operatorname{dim} S_{k}(V)= & \frac{1}{2} \operatorname{dim} V \cdot \zeta_{K}(-1) \cdot \mathrm{N}(k-1) \\
& + \text { "elliptic order terms" } \\
& + \text { "parabolic terms }
\end{aligned}
$$

- Identity (main) term: $\zeta_{K}(-1)$ (a rational number)
- Example: $\zeta_{\mathbb{Q}(\sqrt{5})}=\frac{1}{30}, \zeta_{\mathbb{Q}(\sqrt{193})}(-1)=16+\frac{1}{3}, \zeta_{\mathbb{Q}(\sqrt{1009})}(-1)=211$.
- Finite order ("elliptic") terms
- Parabolic ("cuspidal") term

$$
\text { "elliptic terms" }=\sum_{\mathfrak{U}} \frac{1}{|\mathfrak{U}|} \sum_{ \pm 1 \neq A \in \mathfrak{U}} \chi_{V}(A) \cdot E(A)
$$

here \mathfrak{U} runs through elliptic conjugacy classes and

$$
\begin{aligned}
\chi_{V}(A) & =\operatorname{Tr}(A, V), \\
E(A) & =\prod_{\sigma} \frac{\rho\left(A_{\sigma}\right)^{1-k_{\sigma}}}{\rho\left(A_{\sigma}\right)-\rho\left(A_{\sigma}\right)^{-1}}, \\
\rho(A) & =\frac{1}{2}\left(t+\operatorname{sgn}(c) \sqrt{t^{2}-1}\right), t=\operatorname{Tr} A
\end{aligned}
$$

The cuspidal contribution is the value at $s=1$ of the twisted Shimizu L-series

$$
L\left(s ; O_{K}, V\right)=\frac{\sqrt{\left|d_{K}\right|}}{(-2 \pi i)^{2}} \sum_{0 \neq a \in O_{K} / U^{2}} \chi_{\bar{V}}\left(\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\right) \frac{\operatorname{sgn}(\mathrm{N}(a))}{|\mathrm{N}(a)|^{s}} .
$$

- The "untwisted" L-series $(V=1)$ is known to have analytic cont. and functional equation

$$
\Lambda(s)=\Gamma\left(\frac{s+1}{2}\right)^{n}\left(\frac{\operatorname{vol}\left(O_{K}\right)}{\pi^{n+1}}\right)^{s} L\left(s ; O_{K}, 1\right)=\Lambda(1-s)
$$

- It is easy to see that the L-function for $V \neq 1$ also has AC. FE is more complicated (cf. Hurwitz-Lerch).
- If K has a unit of norm -1 then $L\left(s ; O_{K}, 1\right)=0$ (conditions on V in general)
- Note that $L\left(s ; O_{K}, 1\right)$ is proportional to

$$
L(s, \chi)=\sum_{0 \neq \mathfrak{a} \subseteq O_{K}} \frac{\chi(\mathfrak{a})}{|\mathrm{N}(\mathfrak{a})|^{s}}
$$

where the sum is over all integral ideals of O_{K} and $\chi(\mathfrak{a})=\operatorname{sgn}(\mathrm{N}(\mathfrak{a}))$.

- Studied by Hecke, Siegel, Meyer, Hirzebruch and others.
- Can be expressed in terms of Dedekind sums (Siegel)
- Proof uses Kronecker's limit formula.
- The proof goes in essentially the same way as the "usual" Eichler-Selberg trace formula.
- Scalar if $A= \pm 1$
- Elliptic: A has finite order.
- Parabolic: If A is not scalar but $\operatorname{Tr} A= \pm 2$.
- Mixed (these do not contribute to the dimension formula).

Let $A \in \mathrm{SL}_{2}(K) \backslash\{ \pm 1\}$ have trace t. Then TFAE

- A is of finite order m
- $\sigma(A)$ is elliptic in $\mathrm{SL}_{2}(\mathbb{R})$ for every embedding σ.
- $t=z+z^{-1}$ for an m-th root of unity z

In this case $\mathbb{Q}(t)$ is the totally real subfield of $\mathbb{Q}(z)$ and

$$
2[\mathbb{Q}(t): \mathbb{Q}]=\varphi(m)
$$

where $[\mathbb{Q}(t): \mathbb{Q}]$ divides the degree of K since $t \in K$.

If $K=\mathbb{Q}(\sqrt{D})$ then the possible orders are:

- 3,4,6 (solutions of $\varphi(I)=2$), and
- $5,8,10,12$ (solutions of $\varphi(I)=4$)

Lemma

Let \mathfrak{a} be a fractional ideal and $t \in K$ be such that $K\left(\sqrt{t^{2}-4}\right)$ is a cyclotomic field. Then

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \lambda(A)=\frac{a-d+\sqrt{t^{2}-4}}{2 c}
$$

defines a bijection between the set of elements of $S L_{2}\left(\mathfrak{a} \oplus O_{K}\right)$ with trace t and

$$
\left\{z=\frac{x+\sqrt{t^{2}-4}}{2 y} \in \mathbb{H}_{K}: x \in O_{K}, y \in \mathfrak{a}, x^{2}-t^{2}+4 \in 4 O_{K}\right\}
$$

- Can compute set of representatives for elliptic fixed points
- Explicit bound on the x, y which can appear.
- Distance to infinity

$$
\Delta(z, \infty)=\mathrm{N}(y)^{-\frac{1}{2}}
$$

- Distance to other cusps

$$
\Delta(z, \lambda)=\Delta\left(A_{\lambda}^{-1} z, \infty\right)
$$

- λ is a closest cusp to z if

$$
\Delta(z, \lambda) \leq \Delta(z, \mu), \quad \forall \mu \in \mathbb{P}^{1}(K) .
$$

- Find closest cusp λ and set $z^{*}=x^{*}+i y^{*}=A_{\lambda}^{-1} z$.
- z^{*} is $\mathrm{SL}_{2}\left(O_{K}\right)$-reduced if it is Γ_{∞}-reduced, where

$$
\Gamma_{\infty}=\left\{\left(\begin{array}{cc}
\varepsilon & \mu \\
0 & \varepsilon^{-1}
\end{array}\right), \varepsilon \in O_{K}^{\times}, \mu \in O_{K}\right\} .
$$

- Local coordinate (wrt. lattices Λ and O_{K}):

$$
\begin{aligned}
\Lambda Y & =\tilde{y} \\
B_{O_{K}} X & =x^{*}
\end{aligned}
$$

where $\tilde{y}_{i}=\ln \frac{y_{i}^{*}}{\sqrt[n]{\mathrm{Ny}^{*}}}$.

- Then z is $\mathrm{SL}_{2}\left(O_{K}\right)$-reduced iff

$$
\left|Y_{i}\right| \leq \frac{1}{2}, 1 \leq i \leq n-1, \quad\left|X_{i}\right| \leq \frac{1}{2}, 1 \leq i \leq n .
$$

- If z not reduced we can reduce:
- Y_{i} by acting with $\varepsilon=\varepsilon_{i}^{k} \in O_{K}^{\times}$:

$$
U(\varepsilon)=A_{\lambda}^{-1}\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \varepsilon^{-1}
\end{array}\right) A_{\lambda}: z^{*} \mapsto \varepsilon_{i}^{2 k} z^{*}, Y_{i} \mapsto Y_{i}+k .
$$

- X by acting with $\zeta=\sum a_{i} \alpha_{i} \in O_{K}$:

$$
T(\zeta)=A_{\lambda}^{-1}\left(\begin{array}{ll}
1 & \zeta \\
0 & 1
\end{array}\right) A_{\lambda}: z^{*} \mapsto z^{*}+\zeta, X_{i} \mapsto X_{i}+a_{i} .
$$

- Once in a cuspidal neighbourhood reduce in constant time.
- The hard part is to find the closest cusp.
- Elliptic points are on the boundary, i.e. can have more than one "closest" cusp.
- Let $z \in H_{K}$ and $\lambda=\frac{a}{c} \in \mathbb{P}^{1}(K)$.
- Then

$$
\Delta(z, \lambda)^{2}=\mathrm{N}(y)^{-1} \mathrm{~N}\left((-c x+a)^{2}+c^{2} y^{2}\right) .
$$

- For each $r>0$ there is only a finite (explicit!) number of pairs $\left(a^{\prime}, c^{\prime}\right) \in O_{K}^{2} / O_{K}^{\times}$s.t.

$$
\Delta\left(z, \lambda^{\prime}\right) \leq r .
$$

- In fact, for $i=1, \ldots, n$ we have bounds on each embedding:

$$
\begin{aligned}
\left|\sigma_{i}(c)\right| & \leq c_{K} r^{\frac{1}{2}} \sigma_{i}\left(y^{-\frac{1}{2}}\right) \\
\left|\sigma_{i}(a-c x)\right|^{2} & \leq \sigma_{i}\left(r c_{K}^{2} y-c^{2} y^{2}\right)
\end{aligned}
$$

- Here c_{K} is an explicit constant.

Lemma

If K / \mathbb{Q} is a number field and $\alpha \in K$ with $\mathrm{N} \alpha=1$ then there exists $\varepsilon \in O_{K}^{\times}$ such that

$$
\left|\sigma_{i}(\alpha \varepsilon)\right| \leq r_{K}^{\frac{n-1}{2}}
$$

where

$$
r_{K}=\max _{k}\left\{\frac{\max \left(\left|\sigma_{1}\left(\varepsilon_{k}\right)\right|, \ldots,\left|\sigma_{n}\left(\varepsilon_{k}\right)\right|, 1\right)}{\min \left(\left|\sigma_{1}\left(\varepsilon_{k}\right)\right|, \ldots,\left|\sigma_{n}\left(\varepsilon_{k}\right)\right|, 1\right)}\right\}
$$

Remark

$r_{K} \geq 1$ always. If $K=\mathbb{Q}(\sqrt{D})$ has a f.u. ε_{0} with $\sigma_{1}\left(\varepsilon_{0}\right)>1>\sigma_{2}\left(\varepsilon_{0}\right)$ then $r_{K}=\left|\sigma_{1}\left(\varepsilon_{0}\right)\right|^{2}$.

- The orders which can appear are: $3,4,5,6,8,10,12$
- The possible traces are:

m	t	
3	-1	
4	0	
5	$\frac{1}{2}(\sqrt{5}-1)$	$\frac{1}{2}(-\sqrt{5}-1)$
6	1	
8	-	
10	$\varepsilon_{0}=\frac{1}{2}(\sqrt{5}+1)$	$\varepsilon_{0}^{*}=\frac{1}{2}(-\sqrt{5}+1)$
12	-	

A set of reduced fixed points is:

order	trace	fixed pt	ell. matrix
4	0	i	$S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
4	0	$i \varepsilon_{0}^{*}$	$S E\left(\varepsilon^{*}\right)=\left(\begin{array}{cc}0 & \varepsilon_{0}^{*} \\ -\varepsilon_{0}^{*} & 0\end{array}\right)$
6	1	ρ	$T S=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$
6	1	$\rho \varepsilon_{0}^{*}$	$S E\left(\varepsilon_{0}\right) T^{\varepsilon^{3}}=\left(\begin{array}{cc}0 & \varepsilon_{0}^{*} \\ \varepsilon_{0} & 1\end{array}\right)$
10	ε	$-\frac{1}{2} \varepsilon_{0}+\frac{i}{2} \sqrt{3-\varepsilon_{0}}$	$S T^{\varepsilon_{0}}=\left(\begin{array}{cc}0 & -1 \\ 1 & \varepsilon_{0}\end{array}\right)$
10	ε^{*}	$\frac{1}{2} \varepsilon_{0}+\frac{i}{2} \varepsilon_{0}^{*} \sqrt{3-\varepsilon_{0}^{*}}$	$T^{\varepsilon_{0}^{*}} S=\left(\begin{array}{cc}\varepsilon_{0}^{*} & -1 \\ 1 & 0\end{array}\right)$

Here $\rho^{3}=1$ and we always choose "correct" Galois conjugates to get points in \mathbb{H}^{n}.

	t	z_{t}	$\frac{1}{\sqrt{N_{y}}}$	Y	X_{1}	X_{2}		
$4 a$	0	$\frac{-1+\sqrt{3}}{2}-i \frac{1+\sqrt{3}}{2}$	$\sqrt{2}$	$-\frac{1}{4}$	$\frac{1}{2}$	$-\frac{1}{2}$	0	
4	0	$\frac{-1+\sqrt{3}}{2}+i \frac{1-\sqrt{3}}{2}$	$\sqrt{2}$	$\frac{1}{4}$	$-\frac{1}{2}$	$-\frac{1}{2}$	0	$\sim 4 a$
$4 b$	0	$\varepsilon_{0} i$	1	$-\frac{1}{2}$	0	0	0	
$4 c$	0	i	1	0	0	0	0	
6	1	$\frac{1}{2}-i\left(1+\frac{\sqrt{3}}{2}\right)$	2	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	$\sim 12 a$
$6 a$	1	$\frac{1}{2}+\frac{1}{2} i \sqrt{3}$	$\sqrt{\frac{4}{3}}$	0	$\frac{1}{2}$	0	0	
$6 b$	1	$\frac{\sqrt{3}}{2}-i\left(\frac{1}{\sqrt{3}}+\frac{1}{2}\right)$	$\sqrt{\frac{4}{3}}$	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-1	
$12 a$	$-\sqrt{3}$	$\frac{1}{2} \sqrt{3}+\frac{1}{2} i$	2	0	0	$-\frac{1}{2}$	0	

We have two cusp classes: $c_{0}=\infty=[1: 0]$ and $c_{1}=[3: 1+\sqrt{10}]$
Orders: 4 (trace 0) and 6 (trace 1).

Order	label	fixed pt	close to
4	$4 a$	$\left(\frac{1}{2} \sqrt{10}+\frac{3}{2}\right) \sqrt{-4}^{ \pm}$	∞
4	$4 b$	$\frac{1}{2} \sqrt{-4}=i$	∞
4	$4 c$	$\left(\frac{1}{4} \sqrt{10}-\frac{3}{4}\right) \sqrt{-4}+\frac{1}{2}$	∞
4	$4 d$	$\frac{1}{2} \sqrt{10}-\frac{1}{2}+\frac{1}{4} \sqrt{-4}$	∞
4	$4 e$	$\frac{5}{13} \sqrt{10}-\frac{1}{2}+\frac{1}{52} \sqrt{-4}$	c_{1}
4	$4 f$	$\frac{129}{370} \sqrt{10}-\frac{86}{185}+\left(-\frac{3}{740} \sqrt{10}+\frac{1}{185}\right) \sqrt{-4}$	c_{1}

Here $\sqrt{-4}^{ \pm}= \pm 2 i$ with sign choosen depending on the embedding of $\sqrt{10}$.

label	x	$N(x)$	y	$N(y)$
$4 a$	0	0	$\sqrt{10}-3$	-1
$4 b$	0	0	-1	1
$4 c$	$2 \sqrt{10}+6$	-4	$2 \sqrt{10}+6$	-4
$4 d$	$-2 \sqrt{10}+2$	-36	-2	4
$4 e$	$-20 \sqrt{10}+26$	-3324	-26	676
$4 f$	-86	7396	$-15 \sqrt{10}-20$	-1850

Note that if A is the cuspnormalizing map of c_{1} then

label	$A^{-1} z$	x	y
$4 e$	$\left(-\frac{1}{9} \sqrt{10}-\frac{7}{18}\right) \sqrt{-4}$	0	7
$4 f$	$\left(\frac{-1}{36} \sqrt{10}+\frac{1}{36}\right) \sqrt{-4}+\frac{1}{2}$	$-2 \sqrt{10}-2$	$-2 \sqrt{10}-2$

Given elliptic element A :

- Find fixed point z
- Set $z_{0}=z+\varepsilon$ s.t. $z_{0} \in \mathcal{F}_{\Gamma}$ (well into the interior).
- $w_{0}=A z_{0}$
- Find pullback of w_{0} in to \mathcal{F}_{Γ} (make sure $w_{0}^{*}=z_{0}$).
- Keep track of matrices used in pullback.

$$
K=\mathbb{Q}(\sqrt{3}), z=\frac{-1+\sqrt{3}}{2}-i \frac{1+\sqrt{3}}{2} A=\left(\begin{array}{cc}
-1 & -\sqrt{3}+1 \\
\sqrt{3}+1 & 1
\end{array}\right)
$$

- $w_{0}=A z_{0} \sim$ (close to 0$)$
- $w_{1}=S w_{0} \sim$ (close to $a-1$)
- $w_{2}=S T^{1-a} w_{1}$
- $w_{3}=T^{1+a} w_{2}-$ reduced
- $A=T^{1+a} S T^{a-1} S$ (as a map)
- $A=S^{2} T^{1+a} S T^{a-1} S\left(\right.$ in $\left.\mathrm{SL}_{2}\left(O_{K}\right)\right)$

