
Multi Party Computation: From Theory to
Practice

Nigel P. Smart

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB.

July 1, 2013

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 1



What if?

Take two drug companies.

Each has a database of molecules and toxicology test results.

They want to combine their results

Without revealing what molecules are in the databases.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 2



What if?

A government wants to search network traffic for a specific
anomolous behaviour.

But the network operator does not want to give access to the
network to the government.

And the government does not want to reveal exactly what behaviour
it is searching for.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 3



Computing on Encrypted Data
There are two main ways of performing susch Computations On
Encrypted Data:

Fully Homomorphic Encryption
I First scheme developed in 2009
I Party A sends encrypted data to party B.
I Party B does some computation and returns the encrypted

result to party A
I Party A now decrypts to find out the answer.

Multi-Party Computation
I First schemes developed in mid 1980’s.
I Parties jointly compute a function on their inputs using a

protocol
I No information is revealed about the parties inputs.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 4



Theory

In theory both such technologies can compute anything.

In FHE one has a huge computational cost, but zero communication.

In MPC one has virtually no computational cost, but huge
communication.

In theory we can make either technology error tolerent
I Even against malicious players.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 5



Practice

FHE is currently impractical for all but the simplest functions
I Although you can do some useful things with it.

MPC has been deployed for some operations
I Mainly against semi-honest adversaries.
I Tolerating only one baddie out of exactly three players.

We will show how to combine FHE and MPC to get something much
better and practical.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 6



Set up

Assume n parties of which n − 1 can be malicious.

Assume a global (secret) key α ∈ Fp is determined

Each party i holds αi with

α = α1 + . . .+ αn.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 7



Secret Sharing

All data is represented by elements in Fp.

A secret value x ∈ Fp is shared between the parties as follows
I Party i holds a data share xi

I Party i holds a “MAC” share γi(x)
such that

x = x1 + · · ·+ xn and α · x = γ1(x) + · · ·+ γn(x).

Note we can share a public constant v by
I Party 1 sets x1 = v
I Party i 6= 1 sets xi = 0
I Party i sets γi(v) = αi · v .

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 8



Preprocessing Model

Such a sharing of x is denoted by [x ].

Our protocol works in the preprocessing model.

We (overnight say) generate a lot of data which is independent of
the function to be computed, or its inputs.

In its basic form the data consists of triples of shared values

[a], [b], [c]

such that
c = a · b.

We discuss how to produce these triples later.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 9



The Computation
To perform the computation we utilize the following idea

Any computation can be represented by a series of additions and
multiplications of elements in Fp.

In other words + and × are a set of Universal Gates over Fp.

We assume the players inputs are shared first using the above
sharing

I Will not explain how to do this, but it is easy

So all we need do is working out how to add and multiply shared
values.

Addition will be easy, multiplication will be hard.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 10



Addition
Suppose we have two shared values [x ] and [y ].

To compute the result [z] of an addition gate the parties individually
execute

I zi = xi + yi

I γi(z) = γi(x) + γi(y)

Note this is a local operation and that we end up with

z =
∑

zi =
∑

(xi + yi) =
(∑

xi

)
+
(∑

yi

)
= x + y ,

α · z =
∑

γi(z) =
∑

(γi(x) + γi(y)) = α · x + α · y

= α · (x + y).

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 11



Linear Secret Sharing

The addition trick works because we have a Linear Secret Sharing
Scheme.

We can locally compute any linear function of shared values

i.e. given constants v1, v2 and v3 and shared values [x ] and [y ] we
can compute

v1 · [x ] + v2 · [y ] + v3 = [v1 · x + v2 · y + v3].

We will now use this in our method to perform multiplication.

Note: In what follows “partially opening” a share [x ] means revealing
xi but not the MAC share.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 12



Multiplication
To multiply [x ] and [y ] to obtain [z] we work as follows:

I Take a new triple ([a], [b], [c]) off the precomputed list.
I Partially open [x ]− [a] to obtain ε = x − a.
I Partially open [y ]− [b] to obtain ρ = y − b.
I Locally compute the linear function

[z] = [c] + ε · [b] + ρ · [a] + ε · ρ.
Note

I Each multiplication requires interaction
I If a (resp. b) is random then ε (resp. ρ) is a one-time pad

encryption of x (resp. y ).
We get the correct result because

c + ε · b + ρ · a + ε · ρ
= a · b + (x − a) · b + (y − b) · a + (x − a) · (y − b)
= (a · b) + (x · b − a · b) + (y · a− a · b) + (x · y − x · b − y · a + a · b)
= x · y .

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 13



Verifying Correctness
So given we can add and multiply we can compute anything

At the end of the computation we check correctness by interactively
checking the MAC values are all correct.

Each player i has an agreed set of partially open values

aj , 1 ≤ j ≤ t

and each one has a sharing of the associated MAC value

γ(aj)i , 1 ≤ j ≤ t .

Each player i also has a share of the MAC key

αi .

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 14



Verifying Correctness
We generate an agreed set of random values

rj , 1 ≤ j ≤ t

Each player i computes

a =
t∑

j=1

rj · aj .

They also compute their share of the MAC on a

γi =
t∑

j=1

rj · γ(aj)t

and then
σi = γi − αi · a.

Note, if all is correct then σi is a sharing of zero.
I So players broadcast σi
I Then all check whether σ1 + · · ·+ σn = 0.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 15



Preprocessing and FHE
We return to the preprocessing, which we do using FHE

I Following is a naive version, the real version has lots of bells
and whistles.

We assume an FHE scheme with keys (pk, sk) whose plaintext is Fp

I In practice for efficiency work on vectors of such elements in a
SIMD fashion

Given ct1 = Encpk(m1) and ct2 = Encpk(m2) we have

Decsk(ct1 + ct2) = m1 + m2

and
Decsk(ct1 · ct2) = m1 ·m2.

We only need to evaluate circuits of multiplicative depth one.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 16



Preprocessing and FHE

We require a little more of our FHE scheme though

We assume a shared FHE public key pk for an FHE scheme.
I Party i holds a share ski

I Together they can decrypt a ciphertext ct via Decsk1,...,skn(ct).
I Each party computes Encpk (αi) and broadcasts this.

Last step needed so that each party has Encpk (α).

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 17



Reshare
Given a ciphertext ct encrypting a value m we can make each party
obtain

I An additive share mi , s.t. m =
∑

mi

I And (if needed) a new fresh ciphertext ct′ encrypting m.

Reshare(ct)
I Party i generates a random fi and transmits ctfi = Encpk(fi).
I All compute ctm+f = ct +

∑
ctfi .

I Execute Decsk1,...,skn(ctm+f ) to obtain m + f .
I Party 1 sets m1 = (m + f )− f1.
I Party i 6= 1 sets mi = −fi .
I Set ct′ = Encpk(m + f )−

∑
ctfi .

Use some “default” randomness for the last encryption.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 18



Generating [a] and [b]

We can generate our sharing [a] as follows

I Party i generates a random ai and transmits ctai = Encpk(ai).
I All compute cta =

∑
ctai .

I All compute ctα·a = ctα · cta.
I Execute Reshare on ctα·a so party i obtains γi(a).

Note this can also be executed to obtain [b].

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 19



Generating [c]

This is also easy
I We have cta and ctb.
I All compute ctc = cta·b from cta · ctb.
I Get shares ci via executing Reshare on ctc ; also obtaining a

fresh ciphertext ct′c .
I All compute ctα·c = ctα · ct′c .
I Execute Reshare on ctα·c so party i obtains γi(c).

This is efficient despite using FHE technology because we only
compute with depth one circuits.

Similar tricks with FHE allow us to perform other preprocessing
making the computation phase even faster.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 20



SPDZ and Tiny-OT

The above is called the SPDZ protocol

Very efficient and practical for some applications.

Better security properties than other MPC implementations

More flexible in terms of parameters than other MPC
implementations.

I Not quite suited to evaluating binary circuits, or circuits over
small finite fields.

I A variant of the above protocol can do this.
I Or another protocol related to SPDZ due to Nielsen, Nordholt,

Orlandi and Burra (Tiny-OT).

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 21



Performance SPDZ
There has been a lot of work on protocols to perform various higher
level operations via MPC

I Without evaluating “circuits”.
I Using ability to open data.

Many of these protocols can be improved by offloading function
independent processing into the Offline phase.

I We expect more impressive results to come out in the next few
months

In the next slides we present timings for our current Online phase,
for two players, for various functions

I Again we expect these to improve dramatically in the coming
months

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 22



Integer Multiplication

0 2 4 6 8 10 12 14 16
0

200

400

600

·103

Latency (ms)

Th
ro

ug
hp

ut
(1

00
0/

s)

1 thread 4 threads 7 threads

Figure: Integer multiplication

A “386” did about 106 integer mults per second.
Nigel P. Smart

Multi Party Computation: From Theory to Practice Slide 23



Integer Comparison

0 10 20 30 40
0

2,000

4,000

6,000

Latency (ms)

Th
ro

ug
hp

ut
(/s

)

1 thread (32-Bit) 1 thread (64-Bit)
4 threads (32-Bit) 4 threads (64-bit)
7 threads (32-bit) 7 threads (64-bit)

Figure: Integer comparison (logarithmic rounds protocol).

An Intel 4004 did 46000 per sec!

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 24



Sorting

0 100 200 300 400 500
0

500

1,000

1,500

2,000

2,500

List size

La
te

nc
y

(m
s)

1 thread (32-Bit) 1 thread (64-Bit)

Figure: Sorting.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 25



Fixed/Floating Point Multiplication

0 10 20 30 40 50
0

2,000

4,000

6,000

Latency (ms)

Th
ro

ug
hp

ut
(/s

)

1 thread (fixed) (floating)
4 threads (fixed) (floating)
7 threads (fixed) (floating)

Figure: Fixed and floating point multiplication

Fixed point is 64 bit numbers with 32 bits before and after the
decimal point.
ENIAC did 384 FLOPS.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 26



Single Precision Floating Point Addition

0 20 40 60 80 100 120 140
0

200

400

600

800

1,000

Latency (ms)

Th
ro

ug
hp

ut
(/s

)

1 thread 4 threads 7 threads

Figure: Floating point addition

ENIAC did 384 FLOPS.Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 27



Fixed/Floating Point Comparison

0 5 10 15 20 25 30 35
0

1,000

2,000

3,000

4,000

Latency (ms)

Th
ro

ug
hp

ut
(/s

)

1 thread (fixed) (floating)
4 threads (fixed) (floating)
7 threads (fixed) (floating)

Figure: Fixed and floating point comparison operation (less than)
Nigel P. Smart

Multi Party Computation: From Theory to Practice Slide 28



Small Finite Field Example
As an another example we present timings for evaluating the AES,
DES, MD5 and SHA-1 functionalities, for two players and active
security.
Why do we care about the such functionalities?

I Many attacks against stored password systems in recent past
by people breaking into individual servers

EMC/RSA have the following solution for static passwords:
I User splits password up p = pU

1 ⊕ pU
2

I Sends p1 to server one, and p2 to server two.
I Servers have another share of the password p = pS

1 ⊕ pS
2 .

I Servers compute ti = pU
i ⊕ pS

i
I Servers sent ti to each other.
I Accept password if

t1 = pU
1 ⊕ pS

1 = (p ⊕ pU
2 )⊕ (p ⊕ pS

2 ) = pU
2 ⊕ pS

2 = t2.

Attacker needs to compromise both servers to get the password.
Nigel P. Smart

Multi Party Computation: From Theory to Practice Slide 29



AES Functionality

The EMC/RSA solution does not work with dynamic passwords
I SecureID tokens.
I e-banking applications using CAP/EMV
I etc

Password is typically
p = AESk (m)

where m is a counter, or a challenge from the server and k is the
master “password”.

Here AES could be replaced by any keyed PRF really; e.g. DES,
MD5, SHA-1 etc.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 30



AES Functionality

In joint work with Bar Ilan University (Lindell) and Partisia (Damgård
and Nielsen) we have a proposed system to verify such dynamic
passwords using multiple servers

I Need to compromise all servers to break the system.

Basically just apply MPC to the dynamic password situation.

Now working on system to do this for real
I Can now meet latency and throughput for AES based solutions.
I Working on improving the DES, MD5 and SHA-1 based

solutions.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 31



AES Functionality

0 50 100 150 200 250

102

103

Latency : ms

Th
ro

ug
hp

ut
:

#/
s

1 thread excl. KS 1 thread incl. KS
4 threads excl. KS 4 threads incl. KS
7 threads excl. KS 7 threads incl. KS

Figure: AES runtimes
Nigel P. Smart

Multi Party Computation: From Theory to Practice Slide 32



AES Functionality : Zoom In

10 20 30 40 50
0

100

200

300

400

500

Latency : ms

Th
ro

ug
hp

ut
:

#/
s

1 thread excl. KS 1 thread incl. KS
4 threads excl. KS 4 threads incl. KS
7 threads excl. KS 7 threads incl. KS

Figure: AES runtimes (low latency values)
Nigel P. Smart

Multi Party Computation: From Theory to Practice Slide 33



DES

0 200 400 600 800 1,000
0

100

200

300

Latency : ms

Th
ro

ug
hp

ut
:

#/
s

1 thread excl. KS 1 thread incl. KS
4 threads excl. KS 4 threads incl. KS
7 threads excl. KS 7 threads incl. KS

Figure: DES runtimes
Nigel P. Smart

Multi Party Computation: From Theory to Practice Slide 34



MD-5

350 400 450 500 550 600 650 700
0

20

40

60

Latency : ms

Th
ro

ug
hp

ut
:

#/
s

1 thread 4 threads 7 threads

Figure: MD5 runtimes

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 35



SHA-1

650 700 750 800 850 900 950 1,000
0

10

20

30

Latency : ms

Th
ro

ug
hp

ut
:

#/
s

1 thread 4 threads 7 threads

Figure: SHA-1 runtimes

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 36



Any Questions ?

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 37


