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Logarithmic functions

A logarithmic function (of length k) is a function

f : {1,2, . . . , k} → Z/kZ

satisfying

f(ab) = f(a) + f(b)

whenever both sides make sense (i.e., whenever a, b, ab ∈ {1,2, . . . , k}).
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There are kπ(k) logarithmic functions of length k: the primes below k can
be assigned arbitrary images, and then all other values are determined by
the logarithmic property.
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Logarithmic functions

A logarithmic function (of length k) is a function

f : {1,2, . . . , k} → Z/kZ

satisfying

f(ab) = f(a) + f(b)

whenever both sides make sense (i.e., whenever a, b, ab ∈ {1,2, . . . , k}).

Some examples arise naturally . . .



Logarithmic functions: example

Suppose that p = k+1 is prime, and that g generates (Z/pZ)∗.

Given a ∈ {1, . . . , k}, we can view a as an element of (Z/pZ)∗, and define
f(a) by

a = gf(a) ,

the discrete logarithm of a to base g.

Then f is a logarithmic function.
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f(a) by
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Then f is a logarithmic function.

N.B., the definition of a logarithmic function does not here require f(c) =

f(a) + f(b) whenever c ≡ ab (mod p), although this is true.



Logarithmic functions: example

Suppose that p = k+1 is prime, and that g generates (Z/pZ)∗.

Given a ∈ {1, . . . , k}, we can view a as an element of (Z/pZ)∗, and define
f(a) by

a = gf(a) ,

the discrete logarithm of a to base g.

Then f is a logarithmic function.

In the example above, f is bijective. This is not a requirement for logarith-
mic functions in general, and when it happens we endow our logarithmic
function with a special name . . .
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Logarithms

• A logarithm of length k is a bijective logarithmic function of length k.

• We have seen that if k + 1 is prime, then there exists a logarithm of
length k. (Indeed there are at least ϕ(k) logarithms, coming from the
different choices for generators of (Z/(k+1)Z)∗.)

• There are other examples. . .
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Logarithms: another family of examples

Suppose that p = 2k+1 is prime.

Let f̂(a) ∈ Z/2kZ be a discrete logarithm in (Z/pZ)∗.

Let π : Z/2kZ→ Z/kZ be the natural surjection.

Define f : {1, . . . , k} → Z/kZ by f(a) = π(f̂(a)).

This is certainly a logarithmic function of length k.

If f(a) = f(b), then either a = b or a ≡ −b (mod p); for a and b between
1 and k, the latter is not possible, so f is injective, and hence bijective.
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Logarithms: the story so far

• As soon as a logarithm of length k exists, one can scale it to get ϕ(k)
others.

• One can also shuffle the values of the logarithms of certain primes.

• Logarithms of length k exist for all k < 195 (more on larger k later).

• k = 184 is the smallest length for which a logarithm exists, but for
which there is no logarithm of that length coming from any of the above
number-theoretic ideas.
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Logarithms have appeared in a number of settings:

• construction of lattice tilings;

• group theory

• number theory

• coding theory
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A digression: k-radius sequences

An n-ary k-radius sequence is a finite sequence from the alphabet
{0,1, . . . , n − 1} such that any 2 distinct elements of the alphabet are
at most k terms apart in the sequence.

In other words, if one slides a window that covers k + 1 terms of the
sequence along the sequence, then every possible pair of elements is seen
through the window at some point.

These have been used in certain caching strategies.
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A digression: k-radius primes

A k-radius prime is a prime p such that:

• p ≡ 1 (mod 2k) ;

• the elements 1(p−1)/k, 2(p−1)/k, . . . , k(p−1)/k are pairwise distinct
when reduced modulo p.

Taking discrete logs with any chosen k-th root of unity as a base gives a
logarithm of length k.
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A digression: k-radius primes and sequences

Proposition (Blackburn,M [2012])

If p is a k-radius prime, then there is a p-ary k-radius sequence of length

(p+ k − 1)(p− 1)/(2k) + 1 .

This is asymptotically good: it is easy to see that the length has to be
greater than p(p− 1)/(2k).



A digression: k-radius primes and sequences

Proposition (Blackburn,M [2012])

If p is a k-radius prime, then there is a p-ary k-radius sequence of length

(p+ k − 1)(p− 1)/(2k) + 1 .

We also constructed k-radius sequences from logarithms, going via tilings.
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A digression: k-radius primes and logarithms

Let k = 7. (Note that neither k+1 nor 2k+1 is a prime.)

Let p = 659 (the smallest prime for which this trick works).

194, 294, . . . , 794 happen to be distinct mod 659.

Writing them to base 307, they are 3070, 3071, 3074, 3072, 3073, 3075,
3076. Hence . . .



A digression: k-radius primes and logarithms

1 0
2 1
3 4
4 7→ 2
5 3
6 5
7 6

is a logarithm of length 7.
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Logarithms from number theory

Taking any prime ≡ 1 (mod k), we can always get a logarithmic function
in this way, but getting a logarithm is much more rare.

Working in cyclotomic fields, and using density results for primes with cer-
tain character values, one can show:

Theorem (Mills, 1963) If k is odd, then any logarithmic function (and hence
any logarithm) arises in this way. Indeed for infinitely many primes.

Elliott (1970) gave the density, with an estimate for the error.



Logarithms from number theory: k even

Consider k = 10. (Yes, we know already that a logarithm exists!)



Logarithms from number theory: k even

Consider k = 10. (Yes, we know already that a logarithm exists!)

For any p ≡ 1 (mod k), we have(
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Logarithms from number theory: k even

Consider k = 10. (Yes, we know already that a logarithm exists!)

For any p ≡ 1 (mod k), we have(
5
p

)
=

(
p
5

)
=

(
1
5

)
= 1 .

So 5 is a square mod p, and 5(p−1)/10 is a square of a 10th root of unity,
so cannot be a primitive 10th root of unity.



Logarithms from number theory: k even

So
1 2 3 4 5 6 7 8 9 10

↓
0 4 3 8 1 7 9 2 6 5

is an example of a logarithm that does not come from computing discrete
logarithms in the 10th roots of unity modulo any prime.



Logarithms from number theory: k even

Mills (1963) showed that when k is even a logarithmic function f comes
from discrete logarithms in the kth roots of unity modulo p for some prime
p (and indeed infinitely many) if and only if

f(m) is even if one of the following holds:

• m | k and m ≡ 1 (mod 4);

• 4m | k.
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• if 2m | k then f(m) is even.

This works for odd and even k!



Logarithms from number theory: k even

For k-radius primes, the condition is slightly simpler.

A logarithm f of length k comes from a k-radius prime if and only if

• if 2m | k then f(m) is even.

One can show that this condition implies Mills’ condition in all cases.
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Logarithms: some terminology

Those logarithms that come from primes≡ 1 (mod k) we call KM-logarithms
(Kummer-Mills).

Those that come from k-radius primes are more special: we call them
special KM-logarithms.
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For k ≤ 300, there are logarithms of length k except for

k = 195, 205, 208, 211, 212, 214, 217, 218, 220, 227, 229, 235, 242,
244, 246–248, 252, 253, 255, 257–259, 263–267, 269, 271, 274, 275,
279, 283, 286, 287, 289–291, 294, 295, 297, 298.

In addition, there are no KM-logarithms of length k for

k = 184, 234, 236.

In addition, there are no special KM-logarithms of length k for

k = 4, 12, 60, 180, 182, 190, 196, 222, 238, 268, 276, 282, 292.
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Logarithms: computational results

Let us call a logarithm sporadic if it does not come from k+ 1 or 2k+ 1
being prime.

The values of k for which there are only sporadic logarithms seem increas-
ingly rare as k grows.

For k ≥ 200, the only known cases are

k = 201, 202, 203, 206, 207, 213, 223, 225, 234, 236, 237, 241, 272, 277.

News flash: there is also a logarithm of length 342.

And one of length 360.
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if k is odd,
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k-radius primes: density

Let Nk be the number of special KM-logarithms of length k.

Define

ck =


1

ϕ(2k) ·
Nk
kπ(k)

if k is odd,

1
ϕ(2k) ·

Nk2
ω(k/2)

kπ(k)
if k is even.

Theorem (Blackburn, M [2012])

The number of k-radius primes below x is asymptotic to ckx/ logx (as
x→∞).
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Open problems

• Is the number of sporadic logarithms finite? Is there one of length
greater than 360?

• Is the number of k for which there exist logarithms, but not KM-logarithms,
finite?

• Is the number of k for which there exist logarithms, but not special
KM-logarithms, infinite?



A logarithm of length 342

2 3 5 7 11 13 17 19 23 29
1 139 232 150 102 329 226 171 146 17

...

277 281 283 293 307 311 313 317 331 337
298 309 313 314 319 326 327 339 340 341



A logarithm of length 342

1 2 3 4 5 6 7 8 9 10
0 1 139 2 232 140 150 3 278 233

11 12 13 14 15 16 17 18 19 20
102 141 329 151 29 4 226 279 171 234

...

333 334 335 336 337 338 339 340 341 342
323 268 159 293 341 317 134 118 63 108



A logarithm of length 360

2 3 5 7 11 13 17 19 23 29
2 125 194 273 141 37 191 292 349 324

...

307 311 313 317 331 337 347 349 353 359
236 241 271 285 290 331 334 344 348 358



A logarithm of length 360

1 2 3 4 5 6 7 8 9 10
0 2 125 4 194 127 273 6 250 196

11 12 13 14 15 16 17 18 19 20
141 129 37 275 319 8 191 252 292 198

...

351 352 353 354 355 356 357 358 359 360
52 151 348 110 139 299 229 1 358 90


