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q-expansions

Let f : H → C be a classical modular form of weight k ∈ 2Z≥0 for
Γ0(N). Then f satisfies the translation invariance f (z + 1) = f (z)
for z ∈ H, so f admits a Fourier expansion (or q-expansion)

f (z) =
∞∑
n=0

anq
n

at the cusp ∞, where q = e2πiz . If further f is a normalized
eigenform for the Hecke operators Tn, then the coefficients an are
the eigenvalues of Tn for n relatively prime to N.



Cocompact groups

Let Γ ≤ PSL2(R) be a cocompact Fuchsian group.



Modular forms, no cusps!

A modular form f of weight k ∈ 2Z≥0 for a cocompact Fuchsian
group Γ is a holomorphic map f : H → C satisfying

f (gz) = (cz + d)k f (z)

for all g =

(
a b
c d

)
∈ Γ. We also write j(g , z) = cz + d .

As Γ is cocompact, the quotient X = Γ\H has no cusps, so there
are no q-expansions!

However, not all is lost: such a modular form f still admits a
power series expansion in the neighborhood of a point p ∈ H.



Power series expansions in unit disc
A q-expansion is really just a power series expansion at ∞ in the
parameter q, convergent for |q| < 1. So it is natural to consider a
neighborhood of p normalized so the expansion also converges in
the unit disc D for a parameter w . So we map

w : H → D

z 7→ w(z) =
z − p

z − p
.

We then consider series expansions of the form

f (z) = (1− w)k
∞∑
n=0

bnw
n

where w = w(z). The term

(1− w(z))k =

(
p − p

z − p

)k

is the automorphy factor arising by slashing by linear fractional
transformation w(z).



Example

Let f ∈ S2(Γ0(11)) be defined by

f (z) = q
∞∏
n=1

(1− qn)2(1− q11n)2 = q − 2q2 − q3 + 2q4 + ....

Consider expansions about the point p = (−9 +
√
−7)/22 ∈ H, a

CM point on X0(11) for K = Q(
√
−7). From the q-expansion:

f (z) = (1− w)2
∞∑
n=0

bnw
n = f (p)(1− w)2

∞∑
n=0

cn
n!

(Θw)n

= −
√

3 + 4
√
−7Ω2(1− w)2·

·
(

1 + Θω +
5

2!
(Θw)2 − 123

3!
(Θw)3 − 59

4!
(Θw)4 − . . .

)
where

Θ =
−4 + 2

√
−7

11
πΩ2

and Ω = 0.500491 . . . is the Chowla-Selberg period for K .



Arithmetic groups

Let F be a totally real number field with ring of integers ZF . Let
B be a quaternion algebra over F with a unique split real place
ι∞ : B ↪→ M2(R). Let O ⊂ B be an Eichler order of level N, let
O∗1 be the group of units of reduced norm 1 in O. Then the group

Γ = ΓB
0 (N) = ι∞(O∗1/{±1}) ⊂ PSL2(R)

is a Fuchsian group with X = Γ\H of finite area.

If F has narrow class number 1, the space Mk(Γ) of modular forms
of weight k for Γ has an action of Hecke operators Tp indexed by
the prime ideals p - DN.



Algebraicity
Let K be a totally imaginary quadratic extension of F that embeds
in B, and let ν ∈ B be such that F (ν) ∼= K . Let p ∈ H be a fixed
point of ι∞(ν). Then we say p is a CM point for K .

Theorem (Shimura)

There exists Θ ∈ C× such that for every CM point p for K, every
congruence subgroup Γ commensurable with ΓB(1), and every
f ∈ Mk(Γ) with f (p) ∈ (K ab)×, we have for all n ∈ Z≥0 that

bn(f )

Θn
∈ K ab.

Rodriguez-Villegas and Zagier link these coefficients to square
roots of central values of the Rankin-Selberg L-function
L(s, f × θn), where θ is associated to a Hecke character for K .
Many authors have pursued this further, including
O’Sullivan-Risager, Bertolini-Darmon-Prasanna, Mori, . . . .



Our result

We exhibit a general method for numerically computing power
series expansions of modular forms for cocompact Fuchsian groups.
Our method has generalizations to a wide variety of settings
(noncongruence groups, real analytic modular forms, higher
dimensional groups) and applies equally well for arithmetic
Fuchsian groups over any totally real field F .

(There is another recent method, due to Nelson, which directly
computes the Shimizu lift of a modular form on a Shimura curve
over Q to a classical modular curve!)

Our method is inspired by the method of Stark and Hejhal, who
used the same basic principle to compute Fourier expansions for
Maass forms on SL2(Z) and the Hecke triangle groups.



Basic idea

Let Γ be a cocompact Fuchsian group. Let D ⊂ D be a
fundamental domain for Γ contained in a circle of radius ρ > 0.
Let f ∈ Sk(Γ). We consider an approximation

f (z) ≈ fN(z) = (1− w)k
N∑

n=0

bnw
n

valid for all |w | ≤ ρ to some precision ε > 0.

For a point w = w(z) 6∈ D, there exists g ∈ Γ such that
z ′ = gz ∈ D; by the modularity of f we have

fN(z ′) ≈ f (z ′) = j(g , z)k f (z)

(1− w ′)k
N∑

n=0

bn(w ′)n ≈ j(g , z)k(1− w)k
N∑

n=0

bnw
n,

imposing a (nontrivial) linear relation on the unknowns bn.



Better idea

Use the Cauchy integral formula:

bn =
1

2πi

∮
f (z)

wn+1(1− w)k
dw .

We take the contour to be a circle of radius ρ, apply automorphy,
and again obtain linear relations among the coefficients bn.
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Computing a fundamental domain

For a point p ∈ H, we denote by Γp = {g ∈ Γ : g(p) = p} the
stabilizer of p in Γ.

Theorem (V)

There exists an algorithm that, given as input a cocompact
Fuchsian group Γ and a point p ∈ H with Γp = {1}, computes as
output a fundamental domain D(p) ⊂ H for Γ and an algorithm
that, given z ∈ H returns a point z ′ ∈ D(p) and g ∈ Γ such that
z ′ = gz.

The fundamental domain D(p) is the Dirichlet domain

D(p) = {z ∈ H : d(z , p) ≤ d(gz , p) for all g ∈ Γ}

where d is the hyperbolic distance. The set D(p) is a closed,
connected, and hyperbolically convex domain whose boundary
consists of finitely many geodesic segments.



Confirming the output

Although (at the moment) our results are not provably correct,
there are several tests that allow one to be quite convinced that
they are correct. (See also Booker-Strömbergsson-Venkatesh.)

First we simply decrease the error ε and see if the coefficients bn
converge. The second is to look at the singular values to see that
the approximately nonzero eigenvalues are sufficiently large.

More seriously, we can also verify that f is modular at point
w 6∈ D with |w | ≤ ρ. This shows that the computed expansion
transforms like a modular form of weight k for Γ.

Finally, when f is an eigenform for a congruence group Γ, we can
check that f is indeed numerically an eigenform (with the right
eigenvalues) and that the normalized coefficients appear to be
algebraic using the LLL-algorithm.



Cubic example

Let F = Q(a) where h(a) = a3 − a2 − 4a + 1 = 0. Then F is a
totally real cubic field of discriminant 321 = 3 · 107 and ring of
integers ZF = Z[a]. F is not Galois; the Galois group of h is S3.
The narrow class number of F is # Cl+ ZF = 1.

Let B =

(
−1, b

F

)
where b = a2 − a− 4 ∈ Z×F , so that B is

generated by i , j subject to

i2 = −1, j2 = b, and ji = −ij .

Then the quaternion algebra B is ramified only at two of three real
places and no finite place.

We compute a maximal order

O = ZF ⊕ ZF i ⊕ ZF

(
1 + a2i + j

2

)
⊕ ZF

(
a2 + i + ij

2

)
.



Fundamental domain

The group of units Γ with respect to an embedding
ι : B ↪→ M2(R) is a group of signature (0; 2, 3, 3, 3): in particular,
the quotient X = H/Γ has genus 0.

0



Power series expansions

We choose the center p to be CM point on X of class number 1, a
fixed point of an element µ satisfying

µ2 + (−a2 − a)µ+ (2a2 + 3a) = 0

with discriminant −(a + 3) and norm discriminant −23:

µ =
a2 + a

2
+
−a + 1

2
i +

a− 1

2
j − a

2
ij

and so p = 0.517256587 . . .+ (0.28484776 . . .)
√
−1.



Fundamental domain II
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Uniformizing function

For k ∈ 2Z≥0, define

Mk(Γ) = Sk(Γ) = {f : H → C | f (γz) = (cz+d)k f (z) for all γ ∈ Γ}.

Then the canonical ring of X is

S(Γ) =
⊕
k

Sk(Γ) =
F [f4, g6, h6]

(r(f4, g6, h6))

where

r(f4, g6, h6) = f 34 g6 − (g 3
6 + (7a2 + 4a− 20)g 2

6 h6 + (−179a2 + 196a+ 871)g6h
2
6

+ (−2048a2 + 1600a+ 8640)h3
6)

Anyway, S(Γ) ∼= F [g , h] so X ∼= P1 by the map j = h/g .



Uniformizing function

j(z) =
∞∑
n=0

cn
n!

(
Θ
z − p

z − p

)n

=
∞∑
n=0

cn
n!

(Θw)n

= (a− 1)(Θw) +
2a2 + 14a− 10

2!
(Θw)2

+
154a2 + 256a− 578

3!
(Θw)3

+
1544a2 + 7688 + 728

4!
(Θw)4

+
142960a2 + 157120a− 301400

5!
(Θw)5 + . . .

where

Θ = 0.3613682530143011 . . .− (0.334606902934795 . . .)
√
−1.

The method to compute these power series expansions is joint
work with John Willis and the computation of the ring of modular
forms is thesis work of Michael Klug.



Jugendtraum for CM extensions of F

Consider the CM extension K = F (
√
d) where

d = −3a2 + 10a− 7; then ZK has discriminant d and
N(d) = −87. We have ClZK

∼= Z/2Z. We find an element ν ∈ O
such that ν has minimal polynomial of discriminant d . Its fixed
point wν has j(wν) satisfying the equation

j(wν)2 + (5a + 5)j(wν) + (−19a2 + 18a + 89) = 0

and H = K (j(wν)) = K (
√

13a2 − 9a− 53) is the Hilbert class field
of K .



Example

Let F = Q(a) = Q(
√

5) where a2 + a− 1 = 0, and let ZF be its
ring of integers. Let p = (5a + 2), so Np = 31. Let B be the
quaternion algebra ramified at p and the real place sending

√
5 to

its positive real root: we take B =

(
a, 5a + 2

F

)
.

As before, we compute a maximal order O ⊂ B. Then Γ = ΓB
0 (1)

has signature (1; 22), so X = Γ\H can be given the structure of a
compact Riemann surface of genus 1. The space M2(Γ) of modular
forms on Γ of weight 2 is 1-dimensional.

The field K = F (
√
−7) embeds in O with

µ = −1

2
− 5a + 10

2
i − a + 2

2
j +

3a− 5

2
ij ∈ O

and ZF [µ] = ZK the maximal order with class number 1. We take
p = −3.1653 . . .+ 1.41783 . . . ∈ H to be the fixed point of µ.



Fundamental domain
3

v1

v2

v3

v4
v5

v6

v7

v8

v9

γ

γ′



An expansion for the form

f (z) = (1− w)2
(

1 + (Θw)− 70a + 114

2!
(Θw)2

− 8064a + 13038

3!
(Θw)3 +

174888a + 282972

4!
(Θw)4

− 13266960a + 21466440

5!
(Θw)5

− 1826784288a + 2955799224

6!
(Θw)6

−2388004416a + 3863871648

7!
(Θw)7 + . . .

)
where

Θ = 0.046218579529208499918 . . .−0.075987317531832568351 . . . i

is a period related to the CM abelian variety given by the point p.



The conjugate curve
We further compute the other embedding of this form by repeating
the above with an algebra ramified at p and the other real place.

4

The coefficients agree with the conjugates under the nontrivial
element of Gal(Q(

√
5)/Q).



Finding an equation

We can identify the equation of the Jacobian J of the curve X by
computing the associated periods. We first identify the group Γ
using the sidepairing relations coming from the computation of
D(p):

Γ ∼= 〈γ, γ′, δ1, δ2 | δ21 = δ22 = γ−1γ′−1δ1γγ
′δ2 = 1〉

where

γ =
a + 2

2
− 2a + 3

2
α +

a + 1

2
αβ

γ′ =
2a + 3

2
+

7a + 10

2
α +

a + 2

2
β − (3a + 5)αβ

generate the free part of the maximal abelian quotient of Γ.



Fundamental domain again
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Finding an equation
Therefore, we compute two independent periods ω1, ω2

ω1 =

∫ v5

v2

f (z)
dw

(1− w)2
≈

(
N∑

n=0

bn
n + 1

wn+1

)∣∣∣∣∣
v5

v2

= −0.654017 . . .+ 0.397799 . . . i

ω2 =

∫ v2

v8

f (z)
dw

(1− w)2
= 0.952307 . . .+ 0.829145 . . . i .

We then compute the j-invariant

j(ω1/ω2) = −18733.423 . . .

= −11889611722383394a + 8629385062119691

318
.

We identify the elliptic curve J as

y2 + xy − ay = x3 − (a− 1)x2 − (31a + 75)x − (141a + 303).



Heegner point
Finally, we compute the image on J of a degree zero divisor on X .

The fixed points w1,w2 of the two elliptic generators δ1 and δ2 are
CM points of discriminant −4. Let K = F (i) and consider the
image of [w1]− [w2] on J given by the Abel-Jacobi map as∫ w2

w1

f (z)
dw

(1− w)2
≡ −0.177051 . . .− 0.291088 . . . i (mod Λ)

where Λ = Zω1 + Zω2 is the period lattice of J. Evaluating the
elliptic exponential, we find the point

(−10.503797 . . . , 5.560915 . . .− 44.133005 . . . i) ∈ J(C)

which matches to the precision computed ε = 10−20 the point

Y =

(
−81a− 118

16
,

(358a + 1191)i + (194a + 236)

64

)
∈ J(K ).

We have J(K ) ∼= Z/4Z⊕ Z and Y generates the free quotient.



Higher genus

One can just as easily compute equations for Shimura curves in
higher genus.

For example, let F = Q(a) = Q(
√

13) and let
p = (2w − 1) = (

√
13). The group ΓB(1) has signature (2;−).

Computing a basis for the space S2(Γ) of holomorphic differentials,
we obtain the equation

XB(1) : y2 + y = x5 + 12x4 + 17x3 − 107x2 + 134x − 56

And explicit power series x , y realizing the uniformization of the
curve defined by this equation.

This method has really produced the canonical model of X over
the reflex field F , in the sense of Shimura and Deligne.



Conclusion

The coefficients of a power series expansion of a modular form f
encode interesting information about f that is of independent
interest.

We have exhibited a general method for numerically computing
power series expansions of modular forms for cocompact Fuchsian
groups with good results in practice.

The potential for this algorithm to transport familiar algorithms for
modular curves to the more general setting of Shimura curves
(even quaternionic Shimura varieties) is promising.


