Open problems in lattice-based cryptography

Steven Galbraith

University of Auckland, New Zealand

Plan

Goal: Highlight some hot topics in cryptography, and good targets for mathematical cryptanalysis.

- Approximate GCD
- Homomorphic encryption
- NTRU and Ring-LWE
- Multi-linear maps

Please ask questions at any time.

Lattice-based cryptography

Lattice-based cryptography refers to any system whose security depends on computational assumptions based on lattices (in contrast to factoring-based cryptography, discrete-logarithm based cryptography, etc).

Some achievements:

- Fully homomorphic encryption
- Multilinear maps
- Attribute-based encryption for general circuits
- Cryptography based on worst-case assumptions
- Security against quantum computers (hopefully)

Symmetric encryption from approximate GCD

(van Dijk, Gentry, Halevi and Vaikuntanathan, 2010)

- Let p be large prime, known to Alice and Bob.
- To encrypt $m \in\{0,1\}$ to Bob, Alice does:
- Choose $q, e \in \mathbb{Z}$ with $|e| \ll p$ and q large.
- Compute $c=p q+2 e+m$, and send to Bob.
- To decrypt c Bob does
- $m=\left[[c]_{p}\right]_{2}$.
- Here $[c]_{p}$ denotes the integer in $(-p / 2, p / 2]$ congruent modulo p to c.

The approximate GCD problem

- Suppose Eve sees many communications between Alice and Bob.

- She sees $c_{i}=p q_{i}+\left(2 e_{i}+m\right)$ for $1 \leq i \leq k$.
- One of her goals might be to compute p, and hence read all messages.

Homomorphic encryption

- A nice feature of this system is that it is homomorphic.
- Let $c_{1}=p q_{1}+2 e_{1}+m_{1}$ and $c_{2}=p q_{2}+2 e_{2}+m_{2}$.
- Then $c_{1}+c_{2}=p\left(q_{1}+q_{2}\right)+2\left(e_{1}+e_{2}\right)+\left(m_{1}+m_{2}\right)$ is an encryption of $m_{1}+m_{2}(\bmod 2)$.
- Also, $c_{1} c_{2}=p(\star)+2\left(e_{1} e_{2}+e_{1} m_{2}+e_{2} m_{1}\right)+\left(m_{1} m_{2}\right)$ is an encryption of $m_{1} m_{2}(\bmod 2)$.
- Homomorphic encryption is a hot topic in crypto these days Nigel will probably talk more about this.

Can turn into a public key encryption scheme

- Bob publishes many encryptions of zero $X_{i}=p q_{i}+2 e_{i}$, $1 \leq i \leq k$.
- To encrypt to Bob, Alice chooses $I \subseteq\{1,2, \ldots, k\}$ and computes

$$
c=\sum_{i \in I} X_{i}+2 e+m
$$

and sends c to Bob.

- Full security analysis given by van Dijk, Gentry, Halevi and Vaikuntanathan.
- Variant where $X_{0}=p q_{0}$ is also given in public key, and computations are modulo X_{0}.
- (ρ, η, γ)-Approximate GCD problem: Given $X_{1}, \ldots, X_{k} \in \mathbb{Z} \cap\left[0,2^{\gamma}\right]$ find an integer $2^{\eta-1}<p<2^{\eta}$ such that $\left[X_{i}\right]_{p}<2^{\rho}$ for all $1 \leq i \leq k$.
In what sense is this well-defined?

Euclid algorithm on approx-GCD

- Given $X_{1}=p q_{1}+e_{1}, X_{2}=p q_{2}+e_{2}$ one can run Euclid's algorithm.
- Since Euclid considers most-significant bits first, the algorithm will begin the same as if one was computing $\operatorname{gcd}\left(p q_{1}, p q_{2}\right)$.

Euclid algorithm on approx-GCD

- Given $X_{1}=p q_{1}+e_{1}, X_{2}=p q_{2}+e_{2}$ one can run Euclid's algorithm.
- Since Euclid considers most-significant bits first, the algorithm will begin the same as if one was computing $\operatorname{gcd}\left(p q_{1}, p q_{2}\right)$.
- Euclid on (a, b) computes a sequence $\left(r_{i}, s_{i}, t_{i}\right)$ such that $r_{i}=a s_{i}+b t_{i}$ and $\left|r_{i} s_{i}\right| \approx|b|,\left|r_{i} t_{i}\right| \approx|a|$.
- Run Euclid on ($p q_{1}, p q_{2}$) we expect to get $r_{i}=p$ and $q_{1} s_{i}+q_{2} t_{i}=1$.
- This means $s_{i}, t_{i} \approx q_{2}, q_{1}$ and so

$$
X_{1} s_{i}+X_{2} t_{i}=p\left(q_{1} s_{i}+q_{2} t_{i}\right)+\left(e_{1} s_{i}+e_{2} t_{i}\right)
$$

As long as $\left|e_{1} s_{i}-e_{2} t_{i}\right| \gg p$ then Euclid does not find p. Hence, if $\gamma-\eta+\rho \gg \eta$ then Euclid is not useful.

- Howgrave-Graham has also worked on this problem.

Lattices

- Let $\underline{b}_{1}, \ldots, \underline{b}_{n}$ be linearly independent vectors in \mathbb{R}^{n}.
- The set $L=\left\{\sum_{i=1}^{n} x_{i} \underline{b}_{i}: x_{i} \in \mathbb{Z}\right\}$ is a (full rank) lattice. Call its elements points or vectors.
- Alternative definition: A discrete subgroup of \mathbb{R}^{n}.
- Everyone working with lattices should declare whether their vectors are rows or columns. Today I am using rows.
- The basis matrix is the $n \times n$ matrix B whose rows are the vectors $\underline{b}_{1}, \ldots, \underline{b}_{n}$.
- A lattice has many different bases.

Computational Problems (Informally)

- Shortest vector problem (SVP): Given a basis matrix B for a lattice L find a non-zero vector $\underline{v} \in L$ such that $\|\underline{v}\|$ is minimal.
The norm here is usually the standard Euclidean norm in \mathbb{R}^{n}, but it can be any norm such as the ℓ_{1} norm or ℓ_{∞} norm.
- Closest vector problem (CVP): Given a basis matrix B for a full rank lattice $L \subseteq \mathbb{R}^{n}$ and an element $\underline{t} \in \mathbb{R}^{n}$ find $\underline{v} \in L$ such that $\|\underline{v}-\underline{t}\|$ is minimal.

Lattice attack on approx GCD

- Recall $X_{i}=p q_{i}+e_{i}$.
- Consider the lattice whose rows are spanned by

$$
B=\left(\begin{array}{ccccc}
2^{\rho} & -X_{2} & -X_{3} & \cdots & -X_{t} \\
0 & X_{1} & 0 & \cdots & 0 \\
0 & 0 & X_{1} & & 0 \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & X_{1}
\end{array}\right)
$$

- Note that

$$
\left(q_{1}, q_{2}, \ldots, q_{t}\right) B=\left(2^{\rho} q_{1}, e_{1} q_{2}-e_{2} q_{1}, \ldots, e_{1} q_{t}-e_{t} q_{1}\right)
$$

is of length $\sqrt{t} 2^{\rho+\gamma-\eta}$.

Lattice attack on approx GCD

- The Gaussian heuristic suggests the lattice contains a vector of length

$$
\sqrt{\frac{t}{2 \pi e}} \operatorname{det}(B)^{1 / t} \approx \sqrt{\frac{t}{2 \pi e}} 2^{(\rho+(t-1) \gamma) / t}
$$

- So for large enough t then the target vector is especially short and might be found using lattice reduction.

Research problems

- Also attacks by: Chen-Nguyen and Coron, Naccache and Tibouchi ; Cohn-Heninger.
These attacks show that the errors (hence, parameter ρ) cannot be too small.
But mainly the security comes from the size of the q_{i} rather than the size of the errors.
- The suggested parameters make the scheme astronomically large.
- Find a better attack and kill it off completely!

Adaptive attacks

- It is standard (and realistic) in crypto to consider the setting where an attacker has access to a decryption oracle.
- Recall that decryption of a ciphertext c means computing $m=\left[[c]_{p}\right]_{2}$.
Given a decryption oracle one can query it with even integers $c \approx p$ and determine p by binary search.
- The security notion we would like is called "IND-CCA1".
- Open problem: To design an IND-CCA1 variant of this scheme.
- Similar attacks apply to all known homomorphic encryption schemes.
- Loftus, May, Smart and Vercauteren have given an IND-CCA1 variant of the Smart-Vercauteren scheme.
- Micciancio and Peikert (EUROCRYPT 2012) have given IND-CCA1 secure encryption from LWE. But it is not homomorphic.

Multi-linear

- Coron, Lepoint and Tibouchi have given a multi-linear map based on somewhat similar ideas.
- It is too complicated to write down.
- A good idea would be to study this scheme carefully to assess its security.

End of part 1

Any comments or questions?

NTRU/Ring-LWE - History

- NTRU: Hoffstein, Pipher, Silverman (ANTS 1998). Rejuvinated by Stehlé and Steinfeld ; Lopez-Alt, Tromer and Vaikuntanathan
- LWE: Regev (2005)
- Ring-LWE: Lyubashevsky, Peikert and Regev

Cyclotomic rings

- $n=2^{k}, R=\mathbb{Z}[x] /\left(x^{n}+1\right)$. Then $x^{n}+1$ is irreducible.
- R is a subring of $\mathbb{Q}\left(\zeta_{2 n}\right)$, which is a Galois extension of \mathbb{Q}.
- For $q \equiv 1(\bmod 2 n)$ prime, let $R_{q}=R /(q)=\mathbb{Z}[x] /\left(q, x^{n}+1\right)$
- Note: $x^{n}+1$ splits completely modulo q.
- The canonical embedding $\sigma: R \rightarrow \mathbb{R}^{n}$ is formed using the n conjugate pairs of injective homomorphisms $\sigma_{i}: R \rightarrow \mathbb{C}$.

NTRU/Ring-LWE

- The "error distribution" on R is "diagonal in the canonical embedding", meaning that one samples independently n discrete Gaussians on \mathbb{Z} and pulls back under σ to give an "error vector" $\underline{e} \in R$.
- Suppose we sample \underline{s}, \underline{e} from the error distribution on R.
- The NTRU problem is: Given $\underline{a}=\underline{e}^{-1}$ in R_{q}, to compute (s, \underline{e}).
(This is not "traditional" NTRU.)
Stehlé-Steinfeld: \underline{a} is indistinguishable from uniform.
- The Ring LWE problem is: Given $(\underline{a}, \underline{b}=\underline{a} \underline{s}+\underline{e}$ $(\bmod q)) \in R_{q}^{2}$ to compute $(\underline{s}, \underline{e})$.
- One can write NTRU as $(\underline{a}, 0=\underline{a} \underline{s}-\underline{e}(\bmod q))$.

Interlude: Learning with Errors (LWE) Oded Regev (2005)

- Let q be an odd prime and $n, m \in \mathbb{N}$. [Example: $n=320$, $m=2000, q=4093$.]
- Let $\underline{s} \in \mathbb{Z}_{q}^{n}$ be a secret vector.
- Suppose one is given an $n \times m$ matrix \mathbf{A} chosen uniformly at random with entries in \mathbb{Z}_{q} and a length m vector

$$
\underline{b} \equiv \underline{s} \mathbf{A}+\underline{e} \quad(\bmod q)
$$

where the vector \underline{e} has entries chosen independently from a "discrete normal distribution" on \mathbb{Z} with mean 0 and standard deviation $\sigma=\alpha q$ for some $0<\alpha<1$ (e.g., $\sigma=3$).

- The LWE problem is to find the vector \underline{s}.
- Can be expressed as $\underline{b} \equiv(\underline{s}, \underline{e})\left(\frac{\mathbf{A}}{\mathbf{1}}\right)(\bmod q)$.

Encryption from Ring-LWE

- Public key: $(\underline{a}, \underline{b}=\underline{a} \underline{s}+\underline{e}(\bmod q)) \in R_{q}^{2}$
- Private key: $(\underline{s}, \underline{e})$
- Encrypt $\underline{m} \in\{0,1\}^{n}$ encoded in R :
- Choose small $\underline{r}, \underline{e}_{1}, \underline{e}_{2}$
- Compute $\underline{u}=\underline{a} \underline{r}+\underline{e}_{1}(\bmod q), \underline{v}=\underline{b} \underline{r}+\underline{e}_{2}+[q / 2] \underline{m}$
- Send ($\underline{u}, \underline{v}$)
- Decrypt $(\underline{u}, \underline{v})$:

$$
\underline{v}-\underline{u} \underline{s} \equiv \underline{e} \underline{r}+\underline{e}_{2}-\underline{e}_{1} \underline{s}+[q / 2] \underline{m} \quad(\bmod q)
$$

so most significant bits yield \underline{m}.

Encryption from NTRU

- Public key: $\left.\underline{a}=2 \underline{e}(2 \underline{s}+1)^{-1}(\bmod q)\right) \in R_{q}$
- Private key: $2 \underline{s}+1$
- Encrypt $\underline{m} \in R$
- Sample short $\underline{e}_{1}, \underline{e}_{2} \in R$
- $c=\underline{a} \underline{e}_{1}+2 \underline{e}_{2}+\underline{m}$
- Decrypt c :

$$
c(2 \underline{s}+1) \equiv 2 \underline{e} \underline{e}_{1}+2 \underline{e}_{2}(2 \underline{s}+1)+(2 \underline{s}+1) \underline{m} \quad(\bmod q)
$$

so least significant bits yield \underline{m}.

Other applications of Ring-LWE/NTRU

- Lopez-Alt, Tromer and Vaikuntanathan have given a homomorphic encryption scheme based on NTRU.
- Brakerski, Gentry and Vaikuntanathan have given homomorphic encryption based on LWE/Ring-LWE.
- Vadim will talk about efficient public key signatures based on Ring-LWE and NTRU.

Lattice attack on NTRU (Coppersmith-Shamir)

- NTRU: Given \underline{a} such that there exist $(\underline{s}, \underline{u}, \underline{e})$ with $\underline{a} \underline{s}+q \underline{u}=\underline{e}$.
- Let \mathbf{A} be circulant matrix corresponding to \underline{a} and let \underline{s} be a vector corresponding to the ring element. Then s- \mathbf{A} is a vector corresponding to sw.
Then

$$
(\underline{s}, \underline{u})\left(\begin{array}{ll}
\mathbf{I} & \mathbf{A} \\
0 & q \mathbf{I}
\end{array}\right)=(\underline{s}, \underline{e})
$$

is a short vector in the row lattice.

- To prevent this attack need to use large dimension.

Lattice attack on Ring-LWE

- Given $(\underline{a}, \underline{b}=\underline{a} \underline{s}+\underline{e}+q \underline{u}) \in R_{q}^{2}$.
- Just like the previous case

$$
(\underline{s}, \underline{u})\left(\begin{array}{ll}
\mathbf{I} & \mathbf{A} \\
0 & q \mathbf{I}
\end{array}\right)=(\underline{s}, \underline{b}-\underline{e}) \approx(0, \underline{b}) .
$$

- Hence, we have an instance of the closest vector problem in a lattice.
Natural to expect since NTRU is like Ring-LWE with $\underline{b}=0$.

Interlude: Lattice attack on LWE

- LWE: Given A and $\underline{b} \equiv \underline{s} A+\underline{e}(\bmod q) \in \mathbb{Z}^{m}$, find $\underline{s} \in \mathbb{Z}^{n}$.
- Let $L=\left\{\underline{v} \in \mathbb{Z}^{m}: \underline{v} \equiv \underline{s} A(\bmod q)\right.$ for $\left.\underline{s} \in \mathbb{Z}^{n}\right\}$. Then L is a lattice of rank m and (usually) volume q^{m-n}.
- To solve LWE we want to find a lattice point $y \equiv \underline{s} A(\bmod q)$ close to \underline{b}. Once we have computed $y \in L \subset \overline{\mathbb{Z}}^{m}$ one can easily compute $\underline{s} \in \mathbb{Z}^{n}$ with $\underline{y} \equiv \underline{s} A(\bmod q)$.
- Usually, the desired solution s corresponds to the closest lattice point in the Euclidean norm.
- Hence, solve LWE by lattice basis reduction on L followed by Babai nearest plane algorithm or enumeration or randomised variant (see Lindner-Peikert 2011, Liu-Nguyen 2013).
- Optimal to choose $m \approx \sqrt{n \log (q) / \log (\delta)}$. ($\delta=$ Hermite factor.)

Further work

- Alex May (2001) used "zero run" and "dimension reducing" tricks to speed up the lattice attack on NTRU.
- Craig Gentry (2001) used a ring homomorphism to reduce to smaller dimensional problem, which is why we now use $x^{n}+1$ where $n=2^{k}$.
- Gama, Howgrave-Graham and Nguyen (EUROCRYPT 2006) discussed "symplectic lattice reduction" in the context of NTRU.
- Howgrave-Graham (CRYPTO 2007) considered hybrid "meet-in-middle" and lattice reduction approaches.
- Has similar cryptanalytic effort been made on Ring-LWE?

Multilinear maps (Garg, Gentry, Halevi 2013)

- A pairing is a non-degenerate, bilinear map e: $G_{1} \times G_{2} \rightarrow G_{3}$.
- Typically constructed out of the Weil or Tate-Lichtenbaum pairing on elliptic curves.
- It would be interesting to have a non-degenerate multilinear $\operatorname{map} e: G_{1} \times G_{2} \times \cdots \times G_{k} \rightarrow G_{k+1}$.
- We can't really do that yet, but there is something slightly analogous.
- The one-way function $g \rightarrow g^{x}$ is replaced by "randomised encodings" a of random elements x.
- The "multilinear map" is essentially a homomorphic multiplication of these encodings, followed by an operation that "deterministically extracts some bits" from the product.

Multilinear maps (Garg, Gentry, Halevi 2013)

- Let g be a short vector, defining a principal ideal $I=(g)$ in $R_{q}=\mathbb{Z}_{q}[x] /\left(x^{n}+1\right)$. Also need g invertible and g^{-1} short.
- $z \in R_{q}$ is random and invertible.
- Public key includes $y=(1+g r) / z, x_{i}=g b_{i} / z$, and $p_{z \mathrm{t}}=h z^{k} / g$, where r, b_{i} are short and h is medium size.
- To generate "random exponent" one chooses a short vector d in R_{q}.
- To generate a "randomised (level one) encoding of x " one computes

$$
\begin{aligned}
u & =d y+\sum_{i} r_{i} x_{i} \\
& =\left(d+g\left(r+\sum_{i} r_{i} b_{i}\right)\right) / z=(d(\bmod (g))+g(\text { small })) / z
\end{aligned}
$$

- Idea: It is hard to determine d given u.

Multilinear maps (Garg, Gentry, Halevi 2013)

- Given randomized (level one) encodings u_{1}, \ldots, u_{k} all of the form $\left(d_{i}+g\right.$ small) $/ z$ one computes

$$
u=u_{1} \cdots u_{k}=\left(d_{1} \cdots d_{k}+g \text { smallish }\right) / z^{k}
$$

- Now, recall $p_{\mathrm{zt}}=h z^{k} / g$, so

$$
u p_{\mathrm{zt}}=\left(d_{1} \cdots d_{k}\right)(h / g)+h \text { smallish } .
$$

- Since (h / g) is a constant and h smallish is smallishish, the most significant bits of the representation of $u p_{z t}$ depend only on $d_{1} \cdots d_{k}$.

Multilinear maps (Garg, Gentry, Halevi 2013)

- Given randomized (level one) encodings u_{1}, \ldots, u_{k} all of the form $\left(d_{i}+g\right.$ small) $/ z$ one computes

$$
u=u_{1} \cdots u_{k}=\left(d_{1} \cdots d_{k}+g \text { smallish }\right) / z^{k}
$$

- Now, recall $p_{\mathrm{zt}}=h z^{k} / g$, so

$$
u p_{\mathrm{zt}}=\left(d_{1} \cdots d_{k}\right)(h / g)+h \text { smallish } .
$$

- Since (h / g) is a constant and h smallish is smallishish, the most significant bits of the representation of $u p_{\mathrm{zt}}$ depend only on $d_{1} \cdots d_{k}$.
- Secure? Your guess is as good as mine.

Computational assumption and applications

- The computational assumption needed for crypto applications is: Given a k-multilinear map and $k+1$ randomised encodings u_{1}, \ldots, u_{k+1} of values d_{1}, \ldots, d_{k+1} it is hard to compute the value of the k-multilinear map on encodings of $d_{1} d_{2} \cdots d_{k+1}$.
- Note that can compute the k-multilinear map for values d_{1}, \ldots, d_{l} when $l \leq k$.
- Cryptographic applications of multilinear maps:
- k-party Diffie-Hellman
- Attribute/Functional encryption
- Witness encryption
- Programmable hash functions
- etc

Differences with pairings

- For pairings, the "encoding" is $d \rightarrow g^{d}$, which is a one-way function (both phrases important here!)
- For GGH the encoding is $d \rightarrow d y$, which is not one-way, unless one adds extra randomisation in which case it is not a function.
- Pairings give a group homomorphism from one group to another, typically $E\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{F}_{q^{k}}^{*}$.
- GGH gives an "algebraic map" (multiplication of ring elements) followed by a non-algebraic map (extraction of most significant bits).

Thank You

