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Possible applications

Jacobi forms over number fields

Same type of correspondence as over Q (between scalar and
vector-valued)
Liftings between Hilbert modular forms and Jacobi forms (Shimura lift)
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Preliminary notation (Number fields)

K/Q number field of degree n

Embeddings: σi : K → R, 1≤ i ≤ n,

Trace and norm:

Trα = ∑σiα, Nα = ∏σiα.

If A =
(

α β

γ δ

)
∈M2 (K ) we write Aσi =

(
σi (α) σi (β)
σi (γ) σi (δ)

)
.
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More preliminaries

There are two important lattices related to K :

OK the ring of integers with integral basis 1 = α1,α2, . . .αn

OK ' α1Z⊕·· ·⊕αnZ,

O×K the unit group with generators ±1,ε1, . . . ,εn−1

O×K ' 〈±1〉×〈ε1〉× · · · 〈εn−1〉

Λ the logarithmic unit lattice: vi = (ln |σ1εi | , . . . , ln |σn−1εi |)

Λ = v1Z⊕·· ·⊕ vn−1Z.

The “volume” of Λ is called the regulator Reg(K ).

The volume of OK is |dK |
1
2 , dK is the discriminant of K .
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More preliminary notation

Define the ring CK := C⊗Q K

Multiplication:
(z⊗a,w⊗b) 7→ (zw⊗ab)

Algebra structure over C and K by identifications K = 1⊗Q K and
C= C⊗Q 1

Also RK := R⊗Q K as a subring of CK .

Imaginary part (similarly for real part):

ℑ(z⊗a) = ℑ(z)⊗a,

Extend embeddings:
σ(z⊗a) = zσ(a)

For x ∈ R we say that x⊗a is totally positive, x⊗a� 0 if

σi (x⊗a) > 0, i = 1,2
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Example Q
(√

5
)

In Q
(√

5
)

we have the fundamental unit ε and its conjugate ε∗:

ε0 =
1
2

(
1 +
√

5
)

, ε
∗ =−ε

−1
0 =

1
2

(
1−
√

5
)

.

And

OK ' Z+ ε0Z,

Λ ' Z ln

∣∣∣∣1 +
√

5
2

∣∣∣∣
with the volume given by

|OK | =

∣∣∣∣det

(
1
2

(
1 +
√

5
)

1
2

(
1−
√

5
)

1 1

)∣∣∣∣=
√

5

|Λ| =

∣∣∣∣ln 1
2

(
1 +
√

5
)∣∣∣∣' 0.4812 . . .
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The generalized upper half-plane

For r ∈ RK and z ∈ CK we define zr ∈ CK by

σ(zr ) = exp(iσ(r)Argσ(z) + σ(r) log |σ(z)|) , ∀σ

Subgroups
SL2(K )⊆ SL(2,RK )⊆ SL(2,CK )

Generalized upper half-plane

HK = {z ∈ CK : ℑ(z)� 0} .

Action by SL(2,RK ) on HK :(
a b
c d

)
z = (az + b)(cz + d)−1 .
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The Hilbert modular group

The Hilbert modular group:

ΓK = SL2(OK ) =
{(

a b
c d

)
, a,b,c,d ∈ OK , ad−bc = 1

}
If A =

(
a b
c d

)
∈ ΓK and τ ∈ HK then

Aτ := (aτ + b)(cτ + d)−1 ∈ HK .
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Cusps of SL2(OK )

Cusp: λ = (ρ : σ) ∈ P1 (K )

Fractional ideal aλ = (ρ,σ)

Known: λ∼ µ (mod SL2(OK ))⇔ aλ = (α)aµ

The number of cusp classes equals the class number of K .

Cusp-normalizing map: ∃ξ,η ∈ a−1
λ

s.t.

Aλ =

(
ρ ξ

σ η

)
∈ SL2(K ),

A−1
λ

SL2(OK )Aλ = SL2
(
a2⊕OK

)
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Vector-valued Hilbert modular forms

Let V be a complex SL2(OK )-module of rank d < ∞ s.t.

the kernel of V is a finite index normal subgroup Γ.
α ∈ Z(SL2(OK )) acts with multiplication by 1|k α.

Denote the action by (γ,v) 7→ γ.v

For f ∈ O (HK ,V ) and A ∈ SL2(OK ) we define (A.f )(z) = A.(f (z))
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Vector-valued Hilbert modular forms

Define

Mk (V ) = {f ∈ O (HK ,V ) , A.f = f |k A, ∀A ∈ SL2(OK )}

If f ∈Mk (V ) and f = ∑ fivi then fi ∈Mk (Γ) (scalar-valued)

Sk (V ) =
{

f = ∑ fivi ∈Mk (V ) , : fi ∈ Sk (Γ)
}
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Main theorem

If k ∈ Zn with k � 2 then:

dimSk (V ) =
1
2

dimV ·ζK (−1) ·N(k−1)

+"elliptic order terms"

+"parabolic terms

Identity (main) term: ζK (−1) (a rational number)

Example: ζQ(
√

5) = 1
30 , ζQ(

√
193) (−1) = 16 + 1

3 , ζQ(
√

1009) (−1) = 211.

Finite order (“elliptic”) terms

Parabolic (“cuspidal”) term
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The elliptic terms

"elliptic terms" = ∑
U

1
|U| ∑
±16=A∈U

χV (A) ·E (A)

here U runs through elliptic conjugacy classes and

χV (A) = Tr(A,V ) ,

E (A) = ∏
σ

ρ(Aσ)1−kσ

ρ(Aσ)−ρ(Aσ)−1 ,

ρ(A) =
1
2

(
t + sgn(c)

√
t2−1

)
, t = TrA
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Cuspidal term

The cuspidal contribution is the value at s = 1 of the twisted Shimizu L-series

L(s;OK ,V ) =

√
|dK |

(−2πi)2 ∑
0 6=a∈OK /U2

χV

((
1 a
0 1

)) sgn(N(a))

|N(a)|s
.

The “untwisted” L-series (V = 1) is known to have analytic cont. and
functional equation

Λ(s) = Γ

(
s + 1

2

)n(vol(OK )

πn+1

)s

L(s;OK ,1) = Λ(1− s)

It is easy to see that the L-function for V 6= 1 also has AC. FE is more
complicated (cf. Hurwitz-Lerch).

If K has a unit of norm −1 then L(s;OK ,1) = 0 (conditions on V in
general)
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Notes on the L-series

Note that L(s;OK ,1) is proportional to

L(s,χ) = ∑
06=a⊆OK

χ(a)

|N(a)|s

where the sum is over all integral ideals of OK and χ(a) = sgn(N(a)).

Studied by Hecke, Siegel, Meyer, Hirzebruch and others.

Can be expressed in terms of Dedekind sums (Siegel)

Proof uses Kronecker’s limit formula.
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Main idea of proof

The proof goes in essentially the same way as the “usual”
Eichler-Selberg trace formula.
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Conjugacy classes

Scalar if A =±1

Elliptic: A has finite order.

Parabolic: If A is not scalar but TrA =±2.

Mixed (these do not contribute to the dimension formula).
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How to find elliptic conjugacy classes?

Let A ∈ SL2(K )\{±1} have trace t . Then TFAE

A is of finite order m

σ(A) is elliptic in SL2(R) for every embedding σ.

t = z + z−1 for an m-th root of unity z

In this case Q(t) is the totally real subfield of Q(z) and

2 [Q(t) : Q] = ϕ(m)

where [Q(t) : Q] divides the degree of K since t ∈ K .
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Which orders can appear?

If K = Q
(√

D
)

then the possible orders are:

3,4,6 (solutions of ϕ(l) = 2), and

5,8,10,12 (solutions of ϕ(l) = 4)
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Elliptic elements of trace t

Lemma

Let a be a fractional ideal and t ∈ K be such that K
(√

t2−4
)

is a

cyclotomic field. Then

A =
(

a b
c d

)
7→ λ(A) =

a−d +
√

t2−4
2c

defines a bijection between the set of elements of SL2 (a⊕OK ) with trace t
and {

z =
x +
√

t2−4
2y

∈ HK : x ∈ OK , y ∈ a, x2− t2 + 4 ∈ 4OK

}
.
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Key:

Can compute set of representatives for elliptic fixed points

Explicit bound on the x ,y which can appear.
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Distance to a cusp

Distance to infinity

∆(z,∞) = N(y)−
1
2

Distance to other cusps

∆(z,λ) = ∆
(
A−1

λ
z,∞

)
.

λ is a closest cusp to z if

∆(z,λ)≤∆(z,µ) , ∀µ ∈ P1 (K ) .
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Reduction algorithm for z ∈HK

Find closest cusp λ and set z∗ = x∗+ iy∗ = A−1
λ

z.

z∗ is SL2(OK )-reduced if it is Γ∞-reduced, where

Γ∞ =
{(

ε µ
0 ε−1

)
, ε ∈ O×K ,µ ∈ OK

}
.

Local coordinate (wrt. lattices Λ and OK ):

ΛY = ỹ

BOK X = x∗

where ỹi = ln y∗i
n√Ny∗

.
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Reduction algorithm

Then z is SL2(OK )-reduced iff

|Yi | ≤
1
2
, 1≤ i ≤ n−1, |Xi | ≤

1
2
, 1≤ i ≤ n.

If z not reduced we can reduce:

Yi by acting with ε = εk
i ∈ O×K :

U (ε) = A−1
λ

(
ε 0
0 ε−1

)
Aλ : z∗ 7→ ε

2k
i z∗, Yi 7→ Yi + k .

X by acting with ζ = ∑ai αi ∈ OK :

T (ζ) = A−1
λ

(
1 ζ

0 1

)
Aλ : z∗ 7→ z∗+ ζ, Xi 7→ Xi + ai .
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Remarks

Once in a cuspidal neighbourhood reduce in constant time.

The hard part is to find the closest cusp.

Elliptic points are on the boundary, i.e. can have more than one “closest”
cusp.
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Finding the closest cusp

Let z ∈ HK and λ = a
c ∈ P

1 (K ).

Then
∆(z,λ)2 = N(y)−1 N

(
(−cx + a)2 + c2y2

)
.

For each r > 0 there is only a finite (explicit!) number of pairs
(a′,c′) ∈ O2

K /O×K s.t.
∆
(
z,λ′

)
≤ r .

In fact, for i = 1, . . . ,n we have bounds on each embedding:

|σi (c)| ≤ cK r
1
2 σi

(
y−

1
2

)
,

|σi (a− cx)|2 ≤ σi
(
rc2

K y− c2y2)
Here cK is an explicit constant.
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Key Lemma

Lemma

If K/Q is a number field andα ∈ K with Nα = 1 then there exists ε ∈ O×K
such that

|σi (αε)| ≤ r
n−1

2
K

where

rK = max
k

{
max(|σ1 (εk )| , . . . , |σn (εk )| ,1)

min(|σ1 (εk )| , . . . , |σn (εk )| ,1)

}
.

Remark

rK ≥ 1 always. If K = Q
(√

D
)

has a f.u. ε0 with σ1 (ε0) > 1 > σ2 (ε0) then
rK = |σ1 (ε0)|2.
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Example Q
(√

5
)

The orders which can appear are: 3, 4, 5, 6, 8, 10, 12

The possible traces are:
m t

3 −1
4 0
5 1

2

(√
5−1

)
1
2

(
−
√

5−1
)

6 1
8 -
10 ε0 = 1

2

(√
5 + 1

)
ε∗0 = 1

2

(
−
√

5 + 1
)

12 -
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Example (contd.)

A set of reduced fixed points is:

order trace fixed pt ell. matrix

4 0 i S =
(

0 −1
1 0

)
4 0 iε∗0 SE (ε∗) =

(
0 ε∗0
−ε∗0 0

)
6 1 ρ TS =

(
1 −1
1 0

)
6 1 ρε∗0 SE (ε0)T ε3

=
(

0 ε∗0
ε0 1

)
10 ε - 1

2 ε0 + i
2

√
3− ε0 ST ε0 =

(0 −1
1 ε0

)
10 ε∗ 1

2 ε0 + i
2 ε∗0
√

3− ε∗0 T ε∗0S =
(

ε∗0 −1
1 0

)
Here ρ3 = 1 and we always choose “correct” Galois conjugates to get points
in Hn.
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Example Q
(√

3
)

t zt
1√
Ny

Y X1 X2

4a 0 −1+
√

3
2 − i 1+

√
3

2

√
2 − 1

4
1
2 − 1

2 0

4 0 −1+
√

3
2 + i 1−

√
3

2

√
2 1

4 − 1
2 − 1

2 0 ∼ 4a
4b 0 ε0i 1 − 1

2 0 0 0
4c 0 i 1 0 0 0 0

6 1 1
2 − i

(
1 +

√
3

2

)
2 - 1

2
1
2 0 0 ∼ 12a

6a 1 1
2 + 1

2 i
√

3
√

4
3 0 1

2 0 0

6b 1
√

3
2 − i

(
1√
3

+ 1
2

) √
4
3 − 1

2 0 − 1
2 −1

12a −
√

3 1
2

√
3 + 1

2 i 2 0 0 − 1
2 0
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Example Q
(√
−10

)
order 4

We have two cusp classes: c0 = ∞ = [1 : 0] and c1 =
[
3 : 1 +

√
10
]

Orders: 4 (trace 0) and 6 (trace 1).

order label fixed pt close to

4 4a
(

1
2

√
10 + 3

2

)√
−4
±

∞

4 4b 1
2

√
−4 = i ∞

4 4c
(

1
4

√
10− 3

4

)√
−4
±

+ 1
2 ∞

4 4d 1
2

√
10− 1

2 + 1
4

√
−4 ∞

4 4e 5
13

√
10− 1

2 + 1
52

√
−4 c1

4 4f 129
370

√
10− 86

185 +
(
− 3

740

√
10 + 1

185

)√
−4
±

c1

Here
√
−4
±

=±2i with sign choosen depending on the embedding of
√

10.
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Example Q
(√
−10

)
order 4

label x N (x) y N (y)

4a 0 0
√

10−3 −1
4b 0 0 −1 1
4c 2

√
10 + 6 −4 2

√
10 + 6 −4

4d −2
√

10 + 2 −36 −2 4
4e −20

√
10 + 26 −3324 −26 676

4f −86 7396 −15
√

10−20 −1850



Preliminaries The Hilbert modular group The dimension formula Computations Reduction algorithm

Example Q
(√
−10

)

Note that if A is the cuspnormalizing map of c1 then
label A−1z x y

4e
(
− 1

9

√
10− 7

18

)√
−4 0 7

4f
(−1

36

√
10 + 1

36

)√
−4
±

+ 1
2 −2

√
10−2 −2

√
10−2
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Factoring matrices

Given elliptic element A:

Find fixed point z

Set z0 = z + ε s.t. z0 ∈ FΓ (well into the interior).

w0 = Az0

Find pullback of w0 in to FΓ (make sure w∗0 = z0).

Keep track of matrices used in pullback.
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Example

K = Q
(√

3
)
, z = −1+

√
3

2 − i 1+
√

3
2 A =

(
−1 −

√
3+1√

3+1 1

)
w0 = Az0 ∼ (close to 0)

w1 = Sw0 ∼ (close to a−1)

w2 = ST 1−aw1

w3 = T 1+aw2 – reduced

A = T 1+aST a−1S (as a map)

A = S2T 1+aST a−1S (in SL2(OK ))
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Section of a fundamental domain

x = (0.00,0.00)
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Section of a fundamental domain

x = (0.05,0.05)
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Section of a fundamental domain

x = (0.10,0.10)



Preliminaries The Hilbert modular group The dimension formula Computations Reduction algorithm

Section of a fundamental domain

x = (0.15,0.15)
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Section of a fundamental domain

x = (0.20,0.20)
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Section of a fundamental domain

x = (0.25,0.25)



Preliminaries The Hilbert modular group The dimension formula Computations Reduction algorithm

Section of a fundamental domain

x = (0.30,0.30)
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Section of a fundamental domain

x = (0.35,0.35)
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Section of a fundamental domain

x = (0.40,0.40)
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Section of a fundamental domain

x = (0.45,0.45)
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Section of a fundamental domain

x = (0.50,0.50)
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Elliptic points of order 4 and 10

red = order 10
green = order 4

x = (−0.3090 . . . ,0.8090 . . .)
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